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Abstract

Background: Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain
for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide
markers and statistical complexity, however, is a serious challenge in data management, analysis, and sharing. A
bioinformatics infrastructure for data storage and access, and user-friendly web-based tool for analysis and sharing
output is needed to make GS more practical for breeders.

Results: We have developed a web-based tool, called solGS, for predicting genomic estimated breeding values
(GEBVs) of individuals, using a Ridge-Regression Best Linear Unbiased Predictor (RR-BLUP) model. It has an intuitive
web-interface for selecting a training population for modeling and estimating genomic estimated breeding values of
selection candidates. It estimates phenotypic correlation and heritability of traits and selection indices of individuals. Raw
data is stored in a generic database schema, Chado Natural Diversity, co-developed by multiple database groups. Analysis
output is graphically visualized and can be interactively explored online or downloaded in text format. An instance of its

implementation can be accessed at the NEXTGEN Cassava breeding database, http://cassavabase.org/solgs.

Conclusions: solGS enables breeders to store raw data and estimate GEBVs of individuals online, in an intuitive and
interactive workflow. It can be adapted to any breeding program.
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Background

Genomic selection (GS) is a new breeding paradigm that
promises higher accuracy in estimating breeding values
and a higher rate of gain from selection per unit time
for complex quantitative traits compared to phenotypic
selection or traditional marker assisted selection (MAS)
[1-3]. GS was conceived with the advent of high-
throughput technologies for whole genome sequencing,
genotyping and identifying genetic variation in individ-
uals [1,4]. Plant and animal breeders are finding GS
appealing due to the progressive decline in genotyping
cost and easier access to genome-wide markers such as
single nucleotide polymorphism (SNP) markers, which
can be genotyped using SNP array or genotyping-by-
sequencing (GBS; [5]) technologies. However, the huge
amount of data on which GS relies is challenging in its
management, analysis and accessibility. The computa-
tional infrastructure and bioinformatics expertise GS
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requires are beyond the reach of a typical breeding pro-
gram. A data management system and user-friendly
web-based tool for GS analysis would add efficiency to
the breeding decision-making process and make GS
more accessible for breeders.

Genomic selection is a type of MAS. Individuals are
genotyped with dense, genome-wide markers, such as
SNPs, and phenotyped for traits of interest. This set of
individuals, also called a training population, is used to
create a genomic prediction model. A model estimates
the sum of the additive genetic effects of the genome-wide
alleles on the trait of individuals, referred to as, genomeic
estimated breeding values (GEBVs). In selection cycles,
individuals are genotyped, with the same set of markers
as the training set, and the prediction model is used to
predict their GEBVs for the trait of interest. Superior
performers are selected based on their GEBVs and
advanced to the next cycle of selection. Thus, skipping the
phenotyping step of the same traits evaluated in the train-
ing set during selection cycles [1,6], which saves time.

An important step in the GS model fitting is the valid-
ation of its accuracy, which should be done before
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selecting candidates based on GEBVs. The most common
approach is to estimate the correlation between GEBVs
and observed phenotypes of individuals in the validation
set [7]. A validation set can comprise of 10 - 30% of ran-
dom individuals from the training set [7-9]. The GEBVs of
the validation set are estimated using a model created
based on the rest of the training set. 10 or more fold
cross-validation tests are done; each time the validation
set contains different individuals.

Genomic selection is being applied in animal and plant
breeding programs. As early as 2001, animal breeders
were experimenting, initially using simulation, with GS
on dairy cattle traits [1,10,11]. Currently, it is also being
tested or applied in plants such as maize [9], wheat [12],
sugar beet [13] and cassava [14]. Hayes et al. [10] have
extensively reviewed GS in animals. Nakaya and Isobe
[3] also have documented a long list of animal and plant
breeding programs where GS was used, including the
traits, marker and population details, statistical methods
used for the GS models and their accuracy.

