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Abstract

Background: The polymerase chain reaction amplifies and quantifies small amounts of DNA. It is a cyclic process,
during each cycle of which each strand of template DNA is copied with probability approaching one: the amount of
DNA approximately doubles and this amount can be estimated fluorimetrically each cycle, producing a set of
fluorescence values hereafter referred to as the amplification curve. Commonly the biological question of relevance is
one of the ratio of DNA concentrations in two samples: a ratio that is deduced by comparing the two amplification
curves, usually by way of a plot of fluorescence against cycle number. Central to this analysis is measuring the extent
to which one amplification curve is shifted relative to the other, a measurement often accomplished by defining a
threshold or quantification cycle, Cq, for each curve: the fractional cycle number at which fluorescence reaches some
threshold or at which some other criterion (maximum slope, maximum rate of change of slope) is satisfied.
We propose an alternative where position is measured relative to a reference curve; position equates to the cycle shift
which maximizes the correlation between the reference and the observed fluorescence sequence. A key parameter of
the reference curve is obtained by fixed-point convergence.

Results: We consider the analysis of dilution series constructed for the estimation of qPCR amplification efficiency.
The estimate of amplification efficiency is based on the slope of the regression line when the Cq is plotted against the
logarithm of dilution. We compare the approach to three commonly used methods for determining Cq; each is
applied to publicly accessible calibration data sets, and to ten from our own laboratory. As in the established literature
we judge their relative merits both from the standard deviation of the slope of the calibration curve, and from the
variance in Cq for replicate fluorescence curves.

Conclusions: The approach does not require modification of experimental protocols, and can be applied
retrospectively to existing data. We recommend that it be added to the methodological toolkit with which
laboratories interpret their real-time PCR data.
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Background
Since its introduction by Mullis et al. [1], the polymerase
chain reaction (PCR) has been widely used to amplify and
quantify small amounts of DNA. Briefly it constitutes a
few dozen cycles in each of which there are three stages:
denaturation, annealing and extension.
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At each cycle each DNA strand either doubles (with
probability p) or fails to double. Defining amplification
efficiency, E, as E = 1 + p the expected number Nc of
strands after C cycles, given constant p, is

Nc = N0(1 + p)C = N0EC ,

where N0 is the initial number. We use this definition of
E to be consistent with Ruitjer et al. [2] and in that we
deviate fromMIQE guidelines [3].
The amount of DNA can be estimated fluorimetrically

using, for instance, Sybr Green 1 dye which binds to the
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minor groove in double-stranded DNA [4]. Commonly
the relevant question biologically is one of relative quan-
tification: the ratio of initial DNA in two samples. If
samples A and B, initially containing NA and NB strands,
exhibit the same fluorescence after Ca and Cb cycles
respectively, then assuming constant p,

NA(1 + p)Ca = NB(1 + p)Cb ,

from which we have

NA/NB = (1 + p)(Cb−Ca) = E�C , (1)

where �C = Cb − Ca. Accordingly, the cycle difference,
�C, and E (or equivalently, p), are the key to estimation of
the ratio NA/NB.
In common use there are two fundamentally different

approaches to the estimation of E. One involves the gen-
eration of curves from a series of dilutions: an eight-fold
dilution, for instance, would delay the fluorescence by
three cycles if E = 2 because 23 = 8. If E = 1.8, how-
ever, it would delay the fluorescence curve by 3.53 cycles,
because 1.83.53 = 8. Alternatively (Gentle et al., 2001.
[5], Zhao and Fernald, 2005 [6]), E can be estimated from
the real-time fluorescence data. At each cycle early in the
sequence, fluorescence above background will increase by
a factor E, which can therefore be estimated from the data
in this ‘log-linear’ phase. The early phase of exponential
increase is short-lived. As resources become limiting, the
fluorescence curve flattens out, and Liu and Saint [7] have
used the sigmoid or logistic function,

