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Abstract

Background: Next generation sequencing produces base calls with low quality scores that can affect the accuracy
of identifying simple nucleotide variation calls, including single nucleotide polymorphisms and small insertions and
deletions. Here we compare the effectiveness of two data preprocessing methods, masking and trimming, and the
accuracy of simple nucleotide variation calls on whole-genome sequence data from Caenorhabditis elegans. Masking
substitutes low quality base calls with ‘N's (undetermined bases), whereas trimming removes low quality bases that

results in a shorter read lengths.

masking and trimming.

Sequence Read Archive (SRX450968 and SRX451773).

Keywords: NGS, Preprocessing, Masking, Trimming

Results: We demonstrate that masking is more effective than trimming in reducing the false-positive rate in
single nucleotide polymorphism (SNP) calling. However, both of the preprocessing methods did not affect the
false-negative rate in SNP calling with statistical significance compared to the data analysis without preprocessing.
False-positive rate and false-negative rate for small insertions and deletions did not show differences between

Conclusions: We recommend masking over trimming as a more effective preprocessing method for next
generation sequencing data analysis since masking reduces the false-positive rate in SNP calling without sacrificing
the false-negative rate although trimming is more commonly used currently in the field. The perl script for masking
is available at http://code.google.com/p/subn/. The sequencing data used in the study were deposited in the

Background

Research and clinical applications of next generation se-
quencing (NGS) have been widely accepted as useful
and sensitive approaches for detecting genetic variants.
Accurate base calling is key to this discovery tool be-
cause both false-negative and false-positive calls may
complicate the interpretation of the data with respect to
causative mutations. However, the raw data obtained
from NGS is known to contain some low quality base
calls for which no consensus has been reached about
their proper interpretation. Bioinformatic quality con-
trol methods have been introduced into NGS analysis
pipeline to increase the accuracy of simple nucleotide
variation (SNV) calls that include single nucleotide poly-
morphism (SNP) and insertion and deletion (indel).
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Trimming is a commonly used bioinformatic quality
control method for base calls with low quality. It deletes
base calls in a NGS read such that there remains a con-
tiguous string of bases with quality scores above a user
defined cutoff threshold or until the average quality of
the remaining reads falls below the threshold value. The
software programs available for trimming include Btrim
[1], ConDeTri [2], FASTQ quality trimmer in Galaxy [3],
SeqTrim [4], and SolexaQA [5]. In contrast, masking
substitutes low quality base calls with an ‘N; an undeter-
mined base though it is not widely used compared to
trimming. Software programs available for masking in-
clude FASTQ Masker in Galaxy [3], and FASTX Toolkit
[6]. Recently, Liu et al. showed that trimming introduced
lots of false-positives and they noted that it is necessary
to have more efficient bioinformatics algorithm for NGS
data preprocessing [7]. Here we evaluated the effective-
ness of trimming and masking by performing DNA
whole-genome sequencing in Caenorhabditis elegans
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Figure 1 A schematic diagram for data analysis pipeline.
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(C. elegans). The analysis showed that masking reduced
the false-positive rate without increasing the false-
negative rate with statistical significance. However, trim-
ming was not as effective as masking in reducing the
false-positive rate.

Methods

Experimental design

To evaluate the false-positive rate, we performed DNA-
seq on a C. elegans strain that was mutagenized by ethyl
methanesulfonate (EMS) and then verified the DNA-seq
prediction by Sanger sequencing. To evaluate the false-
negative rate, we sequenced a Hawaiian C. elegans strain
and verified our SNP predictions by comparing them to
the publicly available Hawaiian SNP data from Worm-
base (WS220) [8]. This allowed us to compare the per-
formance of trimming vs. masking to set a standard for
quality control in next generation sequencing data
analysis.

Sequencing

We performed 76 cycle single-end sequencing on the
C. elegans samples using Illumina’s HiSeq 2000. We
obtained 27,528,260 reads and 49,699,895 reads for the
EMS mutagenized and the Hawaiian strain, respectively,
after the default filtering. These corresponded to ~22
fold and ~39 fold genome coverage, respectively. A sche-
matic diagram for data analysis pipeline is shown in
Figure 1.

Preprocessing and alignments

Raw reads were trimmed or masked using SolexaQA [5]
and SubN [9] for each. SubN was developed in house,
available for public, simple and small (less than 200

lines), and easy to use if PERL is pre-installed. Raw,
trimmed, or masked FASTQ files were aligned to the
C. elegans genome, version WS220, using BWA (version
0.6.2-r126) [10] or BOWTIE2 (version 2.1.0) [11] with
default parameters as indicated in the publications cited.
We used two aligners to address the dependence of SNV
calling on a particular choice of an aligner.

