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Abstract

Background: Alternative Splicing (AS) as a post-transcription regulation mechanism is an important application of
RNA-seq studies in eukaryotes. A number of software and computational methods have been developed for
detecting AS. Most of the methods, however, are designed and tested on animal data, such as human and mouse.
Plants genes differ from those of animals in many ways, e.g., the average intron size and preferred AS types. These
differences may require different computational approaches and raise questions about their effectiveness on plant
data. The goal of this paper is to benchmark existing computational differential splicing (or transcription) detection
methods so that biologists can choose the most suitable tools to accomplish their goals.

Results: This study compares the eight popular public available software packages for differential splicing analysis
using both simulated and real Arabidopsis thaliana RNA-seq data. All software are freely available. The study examines
the effect of varying AS ratio, read depth, dispersion pattern, AS types, sample sizes and the influence of annotation.
Using a real data, the study looks at the consistences between the packages and verifies a subset of the detected AS
events using PCR studies.

Conclusions: No single method performs the best in all situations. The accuracy of annotation has a major impact on
which method should be chosen for AS analysis. DEXSeq performs well in the simulated data when the AS signal is
relative strong and annotation is accurate. Cufflinks achieve a better tradeoff between precision and recall and turns
out to be the best one when incomplete annotation is provided. Some methods perform inconsistently for different
AS types. Complex AS events that combine several simple AS events impose problems for most methods, especially
for MATS. MATS stands out in the analysis of real RNA-seq data when all the AS events being evaluated are simple AS
events.
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Background
Alternative splicing (AS) is a post-transcriptional regu-
lation mechanism that allows a single gene to produce
multiple mRNA transcripts. Some of the roles of AS
include regulating gene expression in response to environ-
mental stimuli and developmental changes [1-3]. In addi-
tion to contributing to protein diversity and regulation,
some variants of AS may be nonfunctional and quickly
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degraded, providing gives cells anothermechanism to reg-
ulate gene expression after transcription but before trans-
lation. AS occurs as a normal phenomenon in eukaryotes
and is more abundant in higher eukaryotes than in lower
eukaryotes [4]. More than 95% of human genes and 60%
of Drosophila multi-exon genes are alternatively spliced
[5]. In plants, 61% of intron-containing genes undergo
alternative splicing [3].
Although there is no consensus classification of AS

types, the five standard types are skipped exon (SE), alter-
native 3′ splice site (A3SS), alternative 5′ splice site (A5SS),
mutually exclusive exons (MXE), and intron retention (IR)
[6]. Animals and plants differ in their most common types
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of AS events. SE is the most common AS type in humans
(> 40%), but the least common type in plants (5%) [4].
Intron retention is the most prevalent AS type in plants
(∼ 40%) but the least prevalent type in humans [7,8].
This difference suggests plants and animals may recognize
exons and introns in different ways [7]. Also, AS does not
always occur as one of the simple events described above;
combinations of multiple simple AS events are common.
In Arabidopsis, multiple exons may be skipped together
and/or exon skipping occurs in the company of alternative
5’ and/or 3’ splice sites [8]. Such complex AS events are
abundant in Arabidopsis latest annotation version, TAIR
10 [9].
Some evidence also suggests that plants and animals

may regulate AS in different ways. For examples, plants
possess nearly double the number of SR proteins as com-
pared to nonphotosynthetic organisms [10]. SR stands for
serine(S)-arginine(R)-rich proteins, a conserved family of
pre-mRNA splicing factors. Interestingly, most SR pro-
teins (14 of the 18 Arabidopsis SR protiens) [11] are them-
selves alternatively spliced and some studies have linked
the AS of several SR proteins (e.g., SR45,SR45a,SR1/SR34,
SR30) to environmental signals. AS is believed to play a
critical role in helping plants adapt to their environment
and may increase our understanding of plant and crop
phenotypes [3].
The advent of RNA-seq has increased the observed fre-

quency of AS in plants from 30% [12-14] in the pre-NGS
era to 61% [8]. As RNA-seq becomes the new standard for
studying gene and transcription expression, a key problem
is to detect condition-specific differences, such as differ-
ential expression and differential alternative splicing. To
date, dozens ofmethods for detecting differential AS using
RNA-seq have been published. Most of the methods are
designed for and tested on human, mouse and othermam-
mals. Their performance on RNA-seq data from plants
remains in question due to the differences in AS machin-
ery between animals and plants. Recent review papers
[15-17] compare differential alternative splicing detection
methods with respect to methodology but do not evalu-
ate performance under realistic conditions. Another two
publications [18,19] benchmark methods and algorithms
for transcript reconstruction and quantification. To our
knowledge, this study is the first to systematically compare
differential alternative splicing methods using RNA-seq in
plant systems.

Selection criteria and limitation of this study
This work benchmarks eight popular methods for differ-
ential AS according to the three criteria given below: effec-
tiveness, biological replicates and software engineering.

• Effectiveness: the method should detect differential
AS across samples. Note that this is not necessarily

equivalent to isoform quantification problem as
changes in the absolute isoform expression do not
necessarily imply differential alternative splicing [15].

• Biological replicates: the selected method should be
able to take advantage of biological replicates in the
RNA-seq data sets.

• Software engineering: the method has to be
implemented as a usable and robust program so that
a scientist with limited computational skills can run
the program regardless of understanding the theory
behind it.

For example, under these criteria, some methods are
ruled out for inclusion in this study. E.g., SpliceTrap [20]
only quantifies alternative splicing within a single condi-
tion and MISO [21] and PSGInfer [22] do not support
biological replicates. Our list of programs is not exhaus-
tive; however, we have selected a set of programs which
represent a variety of approaches. Due to our limited
human resources and computational power, the current
versions of FDM [23] and JuncBase [24] met our crite-
ria but were excluded from this study. FDM uses a splice
graph representation of aligned RNA-seq data and Jensen
Shannon Divergence (JSD) to measure the difference in
relative transcript abundances. JuncBase uses exclusively
reads spanning exon-exon junctions. These concepts are
well represented by the other methods we have com-
pared in this study. Importantly, our testing pipeline and
the input data needed to run the simulation are avail-
able in a Github repository, https://github.com/ruolin/
ASmethodsBenchmarking. The whole pipeline is docu-
mented, interested readers can repeat the study and test
the results with their preferred differential AS detection
tools.

Method classification
Methods for detecting AS may be categorized into two
quantification schemas: count-based models and isoform
resolution models (Figure 1). These two terms are based
on the classification nomenclature defined by Pachter in
[17].We selected eightmethods and evaluated thembased
on simulated and real data. Six of them are from count-
based models: DEXSeq [25], DSGseq [26], SplicingCom-
pass [27],MATS [28], rDiff-parametric [29] and SeqGSEA
[30]. The remaining two, Cufflinks [31] and DiffSplice
[32], use isoform resolution models. A brief overview of
the eight methods follows.