F(x) = Fb + Fmax
1 + eβ(x0−x) , (2)

where Fb is background, and Fmax is maximum contribu-
tion of the reaction to fluorescence, (the asymptote, rather
than maximum observed experimentally), to describe the
data. Rutledge and Stewart [8] introduced an analysis
which takes into account the linear decrease in amplifica-
tion under this model, simplifying the estimation of the
initial amplification efficiency from the curve itself. MIQE
guidelines [3] recommend the former approach: ‘PCR
amplification efficiency must be established by means of
calibration curves ...’ but we acknowledge ongoing debate
on this issue.
Strictly speaking the data from a tube are discontinu-

ous; fluorescence is measured at the end of each cycle,
and there is no such thing as a fluorescence after a frac-
tional number of cycles as implied by the continuous
functions above.We use the term reference curve to imply
an abstraction; a smooth continuous curve of fluorescence
as a function of x, which we observe at cycles C which are
integer values of x. The observed fluorescence is the flu-
orescence at these integer values, but with the addition of
error or noise.

A key to analyzing PCR, therefore, is, given two fluo-
rescence curves, to measure �C, the extent to which one
curve is shifted laterally relative to the other. There are
two very different circumstances under which one may
need to do this. If E is to be estimated from the cycle-to-
cycle increase in fluorescence of a single assay tube, then
quantifying some aspect of the fluorescence is important.
Conversely, if one is using dilution to estimate amplifi-
cation then the shape of the curve is of less import so
long as the data and the reference curve have in common
that they are S-shaped (sigmoid): interest lies only in the
extent to which dilution has shifted the curve, of whatever
shape, to the right. Whatever the method of estimating
E, that estimate is commonly used subsequently to derive,
in concert with a measured cycle difference between
two tubes, �C, the initial concentration ratio implied
by Eq. 1.
It is the estimation of cycle shift in these scenarios

which we address; to what extent is one fluorescence curve
shifted relative to another? There is, of course, a sig-
nificant literature detailing several algorithms to do just
that, and we should justify any attempt to add another.
Ruitjer et al. [2] have examined the performance of nine
estimators of E and have proposed several measures of
their relative merits. In using the publicly available data
sets comprising dilution series for establishing amplifica-
tion efficiency, two measures are of central importance.
One is the within-replicate variance; most data sets have
three or more replicates at each dilution, and for a good
estimator we expect values of Cq from these replicates
to be close. The second measure is the standard devia-
tion of the estimate of the slope when Cq is regressed
against the logarithm of dilution; the smaller the stan-
dard deviation of the slope, the smaller will be that of
the estimated efficiency. Following Ruitjer et al., we use
both of these, and compare approaches using Friedman’s
non-parametric rank sum.
The three algorithms which we examine in detail, and

which performed very well in the review by Ruitjer et al.
are Cy0, Standard-Cq, and PCR-Miner. The latter algo-
rithm includes both an estimate of Cq, and an estimate of
efficiency derived from each curve, and we should empha-
size that we are implementing only the Cq-estimating
component of PCR-Miner. To avoid confusion with the
full PCR-Miner algorithm we will refer to it as the SDM-l5
method (second derivative maximum of the model des-
ignated l5 in the qpcR package [9] associated with the R
statistical software [10]).
Notwithstanding their established utility we have con-

cerns about each of these approaches. ForCy0, the derived
Cq depends on the baseline. We regard baseline fluores-
cence as a ‘nuisance’ parameter, as do several algorithms
that attempt to eliminate it. Our bias (and we accept that
it is personal bias) is to use an estimator independent of
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baseline. Standard-Cq finds the fluorescence (Fq) at the
second derivative maximum (SDM) for the (mean) undi-
luted sample, and for subsequent samples Cq is defined
as the (interpolated) cycle at which fluorescence achieves
Fq. Again this is influenced by sample-to-sample varia-
tion in baseline, and for the subsequent diluted samples it
takes information from only two readings out of the entire
curve. The SDM-l4 approach overcomes the above reser-
vations by fitting a four-parameter sigmoid curve and cal-
culating the cycle of SDM as implemented, for instance in
some commercially available software [11]. This approach
is independent both of baseline and of scale, but it raises a
more subtle problem. Each reference curve is of a different
shape. The distance between the curves in a dilution series
is not well defined if each curve is of a different shape;
they are not the same curve translated laterally along the
dilution axis. The distance between the second deriva-
tive maxima, for instance, is different from the distance
between the first derivative maxima.

