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Abstract

Background: Most of the approaches for splice site prediction are based on machine learning techniques. Though,
these approaches provide high prediction accuracy, the window lengths used are longer in size. Hence, these
approaches may not be suitable to predict the novel splice variants using the short sequence reads generated from
next generation sequencing technologies. Further, machine learning techniques require numerically encoded data
and produce different accuracy with different encoding procedures. Therefore, splice site prediction with short
sequence motifs and without encoding sequence data became a motivation for the present study.

Results: An approach for finding association among nucleotide bases in the splice site motifs is developed and
used further to determine the appropriate window size. Besides, an approach for prediction of donor splice sites
using sum of absolute error criterion has also been proposed. The proposed approach has been compared with
commonly used approaches i.e., Maximum Entropy Modeling (MEM), Maximal Dependency Decomposition (MDD),
Weighted Matrix Method (WMM) and Markov Model of first order (MM1) and was found to perform equally with
MEM and MDD and better than WMM and MM1 in terms of prediction accuracy.

Conclusions: The proposed prediction approach can be used in the prediction of donor splice sites with higher
accuracy using short sequence motifs and hence can be used as a complementary method to the existing
approaches. Based on the proposed methodology, a web server was also developed for easy prediction of donor
splice sites by users and is available at http://cabgrid.res.in:8080/sspred.
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Background
Splice sites are the regions, where introns are excised
from the pre-mRNA leaving the exons alone. In general,
exon-intron boundary is called donor (5′) splice site and
is conserved with di-nucleotide GT whereas intron-exon
boundary is called acceptor (3′) splice site and is con-
served with di-nucleotide AG, together known as canon-
ical splice sites. Approximately 99% of the splice sites
are canonical GT-AG type in humans [1]. Analysis of
the splice sites is very important field of computational
biology due to their key role in prediction of the exon-
intron structure of protein coding genes.
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Recognition of splicing in short reads poses a chal-
lenge because they often align to numerous places in a
genome, and often lack insufficient sequence specificity
on one or both ends of exon-exon junction to accurately
define junction [2]. Moreover, to utilize short reads gen-
erated from the next generation sequencing technology
for transcriptome sequencing and gene structure identi-
fication, one need to align accurately the sequence reads
over intron boundaries and splice site prediction helps
to improve the alignment quality [3]. Therefore, it is re-
quired to develop methodology to predict splice variants
using short reads or sequence with short window size.
Although, there exists methods like Weighted Matrix

Method (WMM) [4], Weighted Array Model (WAM) [5],
Logit linear model [6] etc. for the prediction of splice sites,
most of the methods are based on Classification tree [7-9],
Artificial Neural Networks (ANNs) [10-13] and Support
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Vector Machines (SVMs) [14-21]. In splice site prediction
using Machine Learning Approaches (MLAs) like ANN
and SVM, initially the splice sites are encoded into nu-
meric form and then the encoded data is used as input for
prediction [19,22,23]. Although, most of these methods
have shown high prediction accuracy i.e., >90%, the
lengths of window sizes used are longer i.e., more than 40
base pairs (bp) [16,20,22,23]. Hence, these approaches
may not be suitable for predicting splice variants using
short sequence reads generated from next generation se-
quencing technologies.
In the present study, an attempt has been made to

develop a method for the prediction of donor splice
sites, using shorter window size, based on the idea of di-
nucleotide association. The proposed method can be
used to predict the donor splice sites without encoding
sequence data usually required in MLAs. The process of
sequence data encoding is one step more for the predic-
tion that may require additional memory/storage alloca-
tion. Besides, the results (prediction accuracy) also vary
with different encoding approaches. The proposed method
was also compared with the commonly used methods that
are based on short sequences and without encoding the
sequence data.

Methods
Data
True Splice Site (TSS) and False Splice Site (FSS) sequences
were collected from Homo Sapiens Splice Site Dataset
(HS3D) available at URL: (http://www.sci.unisannio.it/
docenti/rampone/) [24]. The collected dataset contains
2796 TSS and 90924 FSS sequences corresponding to 622
and 125 genes respectively. The length of each sequence is
140 bp having 70 bp on both the exon and intron side with
conserved GT at 71st and 72nd positions. From the col-
lected data, it was found that the maximum number of
TSS present in a gene is around 50 whereas the maximum
number of FSS is around 8000, which implies imbalanced-
ness between the presence of TSS and FSS in a gene.

Associations among nucleotides
Here, we propose an approach for finding associations
among nucleotides in the splice site motifs and is ex-
plained as follows:
Consider a sequence dataset having N sequences of

equal length P and let Sk = (x1k, x2k,…, xPk), xik ∈ {A,T,
G,C} ; ∀ i = 1, 2,…, P be the kth sequence. Then for
the ith position, the occurrence of base s is described
by an indicator variable Iis i.e.,