Count-basedmodels
The count-based models are based on the methods used
to quantify transcripts with single isoforms. The num-
ber of reads falling on a transcript (adjusted for transcript
length and the total number of mapped reads), like RPKM
(Reads Per Kilobase perMillions of readsmapped), is used
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Figure 1 Quantification schema. A simplified gene model consists of two expressed isoforms (Top). Exons are colored according to the isoform of
origin. Two model types used for quantification purpose (Bottom). In the count-based models (left), reads are assigned to counting units (shown by
dash lines) without ambiguity. For each counting unit the model can be viewed as a test on two possible outcomes (spliced in or spliced out). The
isoform resolution model is shown on the right where two ends of a read pair (show as dark solid boxes connected by curly dash line) align
upstream and downstream of an alternative donor site. li1(f ) is the length of alignment of fragment f to isoform i1, and is shorter than li2(f ).
Therefore if the fragment size distribution is known, it is possible to infer which isoform is more likely to generate f . Note that transcript effective
length, i.e. li1(f ) , li2(f ) and other parameters (depends on model you use) might also affect the probability of assigning reads to isoforms. Usually a
maximum likelihood based approach is used to optimize this probability.

as an estimate for abundance [17]. Count-based models
are commonly used in differential gene expression. For
differential splicing, the count-based models are modified
to count reads in smaller counting units (i.e., exons) rather
than the whole transcript regions. Also the focus changes
to the differential expression of the counting units. Count-
based models usually configure each gene into a sin-
gle representation consisting of counting units. Counting
units can be full or truncated exonic regions (e.g., DEXSeq
and DSGseq), or junction regions (MATS). Although the
count-based model does not directly address the issue
of quantifying isoform abundances, the DSGseq authors
prove that the reads at counting units can fully reflect iso-
form expression as long as there is no isoform that can
be composed by the combination of other isoforms [26].
The count-based model can be seen as testing of two
possible splicing outcomes, inclusion and/or exclusion, of
each counting unit. Some papers refer to this model as an
event-based model [15]. Methods using the count-based
model are usually dependent on existing annotation on
the gene structure and typically employ Poisson, general-
ized Poisson or Negative Binomial (NB) distributions to
model the read counts on counting units. For RNA-seq,
the NB distribution is considered better suited for the
analysis of biological replicates than the Poisson distribu-
tion, as it is able to account for overdispersion in replicate
counts [33,34].

SeqGSEA [30] and DSGseq [26] are examples of count-
based models. These two methods are similar in many
ways. Given a known set of transcripts at a locus, they
both flatten these transcripts into a union transcript con-
sisting of counting units (called mathematical exons in
DSGseq and sub-exons in SeqGSEA). Both DSGseq and
SeqGSEA model the number of reads that fall on the
counting units as NB random variables after adjusting for
overall gene expression. For a given gene, they calculate p̂ij
as the expected read count fraction of counting units i in
group j and variance of p̂ij. Both methods define a gene-
wise statistic to measure the difference in the expected
read count fraction across two conditions by averaging
over all counting units and adjusting for variance. Both
methods mention that the null distribution is hard to
obtain based on such statistics. SeqGSEA uses a per-
mutation based approach to calculate the p-values while
DSGseq just reports the statistics and does not calculate
the p-values. Both DSGseq and SeqGSEA report which
gene is alternatively spliced. A novel AS gene can be pre-
dicted only if an annotated constitutive exon is found to
be a skipped exon. DSGseq can also tell you where the
skipped exon may actually occur.
Like SeqGSEA and DSGseq, DEXSeq [25] transforms

known gene models to sets of counting units (called
counting bins in DEXSeq) based on any possible splice
sites. The difference is that DEXSeq uses a generalized
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linear model (GLM) to detect the differential usage of
counting units. TheGLM inDEXSeq assumes a NBmodel
for the counts. DEXseq reports which counting unit is
alternatively used across conditions and, like SeqGSEA
and DSGseq, a novel skipped exon can be predicted only
on an annotated constitutive exon.
The rDiff [29] package consists of two methods: rDiff-

parametric and rDiff-nonparametric. rDiff-parametric is
a count-based model. Unlike other count-based methods
it only makes inference on regions that are not shared
among all isoforms (called alternative regions). rDiff-
parametric uses the NB distribution to model the number
of reads on counting units to account for biological vari-
ance. Unlike SeqGSEA and DSGseq, the variance is calcu-
lated from an empirical variance-mean relationship [29].
A p-value is calculated on each alternative region within
a gene, and Bonferroni(BF) correction is used to obtain
a genewise p-value. As a result, rDiff-parametric reports
which gene is a significant AS gene but no novel AS gene
can be found. The BF correction is known to be very strin-
gent,which could explain why rDiff-parameteric has very
low recall but high precision (see Results section ).
MATS [28] first retrieves all AS events from input gene

models and annotates the identified AS events with the
corresponding AS types (e.g. SE, IR, A3SS). More specif-
ically, it cannot detect novel AS events and only retrieves
the simple AS events, not complex ones. MATS calcu-
lates a statistical metric called exon inclusion level, ψ ,
which is the proportion of the reads that exclusively sup-
port one outcome of the events to reads that exclusively
support another outcome of the identified events. The
exon inclusion level is always between 0 and 1. Then,
the posterior probability of the difference of exon inclu-
sion level across two samples which is larger than a
user-defined cutoff, denoted p(|ψ1 − ψ2| > c | data), is
calculated. MATS reports which AS event is significant
rather than which gene is alternatively spliced. MATS
differs from other count-based model methods in that
it uses Bayesian approaches. It is also the only method
that does not assume independence of two biological
conditions. A bivariate uniform prior is used to model
the dependence. Information across genes is borrowed in
the process of estimating the common prior. Although the
method in MATS’s original paper is only designed for a
two sample comparison, the latest version of MATS (3.0+)
accepts multiple replicates. However, it is unclear how the
program models biological variability.
Like DEXSeq and DSGseq, SplicingCompass [27] uses

a union transcript model for each gene. However, it does
not utilize any statistical model based on the count-
ing process. SplicingCompass first constructs vectors of
read counts on exons as well as on splicing junctions
for each gene and sample, then calculates pairwise geo-
metric angles between two vectors. Finally, a one-sided

t-test comparing the within condition angles and between
condition angles is carried out for each gene. Splicing-
Compass reports which gene is AS gene based on the
t-test. Therefore a novel AS gene can be found if the afore-
mentioned test turns out to be significant. Again only SE
can be detected.