Methods
Biological methods
Ethics approval for the use of peripheral blood leucocytes
was obtained from the Human Researach Ethics Committee
of The Queen Elizabeth Hospital (South Australia), and
the use of samples followed the protocol approved
by that committee, as documented in Bianco-Miotto
et al. [12].

RNA extraction and reverse transcription
RNA was extracted from cells grown in tissue culture
using Trizol (Invitrogen, USA) according to the manu-
facturer’s protocol. The concentration of RNA was deter-
mined using a Biophotometer (Eppendorf, North America
Inc, Westbury, USA). DNAse treatment of total RNA was
performed prior to reverse transcription in order to min-
imize PCR signal arising from carry-over genomic DNA
(Ambion DNAfree kit). RNA was reverse transcribed
using Superscript III RT (Invitrogen, USA). cDNA was
diluted 20 fold in ultra pure water (Fischer Biotech) prior
to real time PCR.

Preparation of genomic DNA
Mononuclear cells were isolated from the peripheral
blood of healthy donors using Lymphoprep (Axis-Shield,
Oslo, Norway) according to the manufacturer’s instruc-
tions. Genomic DNA (gDNA) was purified from the
mononuclear cells using Trizol (Invitrogen Life Technolo-
gies, NY, USA) according to the manufacturer’s instruc-
tions.

Preparation of dilution series
50 μl of ultra pure water was aliquoted into a series of 0.5
ml PCR tubes, and either 50μl of gDNA or 50μl of cDNA

was added to the first tube and mixed by pipetting up and
down 10 times. 50 μl of this mixture was then pipetted to
the next tube and mixed, and the process repeated across
the tubes, to produce a two-fold serial dilution.

Real-time polymerase chain reaction
PCR amplification was performed in 20 μL final vol-
umes containing 6 μL of cDNA or gDNA template, 2
μL of each forward and reverse primer (5 μM), and 10
μL of 2× Quantitect Sybr Green Master Mix (Qiagen,
Germany). Thermocycling was performed in a Rotorgene
6000 thermocycler (Corbett, Australia) with an initial
activation/denaturation (hot start) at 95°C for 15 min; fol-
lowed by 45 cycles of 20 sec at 95°C, 30 sec at the annealing
temperature, and 30 sec extension at 72°C. After the
cycling there was a final extension at 72°C for 4min. Triple
replicates of twelve (sometimes eleven) 2-fold dilutions
reactions were performed on all samples. Products were
then melted in the Rotorgene 6000 thermocycler from
60°C to 99°C at 0.5°C for 5 sec per step to determine if
the PCR products melted at the same temperature as PCR
products that had been fractionated through 1% agarose
gel to confirm that the product was of the predicted size.
Details of amplicons and primers appear under Additional

file 1: Table S1.

Numerical methods
Data analysis was carried out under GNU/Linux Ubuntu
14.04 LTS using the R programming language [10] and
the associated packages qpcR [9] and ggplot2 [13]. The
fixed-point estimator is as documented below. The meth-
ods Standard-Cq, SDM-l4 nd Cy0 were implemented as
follows.