Variant calling

SNV calling was performed with the haplotype caller in
GATK (version2.7-2) package [12,13] and ANNOVAR
(version 2011-11-20) [14] was used to annotate missense
SNPs. We focused on missense SNPs in evaluating the
accuracy of SNP calling because they may have imme-
diate biomedical applicability. For the EMS mutagenized
strain, we found 172 ~ 221 homozygous missense SNPs,
depending on the aligner and the quality control method
used. Then, we checked the SNP and indel predictions
to Sanger sequencing result; we performed Sanger se-
quencing on 145 SNV candidates in exonic region, and
obtained 37 positive SNPs, 86 negative SNPs, and 22
Sanger verified indels. Variant calling has a strong de-
pendence on program parameter settings as well as the
interfacing tools in the entire analysis pipeline, as re-
cently reported by both O’Rawe et al. and Yu et al
[15,16]. Surveying the influence of all possible combina-
tions of parameter values was beyond the scope of the
current study and instead we used the recommended de-
fault parameter settings, unless otherwise specified.

Details on parameters and statistical methods

For the cutoff quality score of trimming or masking, we
chose the 1% probability of error, which corresponded to
a PHRED score of 20. We used the default value of 25

Table 1 The number of reads and percentage attained after quality control and/or alignment

Aligners No quality control Trimming Masking
27,528,260 25,570,162 (92.9%) 27,528,260 (100%)

BWA 25,843,686 (93.9%) 25,113,197 (91.2%) 22,617,992 (82.2%)

BOWTIE2 26,784,763 (97.3%) 25,286,787 (91.9%) 24,415,121 (88.7%)

The percentage is calculated to the number reads with no quality control.
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Figure 2 A typical example of alignments with trimming or masking in respect to no quality control in a region where read quality
scores are poor. The top, the second, and the third line in an alignment picture shows base pair position, the reference genome sequence, and
the consensus sequence, for each. A base call that matches the reference sequence is denoted as a dot for the forward strand or as a comma for
the reverse strand. The colors in a read denote the base call quality. White is for a base with its error rate smaller than 0.1%, yellow for 0.1 ~ 1%
error rate, green for 1~ 10% error rate, and blue for 10% or greater error rate. Since we used 1% cutoff, all the green and the blue were either
trimmed off or masked as ‘N’ or ‘'n’. The graphics were made using tview in Samtools (version 0.1.18) [19]. BOWTIE2 was used to align reads.
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bases as the minimum length of reads to be kept for
trimming. The false-positive rate was calculated as the
number of false-positives divided by the total number of
validated negatives, i.e. sum of false-positives and true-
negatives. To decide whether these differences are statis-
tically significant for the false-positives, we used Fisher’s
exact test using R-package (version 3.0.1) [17] based on
2 x 2 contingency table of false-positives and true-
negatives. We avoided using x> test for the false-
positives because some values were smaller than five.
The false-negative rate was calculated as the number of

false-negatives divided by the sum of false-negatives and
true-positives. Duplicate removal was performed with
MarkDuplicates tool in Picard tools, version 1.75 [18].

Results and discussion

Trimming and masking on alignments

The total number of reads was decreased with trimming
by 7.1% from 27,528,260 reads to 25,570,162 reads
(Table 1). It is because of the dynamic trimming algo-
rithm; first, it identified the longest contiguous stretch of
bases whose error rate is smaller than 1% for all the

Table 2 Number of true-positives, false-positives, true-negatives, and false-negatives in SNP verification by Sanger

sequencing for no quality control vs. trimming vs. masking

Aligners No quality control Trimming Masking

TP FP TN FN TP FP N FN TP FP TN FN
BWA 35 2 (2.3%) 84 2 35 2 (2.3%) 84 2 35 0 (0%) 86 2
BOWTIE2 35 6 (7.0%) 80 2 35 2 (2.3%) 84 2 35 0 (0%) 86 2

TP: True-Positive, FP: False-Positive, TN: True-Negative, FN: False-Negative. The value with parenthesis in the FP cell denotes the false-positive rate in percent.
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Figure 3 An example of alignments near a false-positive SNP position with no quality control or with trimming. (a) no quality control —
BWA, (b) trimming — BWA, (c) masking — BWA, (d) no quality control — BOWTIE2, (e) trimming — BOWTIE2, and (f) masking - BOWTIE2. The top,
the second, and the third line in an alignment picture show a base pair position, the reference genome sequence, and the consensus sequence,
for each. A base call that matches the reference sequence is denoted as a dot for the forward strand or as a comma for the reverse strand.