Isoform resolutionmodels
Isoform resolution models (also called multi-read models
[17]) are multi-isoform models. Instead of transforming
the question into detecting differential usage of count-
ing units, they seek to directly solve this problem by
comparing the relative isoform abundance across samples
and/or conditions. The estimation of the isoform propor-
tion vector q is usually done by maximizing a likelihood
function L(q|observingasetofreadsalignments). Maximiz-
ing this likelihood function is equivalent to maximizing
the likelihood of selecting a read or fragment from a tran-
script [31]. Isoform resolution models try to assign reads
or fragments to the transcripts they came from at the cost
of introducing additional uncertainty in read assignments
due to the overlap between isoforms. In count-based
models there is no ambiguity in assigning reads toward
counting units. It is worth mentioning that this question
is also connected to the question of transcriptome assem-
bly as novel transcripts are found in nearly every RNA-seq
study [17].
Cufflinks [31] and DiffSplice [32] are examples of the

isoform resolution models. Cufflinks contains three inde-
pendent but connected programs: Cufflinks, Cuffmerge
and Cuffdiff. Cufflinks assembles and quantifies the
aligned reads while Cuffdiff performs differential test-
ing. Cufflinks uses a linear model [31] which includes a
specific parameter for fragment length. This differenti-
ates Cufflinks from other methods by allowing Cufflinks
to take advantage of insert size information in paired-
end data. In this sense, Cufflinks is more appropriate for
paired-end reads. The estimate of relative abundance of a
transcript is reported in the form of FPKM (fragments per
kilobase per million mapped fragments) which is equiv-
alent to RPKM in the single-end case. Cuffdiff performs
tests for relative isoform abundance changes (called post-
transcriptional overloading in the Cufflinks paper) using
a one-sided t-test of the Jensen-Shannon Divergence met-
ric [31]. Cufflinks is able to assemble transcriptomes and
is thus less dependent on the accuracy of gene annotation.
Rigorously speaking, DiffSplice[32] is not “Isoform res-

olution” but “alternative paths resolution”. In DiffSplice,
the alternative paths stand for the paths from the Alter-
native Spliced Module (ASM) in spliced graphs and each
ASM has at least two alternative paths. An ASM is a
region in splice graphs where isoforms differ from each
other. ASM seeks to minimize the ambiguity in iso-
form resolution by only considering regions that are not
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shared by all isoforms. DiffSplice tests differential splicing
on each ASM instead of whole transcripts. The relative
abundances of alternative paths are estimated using the
maximum likelihood method. The difference of the rela-
tive abundances compositions is measured using Jensen-
Shannon Divergence metric (JSD). Both the DiffSplice and
Cufflinks models are extensions of the model of [35]. Cuf-
flinks extends the model to the paired-end case while
DiffSplice restricts it to ASMs. Like Cufflinks, DiffSplice is
also capable of assembling the aligned reads onto the tran-
scriptome. Therefore, both programs are able to detect
novel AS events that are not in the annotation. However,
the Cuffmerge from Cufflinks packages can merge the
assembly with annotations to provide gene models with
higher confidence while no previous knowledge of gene
models is used by DiffSplice. In other words, annotation is
not used in DiffSplice.

Results and discussion
These differential AS detection methods were first eval-
uated using simulated data with known ground truth,
where we could control the level of differential splicing
across conditions and other factors that may affect detec-
tion. The NB distributions were used to simulate read
counts on genes. Themean and dispersion parameters for
the NB distributions were estimated from heat shock data
[36]. The 5885 genes that are known to have at least two
splice variants in theArabidopsis TAIR 10 reference anno-
tation were focused on in the simulation studies. Using
our custom simulation pipeline (see Additional file 1), a
set of 2000 genes was randomly chosen from the over-
laps between the 5885 known AS genes and genes that
have non-zero expression in real data sets. These 2000
genes were simulated to be alternatively spliced and are
referred to as “true AS genes”. Details about the simulation

settings and procedures can be found in the Methods
section.
In the simulation study, we evaluated the robustness of

the methods by varying the degree of differential splic-
ing, read depths, sample sizes and dispersion setting in
different conditions. We set High, Medium and Low lev-
els for AS ratio, two dispersion patterns and three levels
of read depth (100×, 60× and 25×). In addition, we have
compared the computational time required for running
the analysis (Additional file 1: Table S1). We used two
dispersion settings in the simulation. One allows the two
conditions to use two different dispersion parameters in
the NB distributions which are estimated from two repli-
cated real RNA-seq data sets, whereas the other forces
both conditions to have the same dispersion parameter
which is estimated from the pooled RNA-seq data sets.
We call these two settings different dispersion pattern ver-
sus same dispersion pattern (denoted byDiff vs Same).We
also investigated the effect of sample size, from 3 to 8 sam-
ples per conditions. A simple notation HighDiff100× means
a condition of read depth at 100, different dispersion
pattern and high AS ratio across conditions.
All of these evaluations were carried out in terms of

the Receiver Operating Characteristic (ROC) curves and
the Area Under the Curve (AUC) metric. The ROC curve
depicts the true-positive rate (TPR) of a method for dif-
ferent false-positive rates (FPR) by varying the threshold
for given scores. TPR is defined as the proportion of the
events that are known to be differentially spliced that test
as positives. Similarly the FPR is the proportion of the
events that are known not to have differential splicing that
test as positives. As almost all AS detection software pack-
ages tightly control FPR, we restricted the ROC curves to
the range of 0 − 0.2 (Figures 2, 3 and 4). The area under
the ROC curve, or AUC, is the numerical measurement

Figure 2 ROC curves evaluation for three levels of AS ratio when two groups of samples have the different dispersion pattern. ROC curves
for eight selected methods in simulation studiesHighDiff

100x (left panel),MediumDiff
100x (middle panel), LowDiff

100x (right panel). These ROC curves are
obtained at a simple size of 3 for each condition. When the level or degree of DS across conditions become smaller (panel left-right), the power of
discrimination of true-DS and non-DS drops significantly. However the relative ranking of each methods tend to be unchanged. DEXSeq perform
consistently the best with respect to all three simulation studies.
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Figure 3 ROC curves evaluation for accurate and incomplete annotation. ROC curves for eight selected methods using simulation study
HighDiff100x with complete annotation (left panel) and incomplete annotation (right panel). Isoform resolution model methods, such as Cufflinks, are
more robust to incomplete annotation compared with count-based models methods.

that summarizes the ROC curves. Here we calculated the
AUC under the restricted ROC curves. Methods with
larger AUC have better performance. The results of all
simulation studies under the measurement of AUC are
summarized in Table 1.
As ROC curves and AUC measure the discrimination

power between non-differentially spliced (non-DS) gene
and differentially spliced (DS) gene over an interval, sci-
entists are often interested in the discrimination power
at a single cutoff point. Therefore the recall and preci-
sion at a Padj = 0.05 cutoff were used as a additional
set of evaluation metrics (Padj stands for multiple testing
corrected p-value). Recall is equivalent to TPR while pre-
cision is the proportion of the events that test as positives
that are actually true discoveries. Precision is also known
as 1 − false discovery rate. Evaluating on precision exam-
ines whether the methods are able to control the FDR at
the claimed 0.05 level. DSGseq does not return p-values
and was excluded from this evaluation and SeqGSEA did

not report any gene under FDR = 0.05 when the sample
size was 3. The results of other seven methods under the
measurement of recall and precision or FDR at Padj = 0.05
are summarized in Table 2.
For the real data, we first compared the results obtained

by the different methods in terms of absolute number of
significant AS gene calling, the overlap of results across
software and the concordance of gene rankings. We fur-
ther compared these results to a list of experimentally
validated genes that are known to be alternatively spliced
in response to ambient temperature changes. Finally we
carried out an semi-RT-PCR study and compared the
results of the computational methods using RNA-seq to
the results from RT-PCR.