Standard-Cq
The essence of standard-Cq is to locate the fractional cycle
corresponding to the SDM of the (averaged) undiluted
sample, and to define Fq as the (interpolated) fluorescence
at that fractional cycle. The Cq of each cycle, diluted or
undiluted, is the fractional cycle at which Fq is achieved.
If Fi denotes the fluorescence at the ith cycle of the aver-

aged undiluted samples we find i for which the second
derivative, (Fi−1−2Fi+Fi+1) is maximal, and then assum-
ing that the second derivative of fluorescence, if contin-
uous, would be adequately approximated by a quadratic
around the ith cycle we now have as fractional cycle maxi-
mizing that quadratic as the location of SDM. The (mean)
fluorescence of the undiluted sample is then found by
interpolating the cubic through the adjacent four fluores-
cence values. This defines Fq. For each sample we then
find k such that Fk−1 < Fq < Fk implying that Cq for that
sample lies between (k − 1) and k. Again the fractional
cycle at which Fq occurs is found by cubic interpolation of
the observed fluorescence at Fk−2 · · · Fk+1.
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SDM-L4
The function pcrfit() from the qpcR statistical package
finds for each dilution curve, the parameters of best fit for
the four-parameter model defined (using the nomencla-
ture from Zhao and Ferdinand [6])

y0 + a
1 + ( x0x )b

,

from which the location of the SDM is given by

x0
k

√√
3b2(b2 − 1) − 2(1 − b2)

b2 + 3b + 2
.

Cy0
The function pcrfit() as above finds the parameters of best
fit for a five-parameter sigmoidal curve. As introduced by
Guiscini [14], the function used was

Fx = Fb + Fmax

(1 + eβ(x0−x))f
, (3)

although the example in the qpcR package uses the closely
related

Fx = Fb + Fmax

(1 + (x0/x)β)f
, (4)

and we have implemented both for comparison. We
denote the former Cy0-b5, the latter Cy0-l5, referring
to the five-parameter functions b5 and l5 of the qpcR
package.
The function Cy0 from the qpcR package takes the

five parameter function and returns Cy0 as the point of
intersection with the abscissa of the tangent through the
maximum first derivative.

Theoretical development of fixed-point approach
In estimating �C we are quantifying the extent to which
one curve needs to be shifted horizontally (on the cycle
axis) in order that it might overlie the other. That aim
requires three qualifications: first, that there may need to
be some vertical shift to accommodate different baselines;
second, that the same applies to scale; third that we have
equally-spaced points rather than a continuous curve.
If, as in some standard analyses, the ‘position’ of a flu-

orescence curve is taken to be the fractional cycle at
which fluorescence attains some arbitrary threshold, then
the tube-to-tube variation in the baseline and scale of
fluorescence becomes a problem; scale is particularly so
where fluorescence has not reached a terminal plateau.
The appeal of using position of maximum first or second
derivative (as in PCR-Miner software) is that these are not
influenced by changes in baseline or scale.

We can ask how much one fluorescence curve needs to
be shifted such that it overlies another, but because we
have points, rather than continuous curves we will usu-
ally find that, at best, one set of points lies close to, but
between, the points of the other.

A reference curve
The strategy commonly adopted, and which we adopt
here, is to fit our observed fluorescence data to some con-
tinuous function. The functions discussed below have in
common that they are S-shaped (sigmoid). The common
definition of a good fit is one which minimizes the sum
of squares of differences between the observed data and
the continuous function being fitted, and again we follow
that practice. The qpcR package [9] uses the Marquardt-
Levenberg algorithm to accomplish this. Commonly used
are the five-parameter functions adopted in the variants
of the Cy0 estimator introduced earlier simplified ver-
sion of which are obtained with the constraint f = 1,
giving the four-parameter curve used in SDM-l4 or the
four-parameter curve of Eq. 2 as in Liu and Saint [7]. In
explaining the fixed-point approach is convenient to note
that we can recast Eq. 2 as

Fx = Fb + Fmax
1 + A(x0−x) , (5)

where A = eβ . We still have four parameters, but instead
of varying β to obtain best fit we are varying A = eβ . This
makes no difference to the fit; it just makes the physical
significance of the parameters more obvious to the reader.
Looking at the four parameters in turn we have

Fb This is the background fluorescence of an assay
which we are assuming to be a nuisance variable. We
want our estimate, Cq to be independent of Fb.

