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Abstract

Background: Metabolomics is one of most recent omics technologies. It has been applied on fields such as food
science, nutrition, drug discovery and systems biology. For this, gas chromatography-mass spectrometry (GC-MS) has
been largely applied and many computational tools have been developed to support the analysis of metabolomics
data. Among them, AMDIS is perhaps the most used tool for identifying and quantifying metabolites. However,
AMDIS generates a high number of false-positives and does not have an interface amenable for high-throughput data
analysis. Although additional computational tools have been developed for processing AMDIS results and to perform
normalisations and statistical analysis of metabolomics data, there is not yet a single free software or package able to
reliably identify and quantify metabolites analysed by GC-MS.

Results: Here we introduce a new algorithm, PScore, able to score peaks according to their likelihood of representing
metabolites defined in a mass spectral library. We implemented PScore in a R package called MetaBox and evaluated
the applicability and potential of MetaBox by comparing its performance against AMDIS results when analysing
volatile organic compounds (VOC) from standard mixtures of metabolites and from female and male mice faecal
samples. MetaBox reported lower percentages of false positives and false negatives, and was able to report a higher
number of potential biomarkers associated to the metabolism of female and male mice.

Conclusions: Identification and quantification of metabolites is among the most critical and time-consuming steps
in GC-MS metabolome analysis. Here we present an algorithm implemented in a R package, which allows users to
construct flexible pipelines and analyse metabolomics data in a high-throughput manner.
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Background
Metabolomics, the popular modern approach to screen-
ing large numbers of low molecular mass compounds
in biological samples, has been successfully applied in
drug discovery [1], food science [2] and systems biol-
ogy [3] studies. The three most commonly used analytical
platforms for the identification and quantification of
metabolites in biological samples are perhaps gas
chromatography-mass spectrometry (GC-MS), nuclear
magnetic resonance (NMR) and liquid chromatography-
mass spectrometry (LC-MS) [4]. While none of these is
stand-alone in the sense that it provides complete cover-
age of a sample’s metabolome, GC-MS is among the most
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widely applied because of its ability to separate complex
mixtures of metabolites with high efficiency and at low
cost [5].
The Automated Mass Spectral Deconvolution System

(AMDIS) is the most popular freeware available for
metabolite identification and quantification in biological
samples analysed by GC-MS [6]. Originally developed for
the identification of chemical weapons and related com-
pounds in complex chemical mixtures [7], it is now used
in environmental chemistry [8] and metabolomics stud-
ies [9]. AMDIS is linked to the NIST standard reference
database: one of the most popular mass spectral databases
for metabolite identification.
While AMDIS performs well in the identification and

quantification of target metabolites within a single bio-
logical sample, it does not, in general, use a com-
mon reference ion mass fragment (IMF) to quantify the
same metabolite across different samples [6]. This limits
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the reproducibility of the intensity data generated by
AMDIS and, therefore, its direct utility for comparative
metabolomics studies. Such data may, for example, lead
to erroneous identification of chemical signatures (i.e.
biomarkers) and, potentially, to the misinterpretation of
the activity of metabolic pathways. AMDIS is also known
to yield a high rate of false identifications of metabolites,
referred to simply as the false positive rate [10]. Further-
more, AMDIS reports different results according to the
zoom level applied to the chromatogram under analysis.
Some compounds are only correctly identified when a
smaller portion of the chromatogram is analysed. Finally,
the layout of metabolomics data preprocessed by AMDIS
is such that it requires further manipulation before it is
amenable to subsequent processing and analysis [11]. The
necessary manual curation of AMDIS-generated datasets
can, therefore, potentially require months to complete.
Recent years have seen exponential growth in the num-

ber of metabolomics studies. At the same time, spec-
tral libraries have themselves continued to grow in size,
thereby enabling an ever-increasing number of target
metabolites to be identified within individual GC-MS-
analysed samples. Additionally, high impact scientific
journals have raised their standards with respect to the
validation of results from metabolomics studies, requir-
ing higher numbers of samples and technical replicates.
The net result has been an explosion in the amount of
GC-MS-generated data [4], makingmanual curation post-
processing by AMDIS impracticable. An algorithm which
more reliably identifies and quantifies metabolites anal-
ysed by GC-MS and which is implemented in a software
package that reports results in a format that facilitates
further data processing without manual intervention is
urgently needed.
Numerous programs and software packages to auto-

mate processes for the analysis of metabolomics data
have become available in the last couple of years. These
tools enable quick data normalisation, statistical analy-
sis and the production of graphs for data visualisation
[6,12]. Among them is web-based XCMS Online ([13];
https://xcmsonline.scripps.edu/). It is widely used for the
comparative analysis (i.e. comparisons between pairs of
experimental conditions) of the abundances of uniden-
tified IMFs in raw GC-MS data. While XCMS Online
enables the identification of metabolites present at signif-
icantly different levels across experimental conditions, it
is important to note that this involves manual processing.
Thus, although XCMS Online can be particularly useful
when searching for potential biomarkers, it does not fit the
requirements of high-throughput identification and quan-
tification of GC-MS data. Consequently, despite AMDIS’s
limitations, it remains the most popular software for the
identification and quantification of metabolites in raw
GC-MS metabolomics datasets.