The effect of different levels of AS ratio in conjunction with
dispersion pattern
Since the difference required between two isoform com-
positions to be biologically significant enough to call as

Figure 4 ROC curves evaluations for three splicing classes. ROC curves of eight selected methods based on 1755 genes containing single
splicing event from simulation studyHighDiff

100x . These 1755 genes were further divided into three splicing event classes: 803 genes with alt.
donor/acceptor sites (left panel), 850 genes with intron retention (middle panel), 102 genes with exon skipping (right panel).
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Table 1 Area under the ROC curve (AUC) and relative rankingmeasured under all simulation studies

Cufflinks DEXSeq MATS SpComp DSGseq rDiff-param DiffSplice SeqGSEA

HighDiff
100x 0.7765(3) 0.8435(1) 0.6066(7) 0.603(6) 0.8214(2) 0.704(5) 0.5262(8) 0.7699(4)

MediumDiff
100x 0.7334(3) 0.7583(1) 0.5960(6) 0.5612(7) 0.7472(2) 0.6421(5) 0.5276(8) 0.7055(4)

LowDiff
100x 0.6369(1) 0.5847(4) 0.5583(6) 0.518(7) 0.6288(2) 0.5807(5) 0.4982(8) 0.6155(3)

HighSame
100x 0.7751(4) 0.8351(2) 0.6046(6) 0.5998(7) 0.8373(1) 0.6871(5) 0.5371(8) 0.7797(3)

MediumSame
100x 0.7357(4) 0.7407(2) 0.5914(6) 0.5582(7) 0.7669(1) 0.6201(5) 0.5341(8) 0.7374(3)

LowSame
100x 0.6487(2) 0.5546(5) 0.5506(6) 0.5159(7) 0.6496(1) 0.5773(4) 0.5049(8) 0.6297(3)

100xDiffHigh 0.7765(3) 0.8435(1) 0.6066(7) 0.603(6) 0.8214(2) 0.704(5) 0.5262(8) 0.7699(4)

60xDiffHigh 0.8687(1) 0.7667(2) 0.5861(6) 0.5688(7) 0.7648(3) 0.6848(5) 0.5266(8) 0.7338(4)

25xDiffHigh 0.6807(4) 0.7432(1) 0.5607(6) 0.5479(7) 0.6967(2) 0.6659(5) 0.5001(8) 0.6815(3)

Complete annot. 0.7765(3) 0.8435(1) 0.6066(7) 0.603(6) 0.8214(2) 0.704(5) 0.5262 (8) 0.7699 (4)

Incomplete annot. 0.7271(1) 0.5939(5) 0.5012(8) 0.5930(6) 0.7033(2) 0.6561(3) 0.5262 (7) 0.6425 (4)

A3A5SS 0.8990(1) 0.8574(3) 0.8948(2) 0.5283(7) 0.6272(5) 0.5732(6) 0.4811(8) 0.6932(4)

IR 0.8810(4) 0.9368(1) 0.9360(2) 0.5639(8) 0.8990(3) 0.6696(6) 0.6391(7) 0.7940(5)

SE 0.8795(3) 0.9407(1) 0.9177(2) 0.7500(6) 0.8301(5) 0.5916(7) 0(8) 0.8334(4)

8samples 0.7408(5) 0.8495(1) 0.6078(7) 0.7450(4) 0.8301(2) 0.7196(6) 0.5030(8) 0.7656(3)

Larger values of AUC indicate better performance.
The table contains the AUC and relative ranking for the methods under all simulation study. The best method under each study is highlighted in boldface. The ranking
position is shown in the parenthesis. A3A5SS stands for the joint class of alternative 3’ splice site event and alternative 5’ splice site event. IR stands for intron retention
event and SE stands for skipping exon event.

differential splicing is an open question, we defined a
parameter PALT (Percentage of ALTernative isoform) to
control the level of differential splicing in our simula-
tion. PALT, whose range is from 0 − 1, simply represents
the relative abundances of alternative isoforms for given

genes. For multi-transcript genes, we randomly chose one
transcript as an alternative isoform while the rest of iso-
forms remained as standard isoforms across conditions.
For each of given genes, all standard isoforms have rela-
tive abundances which summed to 1 − PALT . The PALT

Table 2 Recall and precision at Padj = 0.05measured under all simulation studies

Cufflinks DEXSeq MATS SpComp rDiff-param DiffSplice SeqGSEA

Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec.

HighDiff
100x 0.57 0.91 0.53 0.65 0.28 0.98 0.14 0.95 0.06 0.99 0.24 0.79 - -

MediumDiff
100x 0.40 0.91 0.31 0.71 0.22 0.98 0.08 0.90 0.02 0.95 0.24 0.76 - -

LowDiff
100x 0.03 0.77 0.06 0.59 0.1 0.99 0.02 0.82 0.002 0.833 0.20 0.66 - -

HighSame
100x 0.58 0.90 0.49 0.71 0.27 0.98 0.13 0.94 0.05 1.0 0.26 0.84 - -

MediumSame
100x 0.42 0.91 0.25 0.80 0.21 0.99 0.07 0.92 0.01 1.0 0.25 0.81 - -

LowSame
100x 0.15 0.91 0.04 0.96 0.08 0.99 0.02 0.84 0.001 1.0 0.21 0.68 - -

100xDiffHigh 0.57 0.91 0.53 0.65 0.28 0.98 0.14 0.95 0.06 0.99 0.24 0.79 - -

60xDiffHigh 0.49 0.91 0.29 0.72 0.22 0.99 0.09 0.93 0.02 1.0 0.25 0.81 - -

25xDiffHigh 0.39 0.92 0.22 0.75 0.15 0.98 0.06 0.93 0.008 0.94 0.17 0.79 - -

A3A5SS 0.73 0.95 0.71 0.71 0.85 1 0.04 0.875 0.01 1 0.07 0.85 - -

IR 0.69 0.95 0.43 0.8 0.76 0.99 0.09 0.8 0.09 1 0.36 0.82 - -

SE 0.67 1 0.71 0.91 0.85 1 0.38 1 0.04 1 0 0 - -

Complete annot. 0.57 0.91 0.53 0.65 0.28 0.98 0.14 0.95 0.06 0.99 0.24 0.79 - -

Incomplete annot. 0.67 0.92 0.14 0.41 0.08 0.97 0.12 0.93 0.008 0.94 0.24 0.79 - -