GS is superior to MAS for complex traits, which is due
to large scale of genome-wide markers capturing QTLs
with medium and small effects [1]. GS experiments now
typically include hundreds of individuals genotyped for
thousands of markers. A maize GS experiment used 504
individuals genotyped for 158,281 SNP markers [9] and
another wheat experiment used lines genotyped for 34,749
SNP markers [12]. The NEXTGEN Cassava project is
genotyping hundreds of clones with up to 13,000 SNP
markers (http://cassavabase.org).

The data intensive nature of this approach poses a
computational challenge in terms of infrastructure for
data storage. It has a high demand for expertise in data
management, statistical analysis workflow, accessibility
of results and data sharing. Furthermore, the complexity
of GS statistical analysis is insufficiently understood by
breeders [3]. Flexible GS databases and user-friendly
web-based analytical tools would advance GS application
in breeding programs [3,6].

solGS is a web-based tool that aims to address the bio-
informatics and statistical challenge in GS. Its intuitive
and user-friendly web-interface allows breeders to create
prediction models and apply the model to predict
GEBVs of selection candidates. It displays data graphic-
ally and interactively on a browser and also has options
to download output into one’s computer. It uses an
organism-agnostic database schema to store phenotype
and genotype data, as well as experimental metadata [15].
The statistical modeling is based on the Ridge Regression
Best Linear Unbiased Predictor (rrBLUP) R package [8];
GBLUP (genomic relationship matrix) method is used to
estimate GEBVs.

solGS is, currently, used by the NEXTGEN Cassava
project (http://nextgencassava.org) and implemented at
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the Cassavabase website (http://cassavabase.org/solgs).
Here, we describe solGS using its implementation at the
website using cassava data.

Implementation

Software

solGS is developed using open source software and runs
on a Debian-based Linux server. For data storage, it uses
a generic, organism-agnostic, relational Chado database
schema, called Natural Diversity (ND) [15] on a Post-
greSQL system (http://www.postgresql.org/, V., 9.1). The
schema is ontology driven and is designed to store large-
scale genotype, phenotype, and experimental data. For
statistical analyses, it uses R [16] and specifically nlme
(V. 3.1; [17] for the phenotype data preprocessing and
rrBLUP (V.,, 3.8; [8]) for the statistical modeling. The appli-
cation is developed on Catalyst Model-View-Controller
(MVC) web framework [18] and is mostly in Perl. Mason
templates are used for display layout, whereas JavaScript,
including jQuery (http://jQuery.com), D3 (http://d3js.org)
and Flot Chart (http://flotcharts.org) libraries are used for
client-side user interactivity and graphical visualization of
data. The web tool is compatible on all major browsers
including FireFox, Safari, Chrome, and Internet Explorer.

Data curation

Phenotype, genotype and experimental data are described
with controlled vocabularies developed by curators in
consultation with breeders; a reference for cassava trait
ontology is at http://www.cropontology.org/ontology/
CO_334/Cassava. In the current implementation, a cur-
ator also loads both phenotype and genotype data into
the database, since the data may require preprocessing
such as quality control, data clean up, ontology annotation
in the case of phenotype data, and rigorous imputation in
the case of genotype data. Accepted encodings for geno-
types are [-1, 0, 1] and [0, 1, 2]. Considering the large size
and complexity of the phenotype and genotype datasets
and the need for experimental metadata, a fair amount of
correspondence between curators and data providers is
required. The loading scripts, as well as the rest of the
code, are publicly available.

Statistics

Prior to the prediction model fitting, phenotype data are
preprocessed as follows: for individuals evaluated in ran-
domized complete block design (RCBD), alpha lattice
and augmented incomplete block designs, genotype effects
are calculated using nlme R package’s Ime function [17].
Genotypes are fit in the model as fixed effects whereas
replications and/or blocks are fit as random effects. The
model is fit by restricted maximum likelihood (REML).
When trials have multiple phenotypic values per individ-
ual, for example when replications are completely
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randomized or no experimental design was stored in the
database for the dataset, or multiple trial datasets were
combined, an arithmetic mean for the individual is used.
Individuals with missing phenotype values are omitted.