Iis ¼ I xik ¼ sð Þ ¼
�
1; if s occurs
0; otherwise

∀i ¼ 1; 2;…; P;

s ∈ A;T ;G;Cf g; k ¼ 1; 2;…;N
Now, the proportion of base s occurring at the ith

position is given by

p Xi ¼ sð Þ ¼ 1
N

XN
k¼1

I xik ¼ sð Þ; s ∈ A;T ;G;Cf g

and the proportion of base s and t occurring together at
ith and jth position respectively is given by

p Xi ¼ s; Xj ¼ t
� � ¼ 1

N

XN
k¼1

I xik ¼ sð ÞI xjk ¼ t
� �

; s; t∈ A;T ;G;Cf g

The association between base s and t at ith and jth

position respectively is then computed as

ai;j s; tð Þ ¼

XN
k¼1

I xik ¼ sð ÞI xjk ¼ t
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

I xik ¼ sð Þ :
XN
k¼1

I xjk ¼ t
� �vuut

∀i≠j ð1Þ

The range of this association lies between 0 (no associ-
ation) and 1 (complete association). A “no association”
situation occurs when base s at ith position and base t at jth

position do not occurs together in any of the N sequences

i.e.,
XN
k¼1

I xik ¼ sð ÞI xjk ¼ t
� � ¼ 0 and hence ai,j(s, t) = 0.

On the other hand, whenever s occurs at ith position, t
occurs at jth position correspondingly in all the N sequences
then there exist a complete association between s and t, i.e.,XN
k¼1

I xik ¼ sð ÞI xjk ¼ t
� � ¼XN

k¼1

I xik ¼ sð Þ ¼
XN
k¼1

I xjk ¼ t
� � ¼

C sayð Þ and hence ai;j s; tð Þ ¼ Cffiffiffiffiffiffiffiffiffi
C : C

p ¼ 1.

However, for i = j, the association between base s and t
can be calculated using the formula

ai;i s; tð Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

I xik ¼ sð Þ :
XN
k¼1

I xik ¼ tð Þ

N−
XN
k¼1

I xik ¼ sð Þ
 !

: N−
XN
k¼1

I xik ¼ tð Þ
 !

vuuuuuuut if s≠t

1 if s ¼ t

8>>>>>>><
>>>>>>>:

ð2Þ

following the theory of multinomial distribution. Here,
every position can be modeled empirically with a tetra-
nomial (multinomial with four different outcomes corre-
sponding to nucleotides A, T, G and C) distribution,
where the probability of success of each outcome can be
computed empirically from the position-wise aligned se-

quence data as p sið Þ ¼ 1
N

XN
k¼1

I xik ¼ sð Þ, where p(si) is the

probability of the outcome s at ith position; i = 1, 2,…, P
and s ∈ {A,T,G,C}.
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More elaborately, the association matrix between base
s and t occurring at ith and jth positions respectively in
splice site sequences can be constructed as;

a1;1 s; tð Þ … a1;j s; tð Þ … a1;P s; tð Þ
⋮ ⋮ ⋮

ai;1 s; tð Þ … ai;j s; tð Þ … ai;P s; tð Þ
⋮ ⋮ ⋮

aP;1 s; tð Þ … aP;j s; tð Þ … aP;P s; tð Þ

0
BBBB@

1
CCCCA

where, the off-diagonal and diagonal elements of the
matrix will be obtained by using the equation (1) and (2)
respectively.
The prediction approach is based on the di-nucleotide

dependencies at all possible pairs of positions for a given
window size and that became motivation for determining
the window size on the basis of di-nucleotide association.
Thus, the said association measure was introduced. The
proposed association measure seems to be more inform-
ative than the existing position wise measures because
(i) in the position-wise association (or mutual information)
[25] only a single observation is obtained between any two
positions whereas in the proposed association measure
there will be 16 observations between any two positions
and (ii) the positional level associations are the function of
nucleotide level associations. This approach can also be
used for finding the associations in any position-wise
aligned sequence dataset having sequences of equal length,
provided the number of sequences in the dataset is large
i.e., the probability of occurrence of any base at any pos-
ition should be non-zero.
Splice site prediction approach
The value (1, 0) of the indicator variable Iis (defined in
the previous sub-section) is considered as the observed
value for the base s at ith position in the motif and the
estimated value of base s at ith position given base t at
jth position is computed as E(Iis|Ijt), where j ≠ i. Since the
expectation of an indicator variable is nothing but prob-
ability, E(Iis|Ijt) = p(si|tj) ∀ j ≠ i ; s, t ∈ {A,T,G,C}, which is
the proportion of base s at ith position given base t at jth

position. More elaborately,

E
�
IisjIjt

� ¼ p
�
sijtj
� ¼

XN
k¼1

I xik ¼ sð ÞI xjk ¼ t
� �

XN
k¼1

I xjk ¼ t
� �

Now, the Sum of Absolute Error (SAE) for the ith pos-
ition is computed as
SAEi ¼
XP
j¼1;j≠i

j1−p�sijtj�j þ j0−�1−p�sijtj��j
¼ 2

XP
j¼1;j≠i

1−p sijtj
� �� � ¼ 2 P−1ð Þ−2

XP
j¼1;j≠i

p si tj
����

Hence, the SAE over all positions (SAEap) for the se-

quence of length P is given by SAEap ¼
XP
i¼1

SAEi ¼ 2

XP
i¼1

XP
j¼1;j≠i

n
1−p

�
sijtj
�o" #

¼ 2P P−1ð Þ−2
XP
i¼1

XP
j¼1;j≠i

p si tjÞ
���

Prediction of test instance
The following steps are followed for prediction of a test
instance

1. Compute the SAE of the test instance by assuming it
as TSS (SAETap) i.e., the SAEap of the test instance
will be calculated by using the conditional probability
p(si|tj) based on the training dataset of TSS.