8samples 0.65 0.81 0.66 0.55 0.3 0.93 0.50 0.82 0.06 0.99 0.17 0.72 0.95 0.58

A3A5SS stands for the joint class of alternative 3’ splice site event and alternative 5’ splice site event. IR stands for intron retention event and SE stands for skipping
exon event.
Recalls were shown as the numbers in the left column, precisions in the right column. Larger values of both metrics are better. Under a sample size of 3, SeqGSEA
found no genes at Padj = 0.05 and therefore no values were reported.
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for 2000 true AS genes was set to 0.2 in the control
group and 0.4, 0.6, 0.8 in the three treatment groups,
corresponding to low, medium and high AS ratio levels.
We investigated the effect of varying the AS ratio level
under two dispersion patterns. As a result we carried out
6 simulation studies and denoted them in the format of
HighDiff100x, representing the situations for high AS ratio, dif-
ferent dispersion patterns for two conditions and 100x
read depth.
The restricted ROC curves of the 8 selected methods

based on 3 simulation studies on different dispersion pat-
terns are shown in Figure 2. As PALT changed from 0.8
to 0.4, the difference between the isoform compositions
under the two simulated conditions became smaller. All
methods lost their discrimination power as the signal of
differential splicing became weaker. The results from sim-
ulation studies with the same dispersion pattern were
similar and are shown in the (Additional file 1: Figure S9).
When two simulated conditions had different dispersion
patterns, DEXSeq performed well in high and medium
AS ratio situations but not in the low AS ratio situation.
(Figure 2 and Table 1). When two conditions had the same
dispersion pattern, DSGseq consistently performed the
best out of the 8 methods (Table 1). As we focused on
the low AS ratio in both dispersion situations, Cufflinks
performed the best.
Both AUC and recalls were affected by the change of the

AS ratio but the effect on recalls seemed to be larger. Tak-
ing Cufflinks as an example, the recall rates were 57%, 40%
and 3% at high, medium and low levels of differential splic-
ing respectively (Table 2). However theAUC dropped only
14% from high to low alternative splicing ratio (Table 1).
It is not surprising that AUC is a more robust measure-
ment than recall and precision. But it is not uncommon
for people to use a single cutoff point, e.g. declare signif-
icance at FDR = 0.05. In this sense, the low AS ratio has
a severe impact on the discrimination power (Table 2).
DiffSplice achieved the highest recall in both LowDiff

100x and
LowSame

100x . However, its performance under the measure-
ment of AUC (Table 1) was far from satisfactory since
many AS events were not detected by using ASM and
some detected ASMs were simply artifacts. In the base-
line simulation study HighDiff100x, 2123 ASMs were reported
by DiffSplice and 94 of them resided at least 1kb away
from coding regions. 4 ASMs were even longer than the
longest gene (which is 31257 nt long) in Arabidopsis TAIR
10 model.
When considering the ability to control for false discov-

eries, all methods except MATS performed more poorly
when the AS ratio became smaller (Table 2). Only MATS
was able to control the FDR at all levels of AS ratio and dis-
persion pattern. SplicingCompass and rDiff-parametric
could control the FDR at the desired 0.05 level in the simu-
lation studies with high AS ratio but failed at low AS ratio,

low levels of coverage. DEXSeq and rDiff-parametric’s
abilities to control FDR improved if the data shared the
same dispersion pattern across conditions. With same
dispersion pattern, rDiff-parametric was able to perfect
control the FDR in all three AS ratios while DEXSeq
achieved the desired FDR level on low AS ratio but not
on high AS ratio. Although DEXSeq had the best perfor-
mance in terms of AUC, it did a poor job in controlling the
FDR (Table 2).

Detecting novel splicing events
We simulated RNA-seq reads using the latest Arabidop-
sis TAIR 10 gene sequences and models. This implies
that no AS event is novel to this annotation. Theoreti-
cally methods that use annotation information should be
able to find all candidate AS regions provided the anno-
tation is correct. However in a real RNA-seq study, even
in model organisms, there may be many novel splicing
events. To simulate this case, we deliberately removed the
mRNA model of the alternative transcripts from annota-
tion for the set of true AS genes. The relative abundances
of alternative transcripts are controlled by PALT and are
the dominant force in the simulated AS events. By run-
ning the software using this incomplete annotation, we
evaluated their abilities to detect novel splicing events.
This comparison was evaluated on the baseline simulation
study HighDiff100x (Figure 3). Except for DiffSplice, the per-
formances of all other methods were degraded. Because
DiffSplice does not use annotation information, its perfor-
mance did not change. Overall, Cufflinks was more robust
to incomplete annotation than other methods. MATS and
DEXSeq’s performances dropped significantly, suggesting
that these two methods are very dependent on accurate
annotation.

The effect of different AS types
Based on the gene models and sequences of the 5885
annotated AS genes in TAIR 10 annotation, we simulated
2000 true AS genes to be differentially spliced. However,
most of the genes (1335 out of 2000, 67%) have more
than one AS type. This made testing the performance in
terms of the effect of different AS types difficult. Also as
some methods, e.g. MATS and DiffSplice, test on individ-
ual events or local regions while others work on the gene
level, the previous comparisons were not based on com-
mon ground. To overcome these problems, we picked out
1755 genes that have exactly two transcripts and a single
splicing event from the 5885 genes. We then reevaluated
all methods on these 1755 genes in the baseline simula-
tion study. This equated the detection on a gene level to
the detection on a splicing event. We classified these 1755
genes into three new sets by their splicing event types
which include exon skipping, intron retention and alterna-
tive donor/acceptor sites (Figure 4).We treated alternative
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donor sites and acceptor sites together as a single class
because there is almost no difference in detecting them
from mathematical and computational perspective. 803
genes had an alternative donor or acceptor event, 850
showed intron retention and 102 demonstrated exon skip-
ping and about one third of genes in each new set were
pre-selected AS genes (274, 275 and 38 respectively). We
evaluated the eight methods in each category. This is a
simplified scenario where a gene has exactly one AS event.
DEXSeq achieved the highest AUC in two of the three

simple event classes, IR and SE, (Table 1). In these two
cases, the exons or introns are either included or excluded
as a whole. However in the cases of A3SS and A533, the
counting units could be as short as several bps. DEXSeq
may not have enough read counts to perform reliable
statistical tests in such short regions. We observed that
Cufflinks which uses isoform-resolution models perform
the best for A3SS and A5SS.When the complex AS events
were excluded MATS’s improvement was very significant.
The averaged AUC for MATS was 0.5763 when complex
AS events were included. While it averaged at 0.9143 in
the simplified scenarios (Table 1). This agrees with our
observation thatMATS is not capable of discovering com-
plex AS events. In the simple scenario MATS acquired
the highest recall and lowest FDR at Padj = 0.05 thresh-
old in all simple AS events (Table 2). As we looked at
the individual types of AS events, DSGseq performed well
for detecting IR but not so well on other splicing types.
Similarly, Cufflinks performed well at A3SS and A5SS but
poorly with other AS types, indicating a bias in detecting
different AS types.