Currently, when multiple trials are selected to combine
individuals and create a training population, first geno-
type effects or arithmetic phenotype mean, depending
on the trial design, are calculated for the individuals
within each trial. Then the genotype effects or arithmetic
means are averaged across trials to create a single
phenotype value for each individual.

By default, all missing marker values are imputed
using K-Nearest Neighbors (KNN) method, from the
Imputation R package (V., 1.3; http://cran.r-project.org/
src/contrib/Archive/imputation/). However, we have not
tested the effect of this method on the accuracy of a
model. It is recommended that missing marker values
are imputed prior to loading the marker data to the
database, as is now practiced on Cassavabase.

The genomic prediction modeling is univariate and
based on Ridge Regression Best Linear Unbiased Pre-
dictor (RR-BLUP) method [1], as implemented in the
rrBLUP package [8]. The mixed.solve function, a linear
mixed-model equation estimates marker effects and
GEBVs. GEBVs are derived from the realized (additive)
relationship matrix of individuals calculated from marker
genotypes. The kinship.BLUP function, GBLUP, which
uses mixed.solve, is called to predict GEBVs of selection
candidates. Given preprocessing of phenotypes, a simple
linear model for RR-BLUP applies:

y=utgte
2

g~ N(o, Kag)

e ~N(0, Io?)

Where is the vector of preprocessed phenotypes, 4 is
the population mean, g is the vector of genetic values,
and ¢ is the vector of residuals. K is the additive (realized)
relationship matrix calculated from marker genotypes.
0§ and ¢? are the additive genetic and error variances,

respectively. The vector of genetic values is the sum of
the additive genetic random effects and is assumed to
follow a normal distribution. From these parameters,
narrow-sense heritability K2 [19] is calculated using
2
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To estimate model accuracy, a 10-fold cross-validation
is performed. The training dataset is randomly divided
into 10 equal sets or folds. In ten separate analyses, each
fold is used as the validation set while the remaining
nine folds are used to train the model. A correlation
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analysis between the GEBVs and the observed phenotype
values of the validation sets is performed and the aver-
age correlation value of the 10 tests estimates the model
accuracy.

Usage

solGS is web-based and runs on a central server. After
loading the relevant datasets into the database, breeders
need only an Internet connection to access the tool,
which in this case is hosted at http://cassavabase.org/
solgs. An intuitive and user-friendly workflow guides
breeders to perform the GS modeling, validation, and
prediction of GEBVs. With essentially mouse-based input,
breeders proceed through the workflow, visualize and
download the results. Below, we demonstrate the analysis
workflow with three use cases: trait approach, trial
approach, and custom list approach (Additional file 1).

Use case 1: Trait approach

Creating a prediction model

This approach can be useful, for example, when breeders
are about to initiate a breeding program to improve cer-
tain traits for a target environment and want to identify
breeding material with superior breeding values for the
traits to use in parental selection. Assume also that they
have no prior knowledge of the trials or locations the
traits were evaluated.

In this scenario, breeders can search the database with
the names of the traits of interest, one trait at a time,
e.g. ‘dry matter content, from the tool’s homepage
(Additional file 1A). They will get a list of training pop-
ulations and trials containing individuals with genotype
data and that are phenotyped for the trait of their interest
(Additional file 2). In principle, all individuals in a trial
with phenotype and genotype data can be used to create
the prediction model for the trait. Therefore, they can
choose a trial or combination of trials, relevant to their
target environment, and include all individuals in fitting
the model. As a result, they will get the prediction model,
its accuracy value, heritability of the trait, the GEBVs of all
the individuals used in the model, additive genetic effects
of each marker, and a list of relevant selection populations
to which the model can be applied to predict their GEBVs
for the trait. The GEBVs, visualized in a scatter plot, can
be explored interactively by mousing over or zooming
into the plot and downloaded in text format. This is
demonstrated in Figure 1, which shows an example
analysis output from a prediction model for the trait
‘dry matter content’ evaluated in a cassava training
population called ‘NaCRRI Cassava Training Population’.
Additional diagnostic outputs include descriptive statistics
(not shown), scatter and frequency distribution plots of
the phenotype data used in the model (Figure 2A,B) and
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the browser using interactive graphs and be downloaded in text format.