We introduce here a new algorithm, PScore, which we
have developed for the identification and quantification
of metabolites in biological samples analysed by GC-MS.
PScore scores the metabolites contained in a pre-defined
spectral library according to their likelihood of being asso-
ciated with a specific chromatographic peak; the higher
the score, the greater the similarity between the expected
(i.e. defined in the spectral library) and observed spec-
tra and RTs (i.e. measured in the biological sample). For
a given metabolite: (1) the closer its fragments’ detected
peaks are to its expected RT, (2) the more closely its
fragments’ relative intensities follow those defined in the
spectral library, and (3) the higher the correlation between
the intensities of its fragments, the higher its score. PScore
enables the use of threshold scores based on the cer-
tainty requirements of each metabolomics experiment,
with higher threshold scores resulting in greater precision
in compound identification.
PScore is implemented in our new R package, MetaBox,

which generates an integrated list of identifiedmetabolites
and their corresponding intensities from replicate sam-
ples analysed by GC-MS. MetaBox includes functions for
removing specific ion mass fragments from GC-MS files
and for the generation of graphical outputs. The reports
generated by MetaBox can be directly applied to other
tools, such as MetaboAnalyst [12] and the R package
Metab [6], in order to perform further data process-
ing and statistical analyses. In addition, MetaBox accepts
spectral libraries built using AMDIS, including the orig-
inal formats in which they were generated. Furthermore,
MetaBox’s use of pop-up dialog boxes makes it more
accessible to novice R users. Finally, being an R package,
MetaBox is open-source, allowing users to adapt it to their
own pipelines for data analysis.
We validated the results produced by PScore through

MetaBox via a two-step approach. First, we compared
its performance against AMDIS’s when identifying and
quantifying volatile organic compounds (VOCs) present
in standard mixtures of metabolites. MetaBox yielded a
smaller proportion of misidentifications and higher accu-
racy in quantification. Second, we used XCMS Online to
generate reference datasets for comparing MetaBox’s per-
formance against AMDIS’s when identifying compounds
present at different levels in faecal samples from female
and male mices. MetaBox yielded a higher percentage of
metabolites matching XCMS Online’s results.

Implementation
PScore: The algorithm
PScore is a GC-MS-based retention time (RT) scor-
ing algorithm used to assess the likelihood that the
observed RTs in a biological sample correspond to
known metabolites within a user-defined spectral
library.

https://xcmsonline.scripps.edu/
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Metabolite identification and quantification by GC-MS
GC-MS instruments usually generate a single file per bio-
logical sample, each file containing a list of mass spectra
together with their corresponding RTs. These spectra are
commonly shown on a chromatogram represented by RT
on the horizontal axis and signal intensity on the vertical
axis. Peaks in intensity on the chromatogram correspond
to putative metabolites in the analysed sample. PScore
performs metabolite identification based on a spectral
library containing the RT and fragmentation patterns of
potential target metabolites.

Spectral library requirements
Metabolite identification and quantification require a
spectral library containing reference information against
which observed spectra can be compared. PScore requires
that for each metabolite,M say, in a spectral library, L say,
information is included about its expected retention time,
ERT , and typically its four most abundant IMFs’ mass-
to-charge (m/z) ratios, which we will denote by Mi (i =
1, 2, 3, 4). Additionally, PScore requires that L contains the
intensity ratios Ri = Ii′/I1 (i′ = 2, 3, 4), where Ii′ denotes
the expected intensity of IMFMi′ , i.e. Ri is the intensity of
Mi′ relative to that of M1. We will refer to relative inten-
sities simply as intensity ratios. For example, consider the
first row of the spectral library shown in Table 1, corre-
sponding to the compound ethanol. It has an expected
retention time of 6.64 minutes; its four most abundant
IMFs havem/z ratios of 31, 45, 46 and 29; the intensities of
the last three of these IMFs, relative to the first, are 0.777,
0.343 and 0.249, respectively.