The effect of sample sizes and read depth
The increase in sample size from 3 to 8 did not have a
significant impact on the AUC statistics and the meth-
ods’ rankings based on the AUC (Table 1). Even for the
recall and precision statistics (Table 2), the increase in
sample size had a small impact for all methods except
for SplicingCompass and SeqGSEA. Recall for Splicing-
Compass increased from 14% to 50% when the sample
size increased from 3 to 8. SeqGSEA was not statistically

significant at FDR = 0.05 for a sample size of 3 but
achieved a recall of 95% at the cost of having a low preci-
sion (58%) in a sample size of 8. However the ROC curves
and AUC statistics for SeqGSEA were almost the same
for the different sample sizes (Additional file 1: Figure
S10). A possible explanation is that the permutation-based
approach used in SeqGSEA may scale the Padj accord-
ing to the sample size. Therefore, we would recommend a
sample size between 4 to 7 for using SeqGSEA.
Most methods were robust to different read depths or

coverage of RNA-seq with a minor drop of discrimination
power as read depth decreased (Table 1 and Additional
file 1: Figure S11). However it is interesting to note that
Cufflinks achieves its best discrimination power at RD60
and ranked 1st among all methods at this read depth
(Table 1). This may suggest that Cufflinks performs better
when read depth is around 60.

Real RNA-seqdata fromArabidopsis heat shock experiment
In addition to the simulated data, we also evaluated the
methods on heat shock RNA-seq data sets [36]. The
results of eight selected programs on real data are given in
the Additional file 2. Three RNA-seq samples were gener-
ated from heat shock T1 group and two from control T1
group (See Methods for a description for the heat shock
data sets). All the eight methods except for DiffSplice are
able to handle the unbalanced design with different sam-
ple sizes. For DiffSplice, we took out one sample from the
heat stress group to make it a balanced design. All genes
found to be AS at the threshold of FDR = 0.05 were con-
sider statistically significant. DSGseq does not report a
p-value and therefore was not used for this comparison.
We first compared the number of significant AS events

found by each method (Table 3). SeqGSEA did not find
any gene with significant AS. This result was consis-
tent with our simulation studies that SeqGSEA usually
requires a sample size larger than 3 to declare significance
at the FDR = 0.05 level. For the rest of the methods,
the highest number of significant AS events was found
by Cufflinks, followed by MATS and DEXSeq. The most

Table 3 The number of shared differentially spliced genes detectedby the selectedmethods for the HeatT1 data set

DiffSplice Cuffdiff DEXSeq MATS rDiff-param SplicingCompass

DiffSplice 48 12 7 6 2 0

Cuffdiff 306 27 48 14 1

DEXSeq 155 27 37 3

MATS 241 16 0

rDiff-param 93 0

SplicingCompass 31

The table contains the number of significant differential spliced genes that reported by each methods (number on the diagonal) and numbers that are shared with
another method.
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conservative method was SplicingCompass as shown in
Table 3.
We also examined the overlaps of the set of significant

AS genes found by eachmethods (Figure 5, Table 3). From
Table 3, we noted that SplicingCompass was very con-
servative (having the smallest number of significant DS
genes) and was also very “unique” in that it almost did not
share any significant DS genes with other methods. The
Venn diagram (Figure 5) did not include SplicingCompass.
The results showed that the methods were very different
from each other in that there was no gene that found by all
five methods and that the proportion of genes that were
found exclusively by each method was more than half.
rDiff-parametric had 48.4% genes that were shared by at
least one othermethods. It was the only one that was close
to 50% level. DEXSeq shared 40% of rDiff-parametric
reported DS genes.
We further compared the results of all eight methods by

investigating the correlation of gene ranking scores (com-
puted as previously). We computed the Spearman rank
correlations between all pairs of the eight methods and
visualized it using a heat map (Figure 6). The correla-
tions were calculated based on the ranking scores from
600 common genes that were reported by all methods.
The highest correlation was observed between DSGseq
and SeqGSEA as both methods use NB statistics (see
Methods). Overall, the correlations were very low which

Figure 5 Venn digram of heat shock data set. Overlap among the
set of DS genes found by 5 methods. SplicingCompass is not included
because it almost shares nothingwith other methods based on Table 3.

indicated that these methods tended to rank genes differ-
ently with respect to alternative splicing.

A list of experimentally validated AS geneswhich are
known to exhibit AS in response to temperature changes
Since there have been studies that have linked some genes
to alternatively spliced variants in response to heat stress,
we came up with a list of six experimentally validated
AS genes based on a search of the literature. AT1G01060
encodes LHY, a transcription factor involved in regula-
tion of circadian rhythm. An A3SS event, encoding a
3-nt difference, has been found to occur as the ambi-
ent temperature changes [37]. This alternative splicing
event has been confirmed by high resolution RT-PCR
[37]. AT1G16610 encodes SR45, a member of SR pro-
teins. AT1G16610 has two splice variants which differ by
a 21-nt sequence which is present in SR45.1 but absent
in SR45.2 [38]. It has been found that the relative abun-
dance of SR45.2 is increased as temperature goes up [38].
Another two SR proteins, SR1/SR34 (AT1G02840) and
SR30 (AT1G09140), have been reported to be alterna-
tively spliced in response to heat stress [6,39-41]. In both
cases, relevant transcripts differ by several hundred nts
(337 nts in SR30 and 352 nts in SR1/SR34). All of the
above AS events are A3SS. AT1G77080 encodes FLM,
a MANS domain protein which regulates flowering. A
mutually exclusive exon event has been found in this gene
which is subject to temperature changes [42]. The P5CS1
gene (AT2G39800) contains an exon-3 skipping event that
is subject to temperature variation [43]. The SR45a gene
(AT1G07350) also contains an alternatively spliced inter-
nal exon and the proportion of exon-skipped transcript
increases when exposure to heat stress. We illustrate the
SR45a gene model and junction read alignments in differ-
ent conditions using the Integrated Genome Browser [44]
(Figure 7). Similar illustrations of the read pileups for the
rest of genes are given in the Additional file 1.
At the cutoff FDR = 0.05, MATS identified all seven

genes and successfully located the actual genomic regions.
DEXseq found two of them (SR1/SR34 and SR30) and Cuf-
flinks reported one (FLM). None of the other methods
were able to find these genes. For LHY and SR45, the A3SS
events encompass a range of nt differences from a few to
tens. MATS’s success in finding these events can probably
be attributed to the exclusive use of junction reads. The
small differences were easily overlooked by other meth-
ods that take into account of reads on full exonic regions.
The junction reads that uniquely supported the A3SS
events tend to be overwhelmed by the non-junction reads
along the long exon (see the visualized read alignments in
Additional file 1). DEXseq detect SR1/SR34 and SR30,
with the differences in the A3SS events are several hun-
dreds nt long. In DEXSeq, the junction reads are used as
exon body reads.
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Figure 6 Heat Map for correlation of the gene ranking scores obtained by the different methods for heat shock data set. The correlations
are generally low for any two methods, indicating the methods are very different. Two methods both using NB statistics (DSGseq and SeqGSEA)
achieve the highest Spearman rank correlation of 0.52.