Figure 1 Example of single prediction model output. A single trait model output includes model summary (A), a graphical representation

(collapsed). From the same model page, breeders can apply the model to predict GEBVs of selection populations (D, E). GEBVs can be viewed in

Predict GEBVs
DMC
[ Predict ]

of individuals in the training population (C), and marker effects

scatter plot of the GEBVs against the phenotype values as
deviations from the mean (Figure 3B).

Estimating GEBVs of selection candidates

Suppose the breeders are further in their breeding programs
and have selection candidates with genotype data only
which are stored in the database. They want to estimate the
breeding values of the selection candidates for the trait using
a prediction model and advance superior performers to the
next cycle of selection using the estimated breeding values.

The first step is to choose a training population and
generate a prediction model to use as described above in
use case 1.1. Once on the prediction model web page,
they will get a list of all relevant selection populations in
the database composed of individuals associated with the
training population. Only selection populations genotyped
by markers matching the ones used to genotype the train-
ing population will be shown (Figure 1D). Additionally,
if breeders have a custom list of selection candidates,
they will programmatically also appear on the prediction
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Figure 2 Graphical representation of phenotype data used in a model. Panel A shows an example interactive scatter plot of the phenotype
data used in the model, where as panel B displays the frequency distribution of the same phenotype data.
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model web page, when logged in to their user account
(Figure 1E). To predict the breeding values of all the selec-
tion candidates for the trait, they click the population
name or the ‘Predict’ link; a display of the trait name indi-
cates the analysis result is ready, which can be viewed by
following the link. The resulting GEBVs of the selection
candidates are visualized in a scatter plot and the data can
be viewed interactively by mousing over or zooming into
the plot. The whole GEBVs dataset is also downloadable
in text format.

Use case 2: Trial approach
Creating a prediction model
This approach is useful when breeders know their traits of
interest were phenotyped in one or more trials of a training
population. It can be used when they want to search for
trials or training populations relevant to their target envir-
onment. This approach is also useful when breeders want
to estimate GEBVs for multiple traits simultaneously.

For this approach, breeders can browse and select a
trial, a combination of trials, or existing training popula-
tions in the ‘Select a training population or create a new

one using one or more trials’ section on the homepage
of the tool (Additional file 1B). If they select multiple
trials, individuals from all trials and with common traits
phenotyped are combined. Next, a ‘training population’
webpage, with all traits phenotyped in the chosen trial
or common traits in the case of combined trials will be
shown (Additional file 3). From this webpage, they can
select the trait(s) for which to fit prediction model(s). If
they select a single trait, then they will obtain the same
model output and workflow to predict GEBVs of selec-
tion candidates as shown in use case 1 (Figure 1).

If breeders select multiple traits, e.g. traits ‘cassava
brown streak disease leaf incidence’, ‘dry matter content’,
and ‘fresh root weight’ from the ‘NaCRRI Cassava Training
Population’ (Additional file 3), a prediction model for
each trait will be created simultaneously. Each model’s
summary and utility features are presented on a new
web interface (Figure 4). On the webpage, a summary of
each model including prediction accuracy, trait heritability
and a link to the detail page of each model is displayed
(Figure 4A). Following the links of each trait model,
they will see in detail the respective model results and
workflow as described in use case 1 (Figure 1).
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Figure 4 Example of multiple prediction models output. Panel A shows a list of models simultaneously fitted for multiple traits from a single
training population (Additional file 2), with their correspoxnding accuracy and heritability of the traits. Detailed results of each model can be
viewed by clicking the trait names (Figure 1). In panels B and C are lists of selection populations that the models can simultaneously be applied
to estimate the GEBVs for the respective traits. Display of a trait name indicates the prediction for the trait is done. In panel D, the selection index

calculator is shown for individuals, from training and selection populations, with GEBVs.