Fmax This is the difference in fluorescence between Fb and
the asymptote which fluorescence is approaching.
We take tube-to-tube variation in Fmax to result from
differences in such factors as the opacity of the assay
tubes; it is a nuisance variable, and Cq should be
invariant with Fmax.

x0 This determines shift along the abscissa (cycle axis).
In the four-parameter models mentioned, it is the
fractional cycle at which the fluorescence
representing reaction product is 50% of Fmax.

A This determines the shape of the curve and we note
that the increase in fluorescence due to polymerase
reaction during the first cycle is

Fmax
1 + A(x0−1) · 1 + Ax0

Fmax
= 1 + Ax0

1 + A(x0−1) ,

which, for large Ax0 tends to A. That is, the
parameter, A is the amplification efficiency during
the early, exponential, part of the chain reaction.
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Figure 1 A Fluorescence Curve. The first fluorescence curve from the batsch1 data set is approximately half-way between baseline and its
maximum at cycle 29. We expect, therefore, that correlation with the sigmoid reference curve will maximize at a value of x0 ≈ 29.

0.4

0.6

0.8

1.0

0 10 20 30 40
Cycle shift (xo)

C
or

re
la

tio
n

Figure 2 Correlation between reference curve and data. The correlation between the reference curve and the data of Figure 1 maximizes at a
value x0 ≈ 29. The value of the fractional cycle maximizing correlation can be found either by fitting a quadratic through 29 and the adjacent
points, or by a one-dimensional non-linear search. For the illustrated data, the maximum is at 28.93 cycles.
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If we now want to fit the fluorescence in each tube of a
dilution series to the ‘same’ continuous function, it seems
preferable to use the function which models the appro-
priate amplification efficiency. By the ‘same’ continuous
function we mean functions for which A is the same. We
accept that Fb, Fmax and x0 will vary from tube to tube,
because baseline, scale and Cq will vary from tube to tube.
But the idea of running a dilution series to determine
amplification efficiency is predicated on the assumption
that amplification efficiency, and hence A, is the same for
every tube. Wemight seek, therefore, to find for each tube
the values for Fb, Fmax and x0 that best fit the observed flu-
orescence in that tube, keepingA fixed at the amplification
efficiency as derived in the usual way from a regression of
Cq against logarithm of dilution.
The impasse is now obvious; the point of dilution assay

is to determine the amplification efficiency. Until we know
the amplification efficiency we do not know the appro-
priate value of A to use in Eq. 5 to determine the Cq for
each tube. The Bauer fixed-point theorem resolves that

impasse. Using fixed-point convergence (see, for instance,
[15]), we begin with an initial guess, A0. This leads to
estimates Cq for each tube on the basis of which the slope
of regression against logarithm of dilution gives a first
estimate E1 of amplification efficiency. We now replace
our initial guesstimate A0 with A1 = E1 and repeat the
process giving a second estimate E2 and so on, until subse-
quent estimates are unchanged and convergence has been
achieved.
For the process to converge, the requirement of the

fixed-point theorem is that a plot of E1 against A0 (which
is, of course also that of E2 against A1 and so on), should
have an absolute slope less than one. Providing this con-
dition is satisfied (and for the data sets considered here it
is), the theorem asserts that