Many algorithms applied for identifying metabolites
analysed by GC-MS, such as AMDIS and X-Rank [14], for
example, make use of more than 4 ion mass fragments,
if available, when calculating the similarity between two
mass spectra. Our experience analysing GC-MS data sug-
gests that the 4 most abundant ion mass fragments and
the RT are generally the key factors defining the iden-
tity of an analyte. For many compounds, the remaining
fragments are generally close to or at the noise level,
which increases their variability across samples and may
reduce the accuracy in identification. In addition, in
the way PScore was developed, every additional frag-
ment to be analysed requires additional computer power,
which may considerably increase the analysis’ time. Com-
pounds showing less than 4 fragments in their spectra
may have the existent fragments recycled. For exam-
ple, a compound X containing only the fragments 58
and 106 in their spectra would have these fragments
analysed twice by PScore. In this case, the row of the
ion library defining compound X would have its most
abundant fragment defined as M1 and M3 in the ion
library and the secondmost abundant fragment defined as
M2 and M4.
In the remainder of this section we describe PScore, a

peak scoring method which utilises the information avail-
able within a single GC-MS sample to score observed
peaks occurring within a range of RTs and that are poten-
tially associated with a metabolite, M, in the spectral
library, L. The highest scoring peak is inferred as belong-
ing to M. We describe the PScore algorithm according to
the four stages shown in Figure 1.

Table 1 This table shows an example of themass spectral library required by Pscore, which contains each standard
compound’s name (Compound), its expected RT (ERT ) in minutes, them/z ratio of its four (generally) most IMFs
(M1,M2,M3andM4) and the relative intensities, R′

i, of eachM′
i (i

′ = 2, 3, 4) to that ofM1

IMFm/z ratio Intensity relative toM1

Compound ERT M1 M2 M3 M4 R2 R3 R4

Ethanol 6.64 31 45 46 29 0.777 0.343 0.249

Acetone 7.37 43 58 42 39 0.262 0.076 0.044

Isopropyl alcohol 7.58 45 41 27 39 0.107 0.090 0.072

Acetonitril 7.90 41 40 39 38 0.546 0.223 0.137

Ethyl acetate 10.59 43 45 70 61 0.137 0.116 0.105

1-butanol 13.38 56 41 43 31 0.720 0.543 0.346

2-pentanone 13.95 43 86 41 71 0.249 0.127 0.109

Pyridine 16.42 79 52 51 50 0.564 0.275 0.205

1,2-dimethylbenzene 20.39 91 106 77 51 0.327 0.080 0.077

1,3-dimethylbenzene 20.69 91 106 105 77 0.533 0.223 0.115

1,4-dimethylbenzene 21.80 91 106 105 77 0.488 0.189 0.109

Benzaldehyde 25.71 106 105 77 51 0.990 0.935 0.404

Indole 38.63 117 90 89 63 0.414 0.313 0.103
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Figure 1 PScore - algorithm. PScore searches a GC-MS file for metabolites contained in a defined mass spectral library. It analyses a region of the
chromatogram searching for chromatographic peaks representing a metabolite and scores retention times (RT) potentially representing a
metabolite if: (A) peaks of the IMFs expected to originate from this specific metabolite are present at the same RT and if their intensities are equal to
the highest intensity observed for each IMF; if (B) these IMFs are detected at the expected proportions defined in the mass spectral library; and
(C) if the intensities of these IMFs show positive correlation. Finally, (D) PScore calculates the final score associated to each potential RT, it assigns
the metabolite searched to the RT showing the highest score and registers the intensity of the most abundant mass fragment associated with this
metabolite.
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Stage 1: Scoring peaks associated with IMFsM1 –M4

When a metabolite elutes from the gas chromatography
column and enters themass spectrometer, it is bombarded
by electrons and fragmented into ionised components, or
IMFs. In theory, the IMFs from the parent metabolite, M,
should almost simultaneously reach the mass spectrome-
ter’s detector, where their intensities and RTs are recorded.
This information is commonly used to build both their
individual chromatograms and their cumulative or total
ion chromatogram. Ideal process would result in entire
complement of IMFs yielding a set of overlapping peaks
centered precisely on a single expected RT. In practice,
however, RT shifts may be observed depending on the
type of sample being analysed and the variability across
GC-MS runs. Consequently, ametabolite’s IMF peaksmay
occur in the vicinity of, but not precisely at, its expected
RT. Thus, a search must be conducted across a window
of RTs spanning the region of the chromatogram which
most plausibly contains the IMF peaks corresponding to
the metabolite.
Consider a metabolite M in spectral library L with

expected retention time ERT . We define a RT window
W = ERT ±w, with the window parameter, w, being user-
defined. The region W is searched for groups of peaks
potentially corresponding to IMFs M1, . . . ,M4 belong-
ing to M. The jth group’s observed peak intensities are
recorded as Pj = (Î1j, Î2j, Î3j, Î4j; tj), where Îij is the
observed intensity of IMFMi and tj is the RT at whichM1’s
peak is observed. Letting Îmax = max{Îij}, each observed
intensity, Îij, in Pj is scored according to