The colors in a read denote the base call quality. White is for a base with its error rate smaller than 0.1%, yellow for 0.1 ~ 1% error rate, green for
1 ~10% error rate, and blue for 10% or greater error rate. Since we used 1% cutoff, all the green and the blue were either trimmed off or masked
as ‘N" or 'n". The graphics were made using tview in Samtools (version 0.1.18) [19]. BOWTIE2 was used to align reads. GATK haplotype SNP caller

made false-positive homozygous SNP calling in (a), (b), (d), and (e), not in (c) and (f).

bases. If the number of bases in the stretch was smaller
than 25, the read was discarded to avoid the mapping
error. However, masking did not change the total num-
ber of reads as expected. BWA and BOWTIE2 aligned
93.9% and 97.3% of reads, for each, compared to the
total number of raw reads. Trimming resulted in slightly
smaller number of reads aligned, 91.2% for BWA and
91.9% for BOWTIE2. However, masking resulted in
much smaller number of reads aligned, 82.2% for BWA
and 88.7% for BOWTIE2. Aligning more reads that con-
tain low quality base calls is not necessarily desirable
because mis-alignments or errors in base calls could re-
sult in errors in SNP calling. Figure 2 shows a typical
example of alignments on how trimming or masking af-
fects alignment of reads in a region where quality scores
are low. A base in a blue or a green color denotes its
error rate is higher than 1%. These low quality bases
were trimmed off with trimming or masked as ‘n” with
masking.

False-positive rate

Masking reduced the false-positive rate in SNP calling
compared to no quality control for both BWA and
BOWTIE2 (Table 2). The false-positive rate dropped
from 2.3% to 0% for BWA, and from 7.0% to 0% for
BOWTIE2. The p-values for the null-hypothesis were
0.25 and 0.014 for BWA and for BOWTIE2, for each.
Therefore, we concluded that masking reduced the false-
positive rate with statistical significance for BOWTIE2.
Though false-positives rate was decreased for BWA from
2.3% to 0%, it was not statistically significant enough
with our 86 Sanger negative SNPs because the number
of false-positives with BWA was already too small with
no quality control. However, trimming did not decrease
the false-positive rate for BWA. Even for BOWTIE2, the
decrease in the false-positive rate with trimming was not
statistically significant (p-value 0.14). Hence, we con-
clude that masking is more effective than trimming
in reducing the false-positive rate. Figure 3 shows an

Table 3 The number of true-positives and false-negatives in indel verification by Sanger sequencing for no quality

control vs. trimming vs. masking

Aligners No quality control Trimming Masking

True- positive False- negative True- positive False- negative True- positive False- negative
BWA 20 2 20 2 20 2
BOWTIE2 20 2 20 2 20 2
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on coloring.

Figure 4 Alignments for the first false-negative SNP at chromosome 11:6,736,494. (a) no quality control — BWA, (b) trimming — BWA,
(c) masking — BWA, (d) no quality control - BOWTIE2, (e) trimming — BOWTIE2, and (f) masking — BOWTIE2. See the Figure 3 legend for details

(f)

example of a false-positive SNP calling at chromosome
X: 6,846,313 with no quality control and trimming, but a
true-negative SNP calling with masking; no quality con-
trol and trimming falsely predicted it as a homozygous
SNP whereas masking correctly predicted in both BWA
and BOWTIE2; Sanger sequencing confirmed a refe-
rence base.

False-negative rate

Masking and trimming did not improve for the false-
negative cases in our SNP (Table 2) and indel cases
(Table 3) with the EMS induced mutant strains. There
were two false-negative SNPs and two false-negative

indels regardless of preprocessing methods and aligners.
The two false-negative SNP cases were due to too
few reads aligned in the region (Figures 4 and 5) and re-
moving bases of low qualities further did not help in re-
ducing the false-negative rate in SNP calling.