• the process will converge
• the smaller the slope, the faster it will converge
• the value to which it converges is independent of the

starting estimate A0
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Figure 3 The regression of Cq against logarithm of dilution (base2). If each PCR cycle were to double the DNA, then a two-fold dilution would
delay the curve by one cycle. The slope of the straight line regressing Cq against log of dilution (base 2) tells us how many cycles are required to
double the DNA. Using a reference curve with A = 1.5 slope is 1.185 cycles per doubling, or equivalently increasing the DNA 1.795 - fold per cycle.
The next fixed-point iteration will use A = 1.795 in the reference curve.
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Wenote that, in fitting Eq. 5 to an observed fluorescence
curve, if A is fixed, there are only three parameters, Fb,
Fmax and x0 of which both Fb and Fmax enter the equation
linearly. Since we are really only interested in the param-
eter x0 we can, under these circumstances, avoid using
the Marquardt-Levenberg algorithm and find the value
of x0 which maximizes the Pearson correlation coeffi-
cient between observed fluorescence and the fitted curve.
That correlation will be independent of Fb and Fmax, and
will give the same ‘best fit’ x0 as a Marquardt-Levenberg
approach minimizing the sum of squares of differences. If
we denote by xi the value of x0 maximizing correlation in
the ith tube, each tube now has a reference curve of the
form

1
1 + A(xi−x) .

The reference curves for all tubes are now the same
shape, apart from their shift along the abscissa determined

by xi. Because shift along the abscissa is the only dif-
ference between any two curves the concept of �Cq as
that difference is now unambiguous; we could define it
as the difference between first derivative maximum, sec-
ond derivative maximum, or difference between cycles at
which some fraction of the increase has been achieved and
all these definitions would result in the same �Cq. The
simplest definition is to use xi as the Cq for the corre-
sponding tube (the cycle at which the reaction is 50% of its
maximum fluorescence).
In summary the steps in the fixed-point algorithm are as

follows. We will use the publicly available dataset batsch1
from the qpcR package as an illustration, including the
numerical values which we obtain.

1. Using an initial guesstimate of amplification
efficiency (we have used A = 1.5) define

f (A, x0, x) = f (1.5, x0, x) = 1
1 + 1.5(x0−x) .

Figure 4 Fixed-point iteration applied to the batsch1 data set. The estimated amplification efficiency, (E - out, vertical axis), varies according to
the assumed amplification efficiency (A - In, horizontal axis) used to construct the sigmoid reference curve. The red line is a plot of (E - out) as a
function of (A - In). Applied iteratively, however, the process converges to the point of intersection of the red curve and the line of identity (black).
This point of convergence, the fixed-point, is independent of the starting value. With a starting value of A = 1.5 the first iteration is shown in blue,
the second in green.
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2. Use algorithm of choice to find, for each tube, the
value of x0 which maximizes the correlation between
f (A, x0, x) and the fluorescence data from that tube.
For that tube let Cq = x0. The first fluorescence data
from batsch1 is shown in Figure 1. By inspection we
can see that half the generated fluorescence occurs
by about cycle 29, so the reference curve showing
greatest correlation will have a value of x0 of about
29. Figure 2 shows a plot of correlation against x0 for
values of x0 from 1 to 45 and we can see the
correlation maximizing at cycle 29. A good
first-estimate of the fractional cycle at which
correlation maximizes is obtained by quadratic
interpolation using the three correlations at this and
the adjacent cycles. Given the correlations are
0.99497, 0.99766, and 0.99408 at cycles 28, 29 and 30
respectively we imply a maximum at cycle

x0 = 0.99497 − 0.99408
2(0.99497 − 2 × 0.99766 + 0.99408)

= 28.929.

Of course, any iterative approach can be used, and as
we are only looking for a maximum in one dimension
the R procedure optimize() is appropriate. In
practice, for these data there is no improvement; a

maximum correlation is found at cycle fractional
cycle 28.930. Set Cq for this tube as 28.93. Repeat for
each tube.

3. Regressing Cq against logarithm of dilution
determine estimated amplification efficiency, and
return to step 1 replacing A with this estimate. We
prefer to use logarithms to base 2 as in Figure 3
because the implication of the regression slope is
clear from inspection; a doubling at each cycle
(E = 2) would imply that a two-fold dilution shifts
the fluorescence curve by exactly one cycle. The
regression slope in Figure 3 is 1.185, implying that it
takes 1.185 cycles to compensate for a two-fold
dilution. If there is an E-fold increase each cycle then

E1.185 = 2

from which it is immediate that

E1 = 1.185√2 = 1.795.