2. Compute the SAE of the test instance by assuming it
as FSS (SAEFap) i.e., the SAEap of the test instance
will be calculated by using the conditional probability
p(si|tj) based on the training dataset of FSS.

3. Compute the difference i.e., dSAET−Fap ¼SAETap−SAE
F
ap¼

2
XP
i¼1

XP
j¼1; j 1i

p
�
sijtj
�)T

−

(
2
XP
i¼1

XP
j¼1; j 1i

pðsijtj
�)F

8<
:

4. if dSAET−Fap < ε; the instance is predicted asTSS

if dSAET−Fap ≥ ε; the instance is predicted asFSS
; ε∈R

(

For estimating the threshold value (ε), the following
steps are followed:
I. Take a random data set (containing 60% of
observations) from the original data set and divide it
into 10 non-overlapping sets with each set containing
approximately same number of TSS and FSS.

II. Everytime, use one set of TSS and FSS together as a
test set and remaining nine sets of TSS and FSS
together as a training set.

III. Calculate the performance accuracy in terms of
sensitivity and specificity using the test dataset.

IV. Calculate the performance accuracy for different
threshold values for each test set and retain the
value of threshold where specificity = sensitivity.

V. Obtain the final threshold value by taking the
average of the threshold values over ten test sets.

Heat map generation
All the sequences in TSS and FSS were used to gen-
erate the association matrices, where the length of each
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sequence used was 20 bp having 10 bp on both side of
conserved di-nucleotide GT at the beginning of the in-
tron. The sequence length of 20 bp was considered
initially to have an idea on the associations among nucle-
otides at splice sites. However, the sequence length can
be increased if the association patterns are expected be-
yond the considered sequence length.
The association matrices were obtained for all the 16

di-nucleotide combinations separately for TSS and FSS.
Out of these, only 10 combinations i.e., AA, AT, AG,
AC, TT, TG, TC, GG, GC and CC are required to fully
portrait the association structure and the remaining 6
associations i.e., TA, GA, GT, CA, CT and CG can be
obtained by taking the transpose of the associations AT,
AG, TG, AC, TC and GC respectively. For example, the
association matrix generated using association between
G and T is the transpose of the association matrix gen-
erated using association between T and G. The associ-
ation matrices obtained from TSS and FSS were merged
separately and heat maps were generated using the stats
package of R-software to visualize the association pat-
tern. The association pattern was used to determine the
window size.

Redundancy check and similarity search
A redundancy check was performed on the dataset
with the determined window size to remove the du-
plicate sequences (100% identical) as non-removal of
such sequences may lead to biasness (in terms of pre-
diction accuracy) towards the class having larger pro-
portion of duplicate sequences. The duplicate sequences
within TSS and FSS were removed first and then the se-
quences present in TSS were removed from the FSS.
After removing the duplicate sequences, sequence

distribution was analyzed by performing a similarity
search (using a developed R-code), where each sequence
of TSS was compared with the other sequences of
TSS as well as with all the sequences of FSS and vice
versa. The percentage of similarity between any two se-
quences was calculated by assigning a score of 1 and
0 for every match and mismatch in nucleotides re-
spectively and the same is explained below for two sam-
ple sequences.

Sequence 1: ATTCGTCATG
Sequence 2: TCTAGTTACG
Score : 0010110101
Similarity (%)=(5/10)*100=50

The necessity of similarity search lies in the fact that
if there exists similarity within TSS & FSS and the se-
quences of TSS are completely distinct from the se-
quences of FSS (i.e., zero similarity) then it is obvious
that the classification accuracy by using such datasets as
training and test set will be greater. However, the TSS
and FSS sequences occur in the nature are not com-
pletely distinct from each other. Therefore, there should
be similarity between the sequences of TSS and FSS
dataset to judge the actual predictive ability of the pre-
diction method.

Performance comparison using HS3D dataset
The dataset with the determined window size, obtained
after redundancy check, was used to compare the per-
formance of the proposed approach with that of existing
score based approaches, viz., Maximum Entropy Model
(MEM) score [26], Maximal Dependency Decomposition
(MDD) score [7], Weighted Matrix Method (WMM)
score [4] and Markov model of first order (MM1) score.
The comparison was made using Receiving Operating
Characteristics (ROC) curves, Precision-Recall (PR) curves,
estimates of Area Under ROC curves (AUC-ROC) and
Area Under PR curves (AUC-PR). For the purpose of com-
parison, the scores of MEM, MDD, WMM and MM1 were
obtained by executing the MaxEntScan (a web server)
using the considered dataset. The web server is available
at http://genes.mit.edu/burgelab/maxent/Xmaxentscan_
scoreseq.html.