S1j
(
Mi|Pj

)=
⎧⎪⎪⎨
⎪⎪⎩

3, if Îij occurs at time tj ± 1s and Îij = Îmax
2, if Îij occurs at time tj ± 1s but Îij < Îmax
1, if 0 < Îij< Îmax but does not occur at tj±1s
0, otherwise

.

The total score for Pj is the sum over the scores
assigned to each of its IMFs, i.e.

T1j =
4∑

i=1
T1j

(
Mi|Pj

)
,

allowing a maximum possible score of 12.

Stage 2: Similarity scoring of theoretical and observed spectra
If metabolite M is present in a GC-MS-analysed sample,
not only do we expect a group of peaks to be observed
at its expected RT, we also expect its observed intensity
ratios to be identical to their corresponding theoretical
values in L. However, due to variability across GC-MS
runs and the possible convolution of metabolites, the val-
ues of the observed and theoretical ratios may differ from
one another. Thus, at Stage 2 we compute the intensity
ratios Rj = (R̂2j, R̂3j, R̂4j) from the jth group’s observed

peak intensities, Pj, where R̂i′j = Îi′j/Î1j (i′ = 2, 3, 4).
It follows that if the observed intensities in Pj are from
metabolite M then we expect R̂i′j = Ri′ or, equivalently,
R̂i′j/Ri′ = 1.
We make allowance for variability between observed

and theoretical intensity ratios by introducing amatch fac-
tor f (0 < f < 1) which we use to construct intervals
around each theoretical ratio, Ri′ , associated with metabo-
lite M. The lower and upper limits of this interval are
given by Li′ = fRi′ and Ui′ = (2 − f )Ri′ , respectively, with
the value of f chosen to yield sufficiently narrow intervals
such that only observed peaks from a group of IMFs cor-
responding to M will lie within them. To reflect this, we
give each observed ratio R̂i′j a score of 1 if it falls within
its match factor interval [Li′ ,Ui′]. The total score for Rj is
given by the sum over all of its ratios’ scores, i.e.

T2j =
4∑

i′=2
1{

R̂i′ j∈[Li′ ,Ui′ ]
},

where

1{
R̂i′ j∈[Li′ ,Ui′ ]

}
{
1, if R̂i′j ∈ [Li′ ,Ui′ ]
0, otherwise .

allowing a maximum possible score of 3.

Stage 3: Scoring the correlation between IMFs’ intensities
The ion chromatogram of each IMF originated from a
single compound is expected to form an approximately
bell-shaped curve over a range of RTs tj ± �, where �

is chosen to capture the non-zero intensities with mag-
nitudes that are dependent on RT. We represent this by
expressing the intensity of IMF Mi of M (i > 1) as a
function of retention time t, i.e. Îij(t). If the IMFs cor-
responding to the intensities in Pj are perfectly aligned,
then theoretically their intensity ratios would be expected
to be constant across t ∈ tj ± �, i.e. rij(t) = Îij(t)/Î1j(t) =
cij, where cij denotes the proportionality constant in the
linear relationship between Îij and Î1j and independent of
RT. In other words, IMFs originating from the same com-
pound are expected to have highly correlated intensities,
as they are expected to increase and decrease at the same
time.
At stage 3 we compute the correlation between the

intensities Îi and I1, of M1, (i = 2, 3, 4), across the
retention time window tj ± �, denoted by ρi1|tj which
is calculated using Pearson’s correlation coefficient. In
our experience, the optimal neighborhood of tj is � =
0.07. Ideally, ρi1|tj = 1. However, this is not always the
case. Metabolite coelution, for example, may affect the
correlation between IMFs’ intensities. Thus, we define a
correlation threshold, ct, such that 0 < ct < 1. We then
give metabolite M a score of 1 for each of its observed
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IMFs at tj which have ρi1|tj ≥ ct; that is, the value of the
Pearson’s correlation is greater or equal to the correlation
threshold ct. The Stage 3 score function is then given by

S3j =
4∑

i=2
k{ρi1|tj±�|ct},

where

k{
ρi1|tj±�|ct

} =
{
1 if ρi1|tj±� ≥ ct
0 otherwise .