4. Return to step 1, replacing the initial A = 1.5 with
A = 1.795. Iterate until estimated efficiency is
unchanged. This is the fixed-point iteration, and is
illustrated in Figure 4. In the above we started with
guesstimate A0 = 1.5 (deliberately far from what we
expect, so as to illustrate the method) and the first
cycle returns an estimated efficiency 1.795. This

Figure 5 Convergence of Fixed-point Iteration. The convergence of the iterative process illustrated in Figure 4 depends on the slope of the
curve relating E - out to A - In. The process will converge provided the slope is not too great (Bauer’s fixed-point theorem). We illustrate the ten data
sets from this laboratory: the slope is less than that of the line of identity, and fixed-point convergence is guaranteed. Numbers 1 to 10 correspond
to the data sets Flind1 - Flind10 respectively.
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Table 1 Sum of ranks (smaller is better)

Variable SDM-l4 Std Cq Cy0-l5 Cy0-b5 Fixed point

Replicates sd 388 669 574 662 422

Slope sd 46 96 68 83 52

For each of the five estimators of Cq we have ranked their performance as
judged by the standard deviation of replicates (181 sets of replicates, line 1) and
by the standard deviation of the estimated slope when Cq is regressed against
log. dilution (23 data sets, line 2). For both approaches the null hypothesis of
equal distributions of ranks is rejected. On direct comparison of the best two
(Fixed-point vs SDM-l4), Fixed-point has a smaller standard deviation of
replicates in 95 of 181 comparisons, and a smaller standard deviation of slopes
in 14 of 23 comparisons.

corresponds to the vertical blue line on Figure 4 in
which the red curve shows for this process the
output E for a range on input A from 1 · 4 to 2 · 2.
Bauer’s fixed point theorem guarantees convergence
if the slope of this line is absolutely less than one in
the region of interest (as shown here for these data).
We then replace our initial A0 = 1.5 with the revised
A1 = 1.795 (horizontal blue line, completing the first
iteration of fixed-point convergence. The second
cycle is shown in green, giving the second estimate
E2 = 1.848 and so on, converging rapidly to an
amplification efficiency of 1.8517.

Results and discussion
Fixed point convergence
For all data sets with an initial estimate A0 = 1.5 used in
the logistic function, deliberately far from the expected
E, the fixed-point iteration had converged to within .001
of its asymptote in four iterations; a convergence well
beyond any biological relevance. The rapid convergence
results from the relative insensitivity of estimated E to
the A used in the logistic reference curve. Figure 5 shows
estimated E1 as a function of input A0 for all ten data
sets from our laboratory. The slope of all curves in the
interval of interest is well within the (−1, 1) required
for convergence by the Banach fixed-point theorem.
For nine of the ten data sets, however, the parameter
of the logistic function does influence the correspond-
ing E estimate and it is important that the parame-
ter be determined objectively. Additional files 2 and 3
show the corresponding figures for the publicly available
data sets.
There are 23 data sets, giving 23 standard deviations for

estimates of slope by each of the five analysis methods.
The rank sums appear in the first line of Table 1. Using
Friedman’s rank sum to compare the standard deviation
of the estimate of slope the null hypothesis of equal dis-
tributions is rejected (χ42 = 25.7, p < 0.0001). The best

32

36

40

0 3 6 9

Log base 2 dilution (dilution in bold)

C
q

81 64 512 2048

Dataset Flind2

Figure 6 Regression of Cq against logarithm of dilution. Amplification efficiency is estimated from the slope of the line relating Cq to the
dilution, the latter on a logarithmic scale. The confidence limits for the slope, when calculated from unweighted least-squares (as commonly done
in simple linear regression) is strictly appropriate only for normally-distributed homoscedastic data. We caution that our data are not homoscedastic,
and are unlikely to be normally distributed.
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two estimators are SDM-l4 and Fixed-point. Proceeding
to a direct comparison of the two, the Fixed-point estima-
tor performs better, having a smaller standard deviation
in 15 of 23 comparison. The difference, however, is not of
statistical significance.
Within the 23 data sets are 181 sets of replicate Cq.