ROC and PR analysis
An ROC graph depicts the relative trade-offs between
true positives and false positives. It compares the classi-
fiers' performance across the entire range of class distri-
butions and error costs. To measure the performance
accuracy of the proposed approach and to compare it
with the existing approaches, ROC curves were plotted
and the AUC-ROC values were also computed. Further,
the statistical comparison between two ROC curves was
made by using the Standard Error (SE) of AUC-ROC
[27], which was computed as

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ 1‐θð Þ þ N TSSð Þ‐1

� �
Q1‐θ

2� �þ N FSSð Þ‐1
� �

Q2‐θ
2� �

N TSSð Þ:N FSSð Þ

s
;

where Q1 ¼ θ
2‐θð Þ and Q2 ¼ 2:θ2

1þθð Þ and N(TSS), N(FSS) and θ
are the number of positive instances (TSS), number of
negative instances (FSS) and estimate of AUC-ROC
respectively.
Since AUC-ROC is invariant to the class-skew, it is

not an appropriate measure under imbalanced data situ-
ation and hence in addition to the AUC-ROC, PR curves
and AUC-PR were also used for evaluating the per-
formance. PR curves were obtained by taking Recall
on the X-axis and Precision on the Y-axis, where the
correct Recall-Precision points were obtained by using
the interpolation technique suggested by Davis and

http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
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Goadrich [28]. The interpolation technique is described
as follows:
Let A and B be two points, which are far apart in

Precision-Recall space and is generated from true
positive (TPA) and false positive (FPA) counts, where
TPA ≤ TPB and FPA ≤ FPB. Then, interpolation is done
between the counts TPA and TPB, and FPA and FPB to
create intermediate points between A and B. The inter-
mediate TP counts are created as TPA + 1; TPA + 2; …;
TPB -1 and corresponding FP are obtained by linearly in-
creasing the false positives for each new point by the

local skew FPB−FPA
TPB−TPA

	 

.

Evaluation with varying window sizes
To be more confident with the determined window size,
the performance of the proposed approach was also ana-
lyzed with other window sizes in addition to the deter-
mined window size. The redundancy checks were also
performed for different window sizes, in the similar way
as described earlier.

Evaluation using imbalanced dataset
To assess the performance of the proposed approach
with respect to different degrees of imbalanced-ness,
along with the balanced dataset three more datasets
were prepared containing TSS and FSS in the propor-
tions of 1:2.5, 1:5 and 1:7.5 respectively. The proposed
approach was executed using these datasets and the per-
formances were assessed by plotting the ROC and PR
curves using the results obtained from the 10-fold cross
validation technique.

Performance comparison using DGSplicer dataset
To check the consistency of the proposed prediction ap-
proach, a comparison was also made with the other con-
sidered approaches using the bench mark DGSplicer
dataset available at URL: http://www.fruitfly.org/data/
seq_tools/datasets/Human/GENIE_96/splicesets/. The
collected dataset contains 2359 TSS and equal number
of FSS with window size of 9 bp long. Comparison between
the proposed approach and other considered approaches
was made using ROC curves, PR curves, estimates of
AUC-ROC and AUC-PR.

Evaluation with redundant test dataset
In addition to the performance evaluation using non-
redundant test dataset, the performance of the proposed
approach along with the other approaches were also
evaluated using the test dataset having redundant se-
quences. To evaluate the performance, 4 datasets are
prepared in which one is balanced and other three are
imbalanced. The performances were assessed in terms of
AUC-ROC and AUC-PR.
Web server
A web interface was developed to help the biological
community for the prediction of donor splice sites using
the developed approach. It was developed using HTML
and PHP, where the developed R-code was executed in
the background upon the submission of a single or mul-
tiple nucleotide sequences in FASTA format. To sub-
mit the sequence(s), the facilities for both pasting the
sequence(s) in a text area and uploading a FASTA file are
provided. The processed results are displayed in the same
page and a link is provided for downloading the original
result file.

Results
Heat maps and window size
From the heat map of TSS (Figure 1a), it is seen that
the positions in the signal region are associated with
each other and the positions away from the signal re-
gion have association with the positions in the signal
region as well. Further, it is observed that most of the
associations are found between 29–64 units (each unit
correspond to the occurrence of one nucleotide at a
given position i.e., every position will have 4 units),
which corresponds to position number 8–16 out of
considered 20 positions in the motif. On the other
hand, from the heat map of FSS (Figure 1b), it is noticed
that no such association pattern among the positions
is present. Taking the above association pattern into
consideration, the window size determined was of length
9 bp.

Redundancy and similarity analysis
The redundant sequences were removed from the
resulting data set of 9 bp window size and a total
number of 1960 unique TSS and 59097 unique FSS
were obtained. The similarity search performed on
the unique TSS and FSS (number of FSS are kept
equal to the number of TSS and are drawn at ran-
dom from the available unique FSS) datasets revealed
that at most 77% similarity exists within and between
TSS and FSS. It is observed that each sequence of TSS
shows 77% (orange) similarity with on an average 39 (2%
of 1960) sequences of TSS (Figure 2a) and 4 (0.02% of
1960) sequences of FSS (Figure 2c). On the other hand,
each sequence of FSS shows 77% (orange) similarity
with on an average 6 (0.03% of 1960) sequences of FSS
(Figure 2b) and 39 (2% of 1960) sequences of TSS
(Figure 2d). This implies the existence of similarity among
sequences within and between the classes.
In addition to the determined 9 bp window size, four

more window sizes of lengths 7 bp, 8 bp, 10 bp and
11 bp were also considered in the vicinity of the splice
junction to assess the effect of window sizes on predic-
tion accuracy. The number of non-redundant sequences

http://www.fruitfly.org/data/seq_tools/datasets/Human/GENIE_96/splicesets/
http://www.fruitfly.org/data/seq_tools/datasets/Human/GENIE_96/splicesets/