Metabolites found at similar RTs, e.g. RTMa − RTMb ≤
|0.1| where RTMa is the RT of metabolite a and RTMb is
the RT of metabolite b, and sharing IMFs, e.g. MaM1 =
MbM1 whereMaM1 is them/z of IMFM1 originated from
metaboliteMa andMbM1 is them/z of IMFM1 originated
frommetaboliteMb, may have lower ρi1|tj and, potentially,
lower scoring at stage 3. Three pairwise correlations are
scored in Stage 3, which allows a maximum possible score
of S3j = 3.

Stage 4 - Defining the RT and the abundance ofmetabolite M
We calculate the score SM of metaboliteM at time tj by

SM(tj)
= S1tj + S2tj + S3tj .

Then, we obtain the intensity of M1 at the tj associated
with the highest score, SM(tj)

, and with the lowest differ-
ence to the expected RT, ERT . This intensity represents the
abundance ofM1.
Stages 1, 2, 3 and 4 are performed for every metabo-

lite M in library L. After all metabolites in L are analysed,
it may happen that different metabolites were associated
to the same time tj. In these cases, we select for each
time tj only the metabolite showing the highest score
SM(tj)

and the lowest difference between time tj and the
ERT .

Implementing PScore inMetaBox
We have implemented our PScore algorithm in an R
package named MetaBox. For each GC-MS sample, it
generates a list of metabolites, M, with their respective
abundances, PM(j), their unique RT, tj, at which they
were identified and their calculated score SM(tj)

. MetaBox
then merges the results of individual GC-MS samples
into a single R data frame called Total using metabo-
lite’s names as reference (Additional file 1: Table S1).
Optionally, the data frame Total can be exported to a csv
file.
Ideally, SM(tj)

= 18 when metabolite M is actually
present in the analysed sample. However, it is not always
the case. A specific compound’s spectrum may vary
slightly from sample to sample as a result of GC-MS vari-
ation, matrix effect and metabolite coelution. Therefore,

we define a score threshold st , such that 8 ≤ st ≤ 18.
MetaBox then selects metabolites that have a calculated
score SM(tj)

≥ st and stores them in a second R data
frame called cutOff , containing the name of each metabo-
lite in the first column and their respective abundances in
each GC-MS sample in the following columns (Additional
file 1: Table S2). Optionally, the data frame cutOff can be
exported to a csv file.
The RT index is an excellent system for obtaining repro-

ducible results within and across labs. It is currently
implemented in AMDIS and other tools such as TagFinder
[15]. However, PScore was initially developed to use only
the RT. The possibility to use the RT index will most
probably be implemented in a further version ofMetaBox.

Validation
As we implemented PScore in the R package MetaBox,
we compared MetaBox’s performance against AMDIS’s
in identifying and quantifying VOCs present in standard
mixtures of metabolites and in faecal pellets of female and
male mice.

Methods
Standard mixtures
A single standard mixture containing 13 metabolites
(Table 1) was prepared and divided into 10 aliquots: 5
aliquots of 50 μL and 5 aliquots of 100 μL. Each 50 μL
aliquot was diluted by adding 50μL of water, resulting in a
final volume of 100 μL. Each aliquot was then warmed in
an incubator oven at 60°C for 30minutes, then VOCswere
adsorbed onto a solid phase microextraction fiber CAR-
PDMS 85 μm (Sigma-Aldrich) for 20 minutes and anal-
ysed by a Perkin Elmer (Clarus-500) GC-MS using solvent
delay, 6 min; temperature program (40°C), 1 min; ramp of
5°C/min to 220°C; finally held at 220°C for 4 min (total run
time 41 min). The MS was operated in EI positive mode
scanning mass ions in the range 10 to 300 (6–41 min).
Room and lab air were used as controls.

Metabolite identification
Metabolites were identified using a mass spectral library
built using AMDIS and NIST (Version 2.0) (Table 1)
(NB. The library used by AMDIS contains additional ions
than shown in Table 1). We first characterised algorithm
performance on a per-sample basis, calculating the per-
centage of false positive and false negative metabolite
identifications, defining the percentage of false positives
as 100p+

i %, where p+
i is the proportion of misidentified

metabolites (in relation to the total number of identified
compounds) in the ith standard sample, and the percent-
age of false negatives as 100p−

i %, where p
−
i is the propor-

tion of unidentified metabolites in the ith standard sam-
ple. For example, consider the standard sample described
above containing 13metabolites. If an algorithm identifies
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100 metabolites, including 10 of which are in the standard
sample, it is reported as having 23.1% of false negatives
(i.e. 100 × 3/13) and 90% of false positives (i.e. 100 ×
90/100).
High percentages of both false positives and false nega-

tives may lead to erroneous inferences being drawn from
the data. Optimal metabolite identification tool is one
which yields the smallest percentages of both false posi-
tives and false negatives. We evaluate the performances of
AMDIS and MetaBox over all n = 10 with these criteria
in mind.
The match factor used by AMDIS may affect the num-

ber of false negatives and positives reported. Therefore,
AMDIS was applied using the match factor values of
70, 80 and 90. MetaBox was applied using match factor of
70, correlation of 0.95 and score cut of 13.