The rank sums of replicate standard deviations appear
as the second line of Table 1. Again using Friedman’s
rank sum test on the null hypothesis of equal distribu-
tions of replicate standard deviations the null hypothesis
is rejected (χ42 = 149, p < 0.0001). On direct compar-
ison of the better two estimators, SDM-l4 and Fixed-
point, the Fixed-point is the better estimator in 96
of 181 comparisons but again this is not statistically
significant.

Caveats
We would caution, however, against too literal an inter-
pretation of the standard deviation of the slope estimate.
The linear regression of position against log(dilution)

on which it is based assumes normally-distributed
homoscedastic data. Data from qPCR dilution series are
almost never homoscedastic because higher dilutions lead
to more variable fluorescence sequences than do lower
dilutions. Even if errors at low dilutions are Gaussian,
those at higher dilutions result from Poisson effects and
will not be Gaussian. Figure 6 is characteristic of the
regression line and associated data, and demonstrates
the increased variance at higher dilutions. In addition,
the linear regression assumes that the dilution itself is
error-free, and we doubt that this is true of our own
data. Although these concerns lead us to doubt the
absolute values of the standard deviations, the concerns
apply equally to the five estimators, and are unlikely to
draw into question the ordering of these for any one
data set.
When Cq is regressed against log dilution the stan-

dard deviation of the slope depends in part on whether
Cq increases linearly with log dilution, and this in turn
depends on amplification efficiency being constant at all
dilutions. In using the variance of slope as a measure of
the merit of a method, we assume that amplification effi-
ciency is invariant with dilution. In practice the data sets
we have analyzed show a remarkable linearity; the reason
for assaying at intermediate dilutions is to confirm that
linearity, without which a dilution series would be difficult
to interpret.
The fixed-point method assumes that the fluorescence

data approach the plateau. If, in a dilution series, the
higher dilutions result in only the very early part of the flu-
orescence curve emerging, then the estimated Cq at these
dilutions will be unreliable.
Finally we have presented a comparison of the five

methods discussed, and use Friedman’s non-parametric

rank sum as a test of the null hypothesis that the meth-
ods are equivalent. Our data, however, are not randomly
selected from the population of dilution series in general,
and the Friedman’s test should be interpreted with cau-
tion in this context. We have examined two ‘merits’ of the
methods: replicate standard deviation and slope standard
deviation. These are not independent: the standard devi-
ation of the slope estimate takes into account that of the
replicates.

Conclusion
The use of a reference curve, (in this case logistic) rel-
ative to which the position of fluorescence data can be
measured, avoids subjective decisions as to baseline and
scale and threshold. Using data from the whole curve,
rather than just a few points, it offers an approach to
the estimation of amplification efficiency from a dilution
series. The logistic function represents a family of curves,
however, and the specific curve appropriate to a given
dilution series can be defined by fixed-point iteration.
Convergence is rapid and for the illustrative data used here
the method is often, but not always, an improvement on
existing estimators.

Additional files

Additional file 1: Table S1. Details of Incubates Flind1 to Flind10.

Additional file 2: Convergence of Fixed-point Iteration. This figure
corresponds to Figure 5 of the main text, but looks at the publicly-available
data sets batsch1 to batsch5 (blue, brown, red, purple, black) and reps
(turquoise), reps2 (green), reps3 (yellow).

Additional file 3: Convergence of Fixed-point Iteration. As for
Additional file 2, but with the publicly-available data sets boggy (blue),
guiscini (brown), lievens1 (red), rutledge (purple) and sisti (green).
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