Therefore, to evaluate how trimming and masking
affect on the false-negative rate that has enough cases
of false-negatives, we sequenced a Hawaiian strain of
C. elegans and compared our SNPs to Hawaiian SNPs
from Wormbase (WS220). This Hawaiian strain has over
112 k SNPs compared to commonly used a Bristol wild-
type strain (N2). We could identify 104,297 to 105,355
Hawaiian SNPs from the total of 112,061 Hawaiian

(d)

(f)

Figure 5 Alignments for the second false-negative SNP at chromosome X:484,613. (a) no quality control — BWA, (b) trimming — BWA,
(c) masking — BWA, (d) no quality control - BOWTIE2, (e) trimming — BOWTIE2, and (f) masking — BOWTIE2. See the Figure 3 legend for details
on coloring.
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Table 4 The number of Hawaiian SNPs and the
false-negative rate

Aligners No quality control Trimming Masking
BWA 104,858 (6.4%) 105,355 (6.0%) 104,775 (6.5%)
BOWTIE2 104,422 (6.8%) 104,470 (6.8%) 104,297 (6.9%)

SNPs, which were considered as true-positives (Table 4).
By setting the difference between the total number of
Hawaiian SNPs and the true-positives as false-negatives,
we determined the false-negative rates, which were from
6.0% to 6.9%. To determine the statistical significance
with respect to preprocessing methods, we performed x>
tests for both BWA and BOWTIE2. The p-values were

Page 6 of 8

0.39 and 0.15, for BWA and BOWTIE2 respectively,
which suggests that the differences between preproces-
sing methods were not statistically significant for these
two methods in the false-negative rates.

Indels and other considerations

For a Sanger verified deletion of ‘C’ at chromosome
X:1,615,135, BWA and BOWTIE2 aligned the reads, but
GATK haplotype caller did not call it as a deletion
(Figure 6). For the other Sanger verified insertion, a 21
base insertion of “GATCTCCAATTACAATCAAAA” at
chromosome 1:6,066,249, it was not called because BWA
and BOWTIE2 could not align the reads here (Figure 7).
Removal of duplicates did not affect the results for

(d)

on coloring. Sanger sequencing identified the deletion of ‘C’.

Figure 6 Alignments for the first false-negative Indel at chromosome X:1,615,135. (a) no quality control — BWA, (b) trimming — BWA,
(c) masking — BWA, (d) no quality control - BOWTIE2, (e) trimming — BOWTIE2, and (f) masking — BOWTIE2. See the Figure 3 legend for details

(f)
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on coloring.

(e) (f)

Figure 7 Alignments for the second false-negative Indel at chromosome 1:6,066,249. (a) no quality control — BWA, (b) trimming — BWA,
(c) masking = BWA, (d) no quality control — BOWTIE2, (e) trimming — BOWTIE2, and (f) masking — BOWTIE2. See the Figure 3 legend for details

trimming and masking for our Sanger verified SNPs.
However, the number of false-positives decreased from 2
to 1 for BWA and from 6 to 3 for BOWTIE2 with no
quality control.

To determine if the reduced false positive rate observed
with preprocessing using masking or trimming was
dependent on the alignment tool, we repeated the analysis
using the local alignment mode within BOWTIE2 (option
“~local”). The false positive rates did not change for either
trimming or masking using the local compared to global
alignment modes (Table 5). We did note that in the
absence of preprocessing (no quality control), the false
positive rate with the local alignment decreased slightly
compared to the global alignment, from 7.0% to 5.8%,
consistent with more accurate alignment. The reason for
only a slight decrease in the false positive rate is because
base call errors due to low quality scores prevent align-
ment even when using the more accurate local alignment
mode. Preprocessing steps that remove these errant, low
quality base calls improve the false positive rates. Trim-
ming may eliminate one or more high quality base calls in
the process and the reduced size of the total read length
may increase the chance of misalignment. In contrast,
masking saves all the high quality base calls in a read,
making it more effective than trimming in reducing the
false positive rate.

Table 5 The false positive rates with global alignment vs.
local alignment

No quality control Trimming Masking
Global alignment 7.0% 2.3% 0%
Local alignment 5.8% 2.3% 0%

Conclusions

The reason why masking performs better than trimming
and no quality control in reducing the false-positive rate
is apparent because masking maximizes the information
content of a raw read while removing the base calls with
low qualities. However, masking did not improve for the
false-negative calls due to a low coverage. Therefore, we
recommend masking as a preprocessing method to re-
move low quality base calls in NGS since it reduces the
false-positive rate without sacrificing the false-negative
rate. Masking could be used effectively in reducing the
false-positive rate also for the identification of somatic
mutations in cancer screening by RNA-seq. The perl
script for masking is available at http://code.google.com/
p/subn/.
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