PCR validation of the real data set
In a separate study that will be described in detail
(Loraine, A: Effects of heat and drought stresses on
splicing and gene expression in Arabidopsis thaliana,
submitted), we used semi-quantitative PCR to charac-
terize heat induced splicing changes in seven genes
that were annotated in TAIR 10 as being alternatively
spliced. These seven genes thus provided a useful pos-
itive control for estimating the accuracy of the splic-
ing analysis methods described here. These seven genes
are AT1G77180, AT1G01490, AT2G02390, AT2G26670,
AT3G19720, AT5G26780, AT1G09140. At the cutoff
FDR = 0.05, MATS reported five genes, followed by
Cufflinks and DEXSeq, both of which picked out four
genes. DSGseq, DiffSplice and rDiff identified one gene.
The details about which methods picked out which genes
and which AS events are contained in the seven genes are
provided in Table 4.

Conclusions
In this paper, we have evaluated and compared eight
methods for alternative/differential splicing analysis of

RNA-seq data. The major observations for the AS meth-
ods are summarized in Table 5. These methods are clas-
sified into count-based models and isoform resolution
models. Count-based models transform the question of
AS analysis into the question of alternative usage of count-
ing units while isoform resolution models seek to resolve
the isoform relative abundances and in further compare
the difference across conditions. Only Cufflinks and Diff-
Splice in our comparison belong to isoform resolution
models. We’ve conducted both simulation studies and
studies using real data to evaluate the methods. We cre-
ated a customized simulation pipeline based on Flux Sim-
ulator. This pipeline allows users to repeat the simulation
with different alternative splicing ratios, read depths and
sample sizes.
From the perspective of AUC statistics, DEXSeq and

DSGseq performed well in the simulation studies when
the annotation is accurate and complete. DEXSeq was
slightly better when two groups of samples were simu-
lated using different dispersion parameters while DSGseq
excelled when the same dispersion parameter is used.
DSGseq is also more robust to changes in the AS ratio
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Figure 7 SR45a. Heat-induced differential splicing of Arabidopsis gene SR45a (AT1G07350) encoding an RNA-binding protein involved in splicing.
Tracks labeled Hot and Cool contain exon-exon junction features inferred from spliced read alignments from heat-treated (hot) and control samples
(cool). Junctions with fewer than five supporting reads are not shown. Two annotated gene models for SR45a are shown in the track labeled TAIR 10
mRNA. Taller blocks indicate translated regions of the gene model. Note that inclusion of an internal exon introduces a premature stop codon that
interrupts translation and the exon-skipped form likely encodes the full-length protein. The gene is on the minus strand of chr1 and so transcription
proceeds from right to left.

than DEXSeq. The drawback of DSGseq is that it does
not calculate p-value. Both methods belongs to count
basedmodels. However, like othermethods which depend
on gene models, they performance was largely impaired
when incomplete annotation was used. This may impose
problems when working on non-model species or simply
any species that are not well annotated. Cufflinks andDiff-
Splice are capable of assembling reads into transcripts and
are thereby able to detect novel AS events. Only Cufflinks

can take advantage of established gene models and is not
fully dependent on the prior knowledge. These attributes
render Cufflinks the best combination of accuracy and
robustness against incomplete annotation. Therefore it
is recommended for non-model species. On the other
hand, Cufflinks achieves a better tradeoff between pre-
cision and recall. It also performs the best in an median
read coverage of 60. The change of AS ratio affected
methods’ discrimination power as well as the ability to

Table 4 The evaluationof themethods on the seven PCR validatedgenes

Gene Found by which methods AS events

AT1G77180 DEXSeq, DSGseq, MATS Alt acceptor in 5′ UTR
AT1G01490 None Retained intron in 5′ UTR
AT2G02390 Cufflinks, DEXSeq, DiffSplice, MATS 4th exon alt acceptor

AT2G26670 Cufflinks, MATS 1st exon alt donor in coding region

AT3G19720 Cufflinks, MATS Intron retention 3rd to last exon

AT5G26780 Cufflinks, DEXSeq Intron retention last exon 3′ UTR
AT1G09140 DEXSeq, MATS, rDiff-param Next to last exon alt acceptor
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Table 5 Summary of themain observation for selectedmethods

Class Novel AS Detection region Comments

DiffSplice IR Any type ASM Assembles transcriptome based on graph theory. Does not rely on annotation
but does not use annotation either. The goodness of ASM is questionable.
Generally low AUC. Performs poorly when detecting SE events.

Cufflinks IR Any type Gene Assembled transcripts merge with annotation to provide a more confident
reference. Is least affected by incomplete annotation. Model is designed for pair-
end data. Performs better for medium read depth than both low and high read
depth. Performs better when detecting A3SS and A5SS events than other types
of AS events. Computationally slow, but allows parallelization.

DEXSeq CB Only SE Exon Uses a generalized linear NB model. Achieves the highest AUC in many cases
using accurateannotation.However, incompleteannotationcan impose considerable
problems for it. Poor FDR control.

MATS CB NS AS event Uses a Bayesian model. Solely based on junction reads. Can not detect complex
AS events. Annotates splicing events with corresponding event types. Good FDR
control in many simulation studies. Performs the best for real data.

rDiff-param CB NS Gene Conservative with default settings. Good FDR control but low AUC inmany cases.
Computationally fast.

SplicingCompass CB Only SE Gene Compares geometry angles of read count vectors. Generally poor FDR control
and Medium AUC. Performs well when detecting SE events.

DSGseq CB Only SE Gene No p-value reported. Generally medium AUC. Performs well when detecting IR
events and when using incomplete annotation. Computationally fast.

SeqGSEA CB Only SE Gene Integrates DE analysis with DS analysis. Generally high AUC. Requires a sample
size around 5 to claim significance at a reasonable FDR level, i.e. FDR = 0.05.
Computation time increases dramatically as permutation times increases.