Figure 1 Heat map of TSS and FSS. Heat maps of (a) TSS and (b) FSS were generated by using corresponding association matrices. Association
matrices were generated by taking 20 positions (10 positions at the exon end and 10 positions excluding GT at the intron start). Since each
position corresponds to four indicator variables, hence the heat map generated is of order 80 × 80 units and the units between 29–40 indicates
3 bp at the exon end and 41–64 units for 6 bp at the intron start. There exist distinct association pattern among the positions around the
conserved di-nucleotide GT in TSS. On the other hand, such association pattern is absent in case of FSS.
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obtained from the TSS and FSS datasets with the above
window sizes is given in Table 1.

Performance with balanced data
The threshold value for the 9 bp window size was ob-
tained as −7.16 (for details, see Additional file 1) and
threshold values for the other window sizes are obtained
Figure 2 Percentage of similarity within and between TSS and FSS. It
(b) within FSS (c) TSS with FSS (d) FSS with TSS. The value inside parenthe
percentage of similarity (same color) shown below the parenthesis. It can b
and between TSS and FSS.
in similar way (Table 1). The performance accuracy of
the proposed approach for different window sizes with
the balanced dataset is shown in the Figure 3 and Table 1
in terms of ROC and AUC-ROC respectively. For the
balanced dataset, same numbers of FSS as TSS were
drawn at random from the unique FSS dataset. For
example, in case of 7 bp window size the number of
shows different percentages of similarity that exists (a) within TSS
sis indicates the proportion of similar sequences with corresponding
e noticed that there exist a maximum of 77% similar sequences within



Table 1 Threshold values and estimates of AUC-ROC for the proposed approach under different window sizes

Different window sizes 7 bp 8 bp 9 bp 10 bp 11 bp

(−3 ~ +4) (−2 ~ +6) (−3 ~ +6) (−3 ~ +7) (−4 ~ +7)

Number of TSS 770 1370 1960 2342 2530

Number of FSS 12805 33840 59097 74140 88346

Threshold (ε) [−4.00] [−5.63] [−7.16] [−8.83] [−9.97]

AUC-ROC 92.74 93.37 94.43 94.39 93.87

SE 0.006 0.004 0.003 0.003 0.003

(−) indicates from exon side and (+) indicate from intron side excluding GT. Values in the square brackets are the final threshold values.
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unique TSS are 770 and unique FSS are 12805. So, 770
unique FSS need to be drawn at random from the data-
set of 12805 unique FSS to get a balanced dataset.
Though from Figure 3 it is difficult to choose the better
ROC curve, it is observed that the estimate of AUC-
ROC is highest for 9 bp window size as compared to the
others (Table 1).

Performance with imbalanced data
Since 9 bp window size is found more preferable win-
dow size under balanced situation, the same size was
considered for the imbalanced situation also. The total
number of TSS and FSS with different proportion, as
discussed in the implementation section, is given in
Table 2. Here, the numbers of FSS were drawn at ran-
dom from the dataset of 59097 unique FSS. The per-
formance of the proposed approach with respect to
imbalanced dataset was assessed using 10-fold cross val-
idation technique. The threshold values were remain same
Figure 3 ROC curves for the proposed approach under
balanced situation with different window length (WL).
for the dataset with different degrees of imbalanced-ness
under a given window size because the SAE values were
calculated class wise and sensitivity, specificity used to de-
termine the threshold values are invariant to class skew
(for details, see Additional file 1). From the ROC curves
(Figure 4a), it is seen that the AUC-ROC is almost same
for the dataset with different degrees of imbalanced-ness as
AUC-ROC is invariant to class skew. However, from the
PR curves (Figure 4b) the performance of the proposed ap-
proach under balanced situation seems to be better than
that of imbalanced situation and this may be due to the
fact that the performance of a random guesser is equals
the fraction of positive data points in an imbalanced data-
set having large number negative data points as compared
to positive data points.

Comparative analysis using non-redundant HS3D dataset
The performance of the proposed approach is compared
with the existing approaches using ROC curves (Figure 5A),
PR curves (Figure 5B), estimates of AUC-ROC and AUC-
PR (Table 3). It is observed that the values of AUC-ROC
for MEM, MDD and SAE are almost same under both
balanced and imbalanced situation and higher than that
of WMM and MM1. It is further observed that the values
of AUC-PR for MEM and SAE are at par.

Comparative analysis using redundant DGSplicer dataset
The ROC and PR curves for the DGSplicer dataset are
plotted in Figure 6 and AUC-ROC, AUC-PR is presented
in Table 4. From the table it is observed that the AUC-
Table 2 Number of non-redundant TSS and FSS sequence
under different degrees of imbalanced-ness

Proportion of TSS and FSS Number of TSS Number of FSS

1:1 1960 1960

1:2.5 1960 5000

1:5 1960 10000

1:7.5 1960 15000

The numbers of FSS are not exact values but they are approximated to
nearby integer.