Metabolite quantification
All aliquots from the standard mixture were analysed
by both AMDIS and MetaBox. For AMDIS, its ‘Base
Peak’ values were reported for the metabolite intensities.
A reference dataset (Reference), containing the intensity
of each metabolite’s most abundant IMF, was manually
obtained for each sample using the R package XCMS [16].
The abundances reported by MetaBox, AMDIS and Ref-
erence for each metabolite are expected to be very similar.
We confirmed this by performing a hierarchical cluster
analysis (HCA) and a principal component analysis (PCA)
on the combined datasets.

Mice samples
Five female and five male five-week old inbred wild-type
C57BL/6 mice were purchased from Charles River Labo-
ratories (Margate, UK) and acclimated to standard animal
house conditions at the University of Liverpool for a min-
imum of 1 week. The mice were individually housed for
a total of 8 weeks, when one ten-pellet faecal sample was
taken from a clean cage. Mice were then sacrificed under
Schedule 1 Animals Act 1986. Mice were used in accor-
dance with local ethics approved from the University of
Liverpool. Each (n = 10; Female = 5; Male = 5) ten-
pellet sample was then analysed by GC-MS using the
same configuration described in Standard mixtures. The
mice samples were analysed using AMDIS and MetaBox,
using a mass spectral library built using AMDIS and NIST
database (Version 2.0) (Additional file 1: Table S3). In
order to remove potential false positives, we only anal-
ysed those metabolites present in at least 2 samples per
experimental condition (i.e. Female and Male).
It is difficult to generate a reference or control when

analysingmice samples, as the identity and concentrations
of metabolites in these samples are unknown. Therefore,
we applied an approach used for biomarker discovery
[16]. We used XCMS Online to generate a reference

dataset containing the list of IMFs present at significantly
different levels between female and male samples (Welch
t-test; p-value < 0.05), including the RT where the peak
of each IMF is detected. Then, we used our spectral
library (Additional file 1: Table S3), which contains the
expected RT and the IMFs of each metabolite, to identify
the IMFs reported by XCMSOnline.We then conducted a
Welch’s t-test on the AMDIS and MetaBox datasets com-
paring males and females for each listed metabolite and
compared these algorithms’ performances against the t-
test results from XCMS Online. For clarity, compounds
found at significantly different levels between female and
male mice samples will be called as biomarkers. (NB. All
chromatograms were left untreated and no data normali-
sations were applied to metabolite abundances.)
The CAS numbers of all metabolites used in this study

are available in Table S7 of the Additional file 1.

Results and discussion
Standard mixtures
For clarity, aliquots of 50 μL of standard mixture + 50 μL
of water will be described simply as 50 μL samples, while
aliquots of 100 μL will be described as 100 μL samples.

Metabolite identification
To enable the comparison of AMDIS’s and MetaBox’s
efficacies in metabolite identification, we calculated the
percentages of false positives and false negatives reported
by each algorithm when analysing 10 samples of a stan-
dard mixture of metabolites (i.e. 5 samples of 50 μL and
5 of 100 μL), using match factors of f = 70, 80 and 90
for AMDIS; and match factor of f = 70 and score cut
of 13 for MetaBox. Every compound reported by AMDIS
was considered in the analysis, including multiple identi-
fications for a single RT. For f = 70, AMDIS reported an
average ± SE (n = 10) of 32.8% ± 1.8% of false positives
and an average of 6.9% ± 0.8% of false negatives. f = 80
and 90 resulted in 30.3% ± 1.9% and 27.8% ± 1.0% of false
positives, respectively, and 6.2% ± 1.0% and 4.6% ± 1.3%
of false negatives, respectively (Figure 2). MetaBox per-
formed overwhelming better than AMDIS, reporting no
false positives and no false negatives.
Although, AMDIS performed reasonably well in terms