IR: Isoform resolution models.
CB: Count based models.
NS: Not Supported.
ASM: Alternative Spliced Module.

control FDR. The rankings, however, were relatively sta-
ble as AS ratio changed, indicating that most methods is
generally good enough to analyze real RNA-seq exper-
iments where the splicing ratio might vary from gene
to gene.
MATS uses a Bayesian framework to calculate the prob-

ability of a gene being alternatively spliced. Although
MATS did not exhibit good performance under the eval-
uation of ROC curves and AUC, it was the best method
under our comparison with respect to controlling the FDR
at a proposed level. MATS excels in the precision of its
results, which is very important for most biologists. The
reason MATS had low recall and AUC is that MATS was
only designed for detecting simple AS events. Therefore
it was not satisfactory when the simulation included com-
plex AS events. When only genes with simple AS events
were involved, both recall and AUC improved dramati-
cally for MATS. The superb performance of MATS in real
data is boosted by the fact that all the 6 validated AS genes
from the literature as well as for the 7 PCR validated AS
genes are simple AS genes. rDiff-parametric also had a
low FDR, however, but it appears to be due to its use of
BF correction. In the analysis of heat shock RNA-seq data,
MATS turned out to be themethod that was themost con-
sistent with the established experimental evidence as well
as our PCR validations. The drawback of theMATS is that

it is highly dependent on the goodness of annotation but it
would be recommended for validating known AS events.
Large sample size (8 samples per condition) did not

affect the discriminating power under ROC and/or AUC
evaluation, but did improve several methods’ recall at
the cost of decrease in precision. The several methods
include Cufflinks, DEXSeq, SplicingCompass and espe-
cially SeqGSEA. SeqGSEA uses a permutation based
approach to calculate p-values for genes being alterna-
tive spliced. It is likely that the p-values are scaled in
accordance with sample size and we may expect a opti-
mal sample size around 5 or 6 for using SeqGSEA. The
sets of significantly alternatively spliced genes at given
FDR threshold (FDR = 0.05) varied considerably between
methods for the analysis of heat shock data. SeqGSEA and
DSGseq had the highest correlations of the gene ranking
scores due to using the same test statistics.

Methods
Parameter choices of software
All of the selected methods in this paper allow users
to specify certain parameters. We have mostly used
the default parameters as this is how most users apply
these software packages. The detailed command lines and
parameter choices used in the baseline simulation study
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are given in the Additional file 1. The version of each
program used for the evaluations in the main paper is
also given. For those that are implemented in R, includ-
ing DEXSeq, SeqGSEA and SplicingCompass, it contains
sample R code to run the analysis. For more detailed infor-
mation, e.g., the meaning of the parameters and/or the
whole list of parameters, we refer to the original publica-
tions.
For MATS, we used the mapping results instead of fastq

files as the program input. Starting with MATS (3.0+),
the program outputs two types of results: analysis based
on both exon body reads as well as junctions reads and
analysis based on junction reads alone. For all the compar-
isons, we used the latter but we showed in the Additional
file 1 that there are only negligible differences in these two
results.
For Cufflinks, we first assembled each sample indi-

vidually using Cufflinks and then merged the resultant
transcripts with annotation using Cuffmerge. The merged
transcripts was used in Cuffdiff to perform the analysis of
differential splicing.We used the fragment bias correction
option in Cufflinks. In the analysis of heat shock data, the
minimum number of replicates were set to 2 because one
of the conditions has only two samples.
SeqGSEA integrates analysis regarding differential gene

expression (DE) with analysis regarding differential
splicing (DS).We only performed the latter and calculated
the DS permutation p-values for 1000 iterations.

Heat shock data sets
In the heat shock experiment [36], RNA was harvested
from two experimental conditions (heat vs control) at two
time points (T1 and T2). Previously grown in the same
normal conditions, 3-week-old Arabidopsis plants were
divided into 2 groups. In the heat shock group, plants were
put into an incubator with temperature set to 38°C dur-
ing a 3 h treatment. The first set of plants were collected
immediately after the 3 h treatment and the second set of
plants were harvested 24 h after the treatment. The first
time point was designated as heat shock period and the
second time point was designated as recovery period. In
the control groups, the incubator was set to 22°C during
the 3 h heat treatment and two sets of plants were col-
lected from that incubator at T1 and T2 respectively. The
RNA-Seq alignments used in this study are available for
visualization in the Integrated Genome Browser via the
IGB Quickload site http://www.igbquickload.org/abiotic.
IGB is freely available from http://www.bioviz.org.

Simulated RNA-seq data sets
We generated Arabidopsis RNAseq data using Flux Simu-
lator [45] with exact ground truth expression levels. Ara-
bidopsis is chosen because of its relatively small genome
size and detailed genomic annotation. Two real data sets,

Heat shock T1 and Heat shock T2, each with three repli-
cates were used for generating simulated data. There was
a good agreement between the simulated data by NB
distributions and real data (Additional file 1: Figure S2).
We created a custom simulation pipeline (see Additional

file 1) to create synthetic Arabidopsis RNA-seq data sim-
ulating different conditions. Flux Simulator is a single
sample generator which carries out in-silico RNA-seq
experiments. It starts with a random transcript popula-
tion and then carries out library construction processes.
Finally, it simulates the sequencing process including
size selections, and platform-specific base calling errors.
Our simulation pipeline extends the Flux Simulator capa-
bilities to simulating differential splicing on two con-
ditions with biological replicates. The simulation is a
two-step workflow (Additional file 1: Figure S1). 1)
First, we set empirical total transcript copy numbers
for each gene and each sample based on real data and
randomly choose genes for differential splicing across
the conditions. The number of simulated replicates can
be specified by the user. 2) Second, the transcript-
level abundances are calculated based on the previous
total transcript copy numbers, relative isoform propor-
tions, and sequencing depth. Then, Flux Simulator can
generate in-silico RNA-seq reads based on transcript-level
abundances.
The custom simulation pipeline generated 100bp

paired-end reads in fastq format. The relatively long
read length (100bp) was deliberately chosen to produce
more reads that cross exon-exon junctions. The gener-
ated synthetic reads were then mapped against the lat-
est Arabidopsis genome TAIR 10 using the GMAP and
GSNAP packages (version 2013-05-09) [46]. To maxi-
mize GSNAP’s ability to find spliced alignments, we used
the RIKEN Arabidopsis full length cDNA sequences [47].
These sequences were utilized byGMAP with an option “-
f”that looked for all possible splice sites and reported them
to GSNAP as a database of known splice sites. The align-
ment results were output in SAM/BAM format which can
be used for the subsequent alternative splicing analysis.

Evaluation of the software results
We defined ranking scores for each method directly from
the output. This score is a direct reflection of significance
or evidence for alternative splicing across two condi-
tions. For the six methods that provide adjusted p-values
after multiple testing correction, we defined the score
as 1 − Padj. Rdiff use Bonferroni correction while Splic-
ingCompass, MATS, DEXSeq, SeqGSEA and Cufflinks-
Cuffdiff use Benjamini-Hochberg correction. DiffSplice
and DSGseq do not provide p-values, and so we used their
test statistics as the ranking scores: square root of JSD for
DiffSplice and NB statistics for DSGseq (see the Methods
overview in Background).

http://www.igbquickload.org/abiotic
http://www.bioviz.org.
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Additional files

Additional file 1: Supplementarymaterial. Contains supplementary
figures referred to in the text. Here we also illustrate the simulation
pipeline, and we compare the distribution and dispersion between
simulated data and real data. The file also contains sample command lines
or R code and computational time requirements for running each
program. Finally the direct read alignments for the seven experimentally
validated AS genes are shown in this file.

Additional file 2: Results of eight selected programs on real data. TXT
file contains the result of each program run on the heat stress data set.
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