Figure 4 ROC and PR curves for the proposed prediction approach. (a) ROC curves and (b) PR curves are plotted using sensitivity and
specificity, obtained from the test sets of 10-fold cross validation, under different degrees of imbalanced-ness. Red color curve denotes the curve
for the balanced data. Green, blue and purple are the curves for the dataset with different degrees of imbalanced-ness indicated as legend.
Legends for PR curves are same as the legends for ROC curves.
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ROC for SAE and MDD are almost same and is very
close to that of MEM. However, AUC-PR is almost simi-
lar for SAE and MEM and is slightly better than that of
MDD. After looking at the overall performances, it is in-
ferred that the SAE, MEM and MDD are performing at
par and are better than the WMM and MM1.

Performance analysis with and without redundancy in
HS3D test dataset
The number of TSS and FSS sequence along with
the number of redundant sequence present in the
redundant test dataset is given in Table 5. After look-
ing at the AUC-ROC and AUC-PR (Table 6), it can
be said that the performance of the approaches are
better in case of redundant test dataset as compared
to the non-redundant test dataset (dataset mentioned
in Table 2).

A user friendly web interface
The home page of the developed web server is shown in
Figure 7(a) and the result page of the server after the
execution of an example dataset is shown in Figure 7(b).



Figure 5 ROC and PR curves for different splice site prediction approaches using HS3D dataset. (A) ROC curves and (B) PR curves for the
proposed (SAE) and other considered approaches in prediction of donor splice sites are plotted for (a) balanced dataset and imbalanced dataset
having unequal number TSS and FSS i.e., (b) 1960 & 5000, (c) 1960 & 10000 and (d) 1960 & 15000 respectively.
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A score is assigned to each predicted splice site and the
splice site with the score of ≥7.16 is said to be predicted
as true splice site. Further, higher the score more is the
strength of the predicted splice site. In the result page,
only the predicted true splice sites along with their cor-
responding score are displayed.

Discussion
The process of splicing takes place in various steps being
catalyzed by small nuclear ribonucleoproteins (snRNPs)
that are the complex of snRNAs and proteins. The
snRNPs are categorized into U1 snRNP, U2 snRNP, U4
snRNP, U5 snRNP and U6 snRNP based on the type of
Table 3 Estimates of AUC-ROC and AUC-PR for the proposed
(non-redundant case)

AUC-ROC

Approaches A B C D

MEM 0.946 0.947 0.947 0.945

(±0.0036) (±0.0035) (±0.0035) (±0.0

MDD 0.945 0.945 0.944 0.943

(±0.0037) (±0.0036) (±0.0036) (±0.0

MM1 0.940 0.940 0.937 0.937

(±0.0038) (±0.0038) (±0.0038) (±0.0

WMM 0.922 0.924 0.921 0.922

(±0.0045) (±0.0043) (±0.0042) (±0.0

SAE 0.944 0.944 0.944 0.943

(±0.0037) (±0.0037) (±0.0036) (±0.0

A - Balanced, B- Imbalanced-I, C- Imbalanced-II, D- Imbalanced-III.
The values inside the parentheses are the Standard Errors.
snRNA (U1, U2, U4, U5 and U6) associated with them
[29]. Initially, the 5′splice site is recognized by U1
snRNP through the base pairing between U1 snRNA
and the 5′ splice site [30]. On the other hand, the
non-snRNP splicing factors interact with the 3′ splice
site, resulting in the 5′ splice site being brought to the
proximity of the 3′ splice site. Then, the U1/5′ splice site
base pairing is weakened in an ATP-dependent step [31],
allowing U2 snRNP to base pair with the branch site.
Further, the U4/U5/U6 tri-snRNP complex is added,
resulting in a noticeable destabilization of U1 snRNP
from the spliceosome [32], followed by several rearrange-
ments in which U1 is replaced by U5 and U6 at the 5′
approach and other considered approaches

AUC-PR

A B C D

0.946 0.868 0.76 0.675

036) (±0.0036) (±0.0054) (±0.0065) (±0.0069)

0.939 0.864 0.759 0.668

037) (±0.0039) (±0.0055) (±0.0066) (±0.0070)

0.937 0.863 0.749 0.666

038) (±0.0038) (±0.0055) (±0.0067) (±0.0070)

0.917 0.825 0.686 0.585

042) (±0.0044) (±0.0061) (±0.0070) (±0.0071)

0.944 0.867 0.761 0.673

037) (±0.0037) (±0.0054) (±0.0066) (±0.0069)



Figure 6 ROC and PR curves for the proposed approach and
other considered approaches using DGSplicer dataset. (a) ROC
curves and (b) PR curves for different approaches are plotted using
the DGSplicer dataset as the test dataset.