of low percentages of false negatives, it was a poor per-
former with respect to its high reporting of false positives.
It may be that AMDIS is actually performing as expected
given the primary motivation for its development, single-
sample analyses of complex chemical mixtures to iden-
tify any signs of potential target compounds or chemical
weapons [7]. In this context a low false negative rate is cru-
cial and AMDIS’s performance meets this requirement.
However, the primary motivation for most metabolomics
experiments, is the identification and quantification of
the highest possible number of metabolites present in
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Figure 2 Average percentages of false positives and false negatives. A standard mixture containing 13 metabolites was divided in 10 aliquots
and analysed by GC-MS. Each sample was then processed by MetaBox and AMDIS using match factors of 70, 80 and 90. Shown are the average
percentages, plus error bars representing two times the standard error, of false positives and false negatives produced by each tool. False positives
are compounds that are misidentified, while false negatives are unidentified compounds that are present in the standard mixtures.

biological samples for the comparisons of their abun-
dances, or relative abundances, across experimental con-
ditions. It is non-targeted analysis generally limited only
by the metabolites represented in the spectral library.
The biological interpretation is then achieved based on
the metabolite profile generated by each sample. In this
case, the percentages of both false negatives and false
positives are crucial for biologically meaningful interpre-
tations of the data. A high percentage of false negatives
represents potential losses of biological evidence, while a
high percentage of false positives may provide misleading
evidences. Therefore, results generated by AMDIS should
be manually curated and critically assessed in order to
achieve sound biological interpretations.

Metabolite quantification
Average-linkage hierarchical cluster analysis (HCA)
(Figure 3A) and principal component analysis (PCA)
(Figure 3B) were performed on themetabolite abundances
reported by AMDIS and MetaBox (Additional file 1:
Table S4). The HCA yielded two main nodes, or clusters:

one containing the 50 μL samples and the other the 100
μL samples. Within samples, the MetaBox and reference
datasets always clustered together under the same node
in the first agglomeration round and this node excluded
the corresponding AMDIS dataset. This is indicative of
MetaBox-generated abundances being closer in value
to those in the reference datasets than the AMDIS-
generated ones. The PCA yielded results consistent with
those from the HCA, i.e. the 50 μL samples clustered
together around negative values of the first principal
component (PC 1) while the 100 μL samples clustered
around positive values of PC 1. The 50 μL samples varied
little in the direction of the second principal component
(PC 2), indicating that AMDIS and MetaBox yielded
datasets that were similar to one another and to the refer-
ence datasets. Samples corresponding to MetaBox-based
datasets were always adjacent to the matching reference
dataset, showing once again the high degree of agreement
between the MetaBox and reference datasets. The 100 μL
samples showed separation of datasets in the direction
of PC 2. The reference and MetaBox datasets derived
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Figure 3 Hierarchical cluster analysis (HCA) and principal component analysis (PCA). (A) Dendrogram from HCA (euclidean distance; average
linkage) and (B) scatterplot of first two principal components from PCA on data resulting from the application of AMDIS and MetaBox to the raw
data from 10 GC-MS-analysed standard mixture samples (5 × 50 μL+50 μL water and 5 × 100 μL aliquots). Reference datasets (Control) were
obtained using the R package XCMS. Samples are labeled using a combination of sample number (e.g. S1 = sample 1) and the algorithm applied
(MB = MetaBox, Ref = reference, f# = AMDIS using match factor #=70, 80 or 90).

from the same sample consistently yielded approximately
equal values for PC 2, once again showing a high degree
of similarity between the two sets of data. AMDIS, on the
other hand, yielded datasets with PC 2 values less than or
equal to zero, demonstrating that only when a high match
factor is used will AMDIS yield datasets containing abun-
dances approaching values close to those in the reference
datasets.
Part of the dissimilarity between the AMDIS and the

reference datasets may be a result of background noise

subtraction performed by AMDIS and/or the use of differ-
ent IMFs when deconvoluting and quantifying the same
metabolite across samples. The potential use of different
IMFs for metabolite quantification by AMDIS is another
indication of its development without a view to compar-
ing the same metabolite across different samples, and yet
this is a fundamental concern of metabolomics studies.
Further evidence lies in the format it uses for reporting
results. AMDIS can generate two types of reports: indi-
vidual reports or a single report (batch report) for several
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samples by simply appending results sample-by-sample
without actually matching metabolites identified in the
different samples. Furthermore, AMDIS reports multi-
ple potential identities associated to a single RT. Conse-
quently, when applied to metabolomics studies, AMDIS’s
results must be manually cleaned (i.e. the correct hit for
each RT must be manually selected), the ion mass frag-
ment used to quantify each metabolite must be manually
verified and the results produced for different GC-MS files
must be combined in a single table or spreadsheet, and
this can be enormously time-consuming depending on
the number of samples being processed. MetaBox, how-
ever, was developed specially formetabolomics studies. Its
results are reported in a single spreadsheet containing the
identified metabolites and their respective abundances in
every analysed sample, and in the format most commonly
required for downstream data normalisation and analysis.