Table 5 Number of redundant sequences present in the
HS3D dataset considered for evaluation of proposed
approach

Type of data Total number of
sequences (TSS, FSS)

Number of redundant
sequences (TSS, FSS)

Balanced (2796,2796) (830, 102)

Imbalanced-I (2796,5000) (830, 231)

Imbalanced-II (2796,10000) (830,828)

Imbalanced-III (2796,15000) (830,1727)
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splice site [33]. The U4/U6 base pairing within the U4/
U5/U6 complex is disrupted; U4 is released from the spli-
ceosome, and U6 snRNA base pairs with U2 snRNA [34].
These rearrangements finally allow the two constitutive
catalytic steps to generate mature mRNA and release the
intron.
Most of the existing methods for splice site prediction

capture position specific signals as well as nucleotide
dependencies. The pivotal role played by the nucleotide
dependencies in the splice site motifs is explained by
Roca et al. [35]. Therefore, the dependencies among nu-
cleotides in the splice site motifs were accounted in the
proposed prediction approach.
In splice site prediction using MLAs, the window sizes

are generally determined through pilot studies i.e.,
initially the prediction approach is tested with a small
sample and window size is optimized on the basis of
prediction accuracy and the final prediction is made on
the determined window size. However, in our study the
window size was determined through an analysis involv-
ing the associations among the nucleotides in the splice
sites. Though MLAs has been successfully used in sev-
eral approaches for the prediction of splice sites, the
window lengths used are longer in size [16,18,20-23] and
hence these approaches may not be appropriate for
determining splice sites using short reads. But, our ap-
proach uses only 9 bp window length and may be more
appropriate to identify the splice variants in short reads.
Table 4 Estimate of AUC-ROC and AUC-PR for the
DGSplicer dataset using different approaches

Approaches AUC-ROC ± SE AUC-PR ± SE

MEM 0.957 ± 0.0030 0.948 ± 0.0033

MDD 0.956 ± 0.0030 0.940 ± 0.0034

MM1 0.954 ± 0.0031 0.938 ± 0.0036

WMM 0.936 ± 0.0037 0.923 ± 0.0040

SAE 0.956 ± 0.0030 0.947 ± 0.0033
In MLAs, sometimes the parameters need to be opti-
mized for a better training model (for example, the
value of gamma in radial basis function while using
SVM, number of units in the hidden layer while using
multilayer perceptron neural network). However, in our
approach, the only parameter need to be estimated is the
threshold value and does not require extensive tuning like
in MLAs. The value of the threshold is dependent upon
the sensitivity and specificity and can be estimated in a sin-
gle effort. Further, it will remain same with the change in
degree of imbalanced-ness in the dataset.
From the sequence distribution analysis, it was found

that there exist more than 70% similarity between TSS
and FSS and the performance of the proposed approach
was found better with the presence of this much (70%)
similarity. Hence, it is expected that the proposed ap-
proach will perform better even in the presence of high
percentage of similarity between the sequences of TSS
and FSS. Further, the approaches were assessed using
both redundant and non-redundant test dataset. It is in-
ferred that the performance is better in presence of re-
dundancy (Table 6) as compared to the dataset having
no redundancy (Table 3).
The effect of window size on the performance of the

proposed approach was determined by using other win-
dow sizes i.e., 7 bp, 8 bp, 9 bp, 10 bp and 11 bp. The
values of AUC-ROC and corresponding SE for different
window sizes have shown that the window size of 9 bp is
most preferable due to higher AUC-ROC and lowest SE
(Table 1). In addition, the performance of the proposed
approach was also assessed with different degrees of
imbalanced-ness in the training dataset using ROC and
PR curves. From ROC curves it was found that the per-
formance is not affected by the presence of imbalanced-
ness in the dataset (Figure 4a). However, it is seen that
the PR curves are sensitive to the presence of imbalanced-
ness in the dataset (Figure 4b).
To evaluate the performance of the proposed ap-

proach, a comparative analysis was carried out using
non-redundant HS3D dataset with the existing approaches
i.e., MEM, MDD, WMM and MM1. The comparison was
made in terms of AUC- ROC and AUC-PR curves. It was
observed that the performance of the proposed approach



Table 6 Estimates of AUC-ROC and AUC-PR of different approaches executed using redundant test dataset

AUC-ROC AUC-PR

Approaches A B C D A B C D

MEM 0.948 0.946 0.947 0.947 0.947 0.878 0.773 0.683

(±0.0031) (±0.0031) (±0.0030) (±0.0030) (±0.0031) (±0.0045) (±0.0055) (±0.0059)

MDD 0.945 0.942 0.944 0.944 0.944 0.872 0.769 0.680

(±0.0031) (±0.0032) (±0.0030) (±0.0030) (±0.0031) (±0.0046) (0.0055) (±0.0059)

MM1 0.945 0.941 0.936 0.941 0.942 0.870 0.765 0.679

(±0.0031) (±0.0032) (±0.0032) (±0.0031) (±0.0032) (±0.0046) (±0.0056) (±0.0060)

WMM 0.927 0.924 0.924 0.925 0.924 0.867 0.703 0.675

(±0.0036) (±0.0036) (±0.0035) (±0.0034) (±0.0037) (±0.0046) (±0.0060) (±0.0060)

SAE 0.946 0.945 0.944 0.945 0.945 0.876 0.772 0.682

(±0.0031) (±0.0031) (±0.0030) (±0.0030) (±0.0031) (±0.0045) (±0.0055) (±0.0059)