Mice samples
To compare the efficacies of AMDIS andMetaBox in iden-
tifying potential biomarkers, we evaluated the datasets
generated by each against the XCMS Online reference
dataset. XCMS Online reported a total of 387 IMFs (fea-
tures), fromwhich 73 showed significantly different inten-
sities (Welch t-test; p-value <0.05) between female and
male mice faecal samples (Additional file 1). Based on
the IMFs and RTs in the spectral library used by AMDIS
and MetaBox (Additional file 1: Table S3), we identified
19 compounds associated to the total list (387) of IMFs
reported by XCMS Online. Eleven compounds were asso-
ciated to 47 of the 73 IMFs reported by XCMS Online at
significantly different intensities between female and male
samples (Additional file 1: Table S5). However, only 4 of
these compounds (Table 2) showed IMFs that were both
present at significantly different levels according to XCMS
Online results and used by AMDIS and MetaBox for
metabolite quantification. Therefore, only these 4 com-
pounds were expected to be found as potential biomark-
ers by AMDIS and MetaBox. AMDIS and MetaBox
were able to identify all 19 compounds associated to
the XCMS Online results (Additional file 1: Table S6).

Table 2 List of compounds identified from XCMSOnline
results as differentially abundant (based onWelch t-test)
between GC-MS-analysed female (n= 5) andmale (n= 5)
mice faecal samples

Compound MetaBox AMDIS70 AMDIS80 AMDIS90

Benzene* 0.186 0.123 0.123 0.123

Hexanal 0.003 0.203 0.203 0.366

Pentanal 0.012 0.146 0.189 NA

Propanoic acid 0.077 0.038 0.038 0.038

* Benzene denotes 1,3-bis(1,1-dimethylethyl)benzene. AMDIS analyses were
performed using match factors of 70, 80 and 90. P-values < 0.05 in italics
indicate differentially abundant metabolites.

For all match factors tested, AMDIS identified 3 potential
biomarkers, being only one confirmed by XCMS Online
(Additional file 1: Table S5). MetaBox identified 4 poten-
tial biomarkers, being two confirmed by XCMS Online
(Additional file 1: Table S5). In summary, AMDIS was able
to report 1 out of 4 potential biomarkers, while MetaBox
reported 2 out of 4. Although MetaBox missed the iden-
tification of 2 potential biomarkers, its results represent
100% improvement in relation to AMDIS’.

Conclusions
Identification and quantification of metabolites is among
the most critical and time-consuming steps in GC-MS
metabolome analysis. The reliability of the biological
inferences that can be drawn from metabolomics studies
is directly related to the quality of the data upon which
they are based. In addition, as the size and number of
metabolomics studies conducted by individual laborato-
ries has grown, the time available to analyse each single
dataset has reduced. Therefore, to satisfy the criteria of
metabolomics studies ideally software must reliably iden-
tify and quantify metabolites, and the results must be
reported in a format that facilitates further data analysis.
Although AMDIS has been widely used in metabolomics,
results show that its performance no longer meets the
requirements of modern high-throughput analysis of
metabolomics experiments.
We presented here a new algorithm, PScore, which uses

a spectral library to analyse GC-MS samples and score
retention times according to their probability of repre-
senting a metabolite. We implemented PScore in an R
package, MetaBox, and compared its performance against
AMDIS when analysing standard mixtures of metabolites
and mice faecal samples. PScore greatly reduces the per-
centage of false positives and false negatives, and it consid-
erably improves the quantification ofmetabolites analysed
by GC-MS. In addition, our new R package MetaBox
incorporates functions to generate graphical outputs and
reports results in a format accepted by other software,
such as Metab and MetaboAnalyst, allowing users to per-
form further data processing and statistical analyses in a
high-throughput way. As an R package, MetaBox allows
users to construct flexible pipelines for data analysis and
allows pop-up dialog boxes, which facilitate its usage by R
beginners.

Availability and requirements
Project name:MetaBox
Project home page: http://raphaelaggio.github.io/
Operating system: Platform independent
Programing language: R [17] version 3.0.0 or higher
Other requirements: R packages xcms [16], svDialogs
[18], pander [19] and MassSpecWavelet [20]
License: General Public License version 3

http://raphaelaggio.github.io/
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