A- Balanced, B- Imbalanced-I, C- Imbalanced-II, D- Imbalanced-III.
The values inside the parentheses are Standard Errors.
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is similar to that of MEM and MDD and better than that
of WMM and MM1 (Table 3). Further, in another com-
parative analysis using redundant DGSplicer dataset, the
performance of the proposed approach was found almost
same with that of MEM and MDD but better than the
other two approaches in terms of AUC-ROC and AUC-PR
(Table 4). The earlier splice site prediction methods such
as WMM and MDD have focused only on TSS and ig-
nored the FSS to train the prediction model but FSS are
also necessary in the prediction of splice sites [18]. There-
fore, in our study, we have considered both the TSS and
FSS for the donor splice site prediction. MEM with two
point constraint (S2m ) and SAE resembles with each other
as both consider di-nucleotide dependencies but these are
two different prediction methods. Further, in MEM with
two point constraint, not only the second order marginals
are used but also the first order marginals with skip 0 (S10)
are accounted as well, which is not the case in SAE and
still the AUC-ROC and AUC-PR of SAE are at par with
that of MEM. Moreover, MEM involves iterative proced-
ure for optimization of different parameters as well as re-
quired 3 L number of more parameters to be estimated
(for a sequence motif of length L) as compared to SAE,
due to the involvement of 0th order dependency (first
order marginals with skip zero) in MEM. Whereas our ap-
proach is simpler because, it does not involve any iterative
procedure as well as required less number of parameters
to be estimated as compared to MEM. In MDD, higher
order dependencies are taken into account but its per-
formance is still similar to our approach. Moreover, the
modeling of higher order dependency is sometime expen-
sive due to more memory allocation as well as requires
the estimation of large number of parameters.
The classifiers such as SVM, ANN and Classification

tree have been successfully used in the area of splice site
prediction, where the sequence data are first encoded in
to numeric form and then used as input in such classi-
fiers. Here, the term “encoding” is used in relation to the
physical transformation of sequence dataset to numeric
dataset, where the encoded dataset are further used as
input in MLAs for prediction. In general, there is no dis-
advantage in encoding except that it takes one step more
for encoding the sequence data into numeric form,
which may require extra memory allocation. However, in
SAE no such extra step is required and use of indicator
variables is rather a simple representation of occurrence
or non-occurrence of nucleotides, which is subsequently
used (through expectation) for computation of probabil-
ities of occurrence of nucleotides.
In MLAs, generally a model is defined that is function

of certain parameters, where course search is performed
over parameter space by the user to get a better training
model. In this study, we are neither defining any such
model nor optimizing any parameter to get a better
training model. Further, the term “training dataset” is
used here to refer the dataset used for finding the
threshold value. Moreover, the dataset used for comput-
ing the threshold value can also be used as test dataset
because threshold values are found almost unaltered
under different proportion of TSS and FSS (dataset with
different degrees of imbalanced-ness). However, in MLAs
the optimum values of parameters may vary with respect
to the size of the training set and the dataset used for train-
ing cannot be used as test dataset.
Even though, it has been suggested that a method that

is able to capture higher order sequential relationships
would perform better, its successful implementation is
highly dependent on the availability of large dataset as
they require the estimation of a large number of parame-
ters [19]. In this investigation, only the first order



Figure 7 Images of the developed web interface. (a) home page and (b) result page of the prediction server. In the result page, gene name
(2nd column), start & end coordinates (3rd and 4th columns) of the predicted TSS on the gene, the sequences of 11 nucleotide TSS motif
(5th column) and score of being predicted as TSS (6th column) are given.
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dependencies among the bases were taken into account,
which has also been the case for the MEM m2s5. How-
ever, in MEM m2s5, the first order marginals are also
taken into account.
The proposed approach is based on the hypothesis if

there exist associations among the nucleotide bases sur-
rounding the splicing junction then the predictability of
a base at any position, given any base at other position is
higher in case of TSS as compared to the FSS. Hence,
the SAE corresponding to a base given all other bases is
less in case of TSS as compared to FSS. Since the pro-
posed method will complement to other commonly used
methods in prediction of donor splice sites with respect
to shorter window size, it can contribute to the predic-
tion of eukaryotic gene structure. In addition, the web
server developed from this study will help enable the
user for easy prediction of donor splice sites.

Conclusions
An attempt is made to devise a simple procedure for the
prediction of donor splice sites, which is based on di-
nucleotide dependencies at all possible pairs of positions.
This approach can be used for identifying the donor
splice sites using the sequences of shorter window size.
The proposed approach performs equally with MEM
and MDD and better than WMM and MM1 and hence
can be used as a complementary method to the existing
methods in the prediction of eukaryotic gene structure.

Availability
A user friendly web interface is available at http://
cabgrid.res.in:8080/sspred for easy prediction of donor
splice sites. The pre-processed HS3D dataset used in
this investigation can be obtained from http://cabgrid.res.
in:8080/sspred/dataset or http://bioinformatics.iasri.res.in/
sspred_dataset.

Additional file

Additional file 1: This file contain information regarding the results
of threshold value for balanced situation under heading “Threshold
value” and the threshold value for imbalanced situation under
heading “Threshold value under imbalanced data”.
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