Also on the multiple models page (Figure 4B,C),
breeders will see selection populations on which the
models can be applied to, section C is visible only when
logged in. This enables them to simultaneously apply
all the models on a selection population and estimate
GEBVs of the selection candidates for each trait, which
adds efficiency and flexibility to the GS process.

From the single trait model page, breeders can obtain
the GEBVs of a trait and use it for tandem selection.
However, they are most likely to select individuals based
on their performance on multiple traits as revealed by a
selection index. To facilitate this, when GEBVs are esti-
mated for multiple traits, they can use a selection index
calculator (Figure 4D) on the multiple models page. With
this tool, they can assign relative weights to each trait,
compute the selection index for each individual and
download the result.

When planning to improve traits, it is important to know
if there are correlations between the traits of importance.
This can help in understanding how selection of one trait
can influence the selection of another trait. Hence, pheno-
typic correlation coefficients (Figure 3A) are computed for

traits evaluated in a trial and graphically presented. By
mousing over coordinates in the correlation heatmap
breeders can learn the strength and magnitude of the rela-
tionship between any pair of traits.

Use case 3: Custom lists approach

In the above two cases, when building a GS model a
whole set of individuals from a trial or multiple trials is
used. There are scenarios, however, when breeders may
want to cherry-pick individuals evaluated in a trial or
multiple trials and create a prediction model based on
the custom list of select individuals. Alternatively, breeders
may want to apply a prediction model and estimate
GEBV5 for a custom list of selection candidates.

On Cassavabase, a ‘Lists’ tool (not shown) allows breeders
to compose custom lists of individuals, which can be used
for training and selection populations. The lists are stored
in the users account and persist between log-ins. The indi-
viduals for a training population can be selected on an
observation unit basis, e.g., their plot identifier, whereas for
the selection candidates the genotype name can be used.
To build a prediction model using a training population
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from a custom list as input, breeders can go to the
‘Select a list-based training population or create new’
section on the GS tool home page (Additional file 1C).
Once they select a custom training population, a list of
traits evaluated on the custom training set will be
shown. They can then individually or simultaneously fit
prediction model(s) for their selected trait(s). The rest
of the workflow for this approach is as described in use
case 2 for the trial approach.

Prediction of GEBVs for a custom list-based selection
population is the same as for trial based selection popu-
lations as described above in use case 1 and 2. To esti-
mate GEBVs of a custom list-based selection population,
they can go to a relevant model(s) output page, where
their custom selection population will be shown, and
apply the model(s).

Results and discussion

solGS makes GS data management, analysis, visualization
and sharing user-friendly and efficient for breeders, as
demonstrated using its implementation on the http://
cassavabase.org/solgs. The application depends on a
generic, flexible, data storage relational database schema
that can make the tool relevant in any breeding program
implementing the GS approach. Once relevant data is
in the database, data analysis, visualization and sharing
is a matter of point-and-click on an intuitively designed
workflow.

The tool provides three approaches to choose a train-
ing population for fitting a prediction model. (1) With a
trait in mind but little knowledge about what individuals
were genotyped and phenotyped for the trait or in what
trials they were phenotyped, breeders can search the
database using the trait name and use the individuals in
one or more relevant trials to build the prediction model
for the trait. (2) Alternatively, they can browse the list of
trials with phenotype and genotype data and select one
or more trials relevant to their target environment or
selection candidates. (3) Additionally, they can also com-
pose and use a custom list of individuals, known to have
phenotype and genotype data in the database. Approaches
2 and 3 are more efficient options in that breeders can
(i) see all traits evaluated in the chosen trial(s) and
study their correlation and thus decide efficiently on
what traits to focus, (ii) build models for multiple traits at
once, (iii) simultaneously apply multiple models on selec-
tion candidates to predict their GEBVs for the respective
traits, and (iv) use the built-in selection index calculator.

Breeders at later stages of selection cycles predict GEBVs
for their selection candidates by first deciding on what
training population to use for the prediction model fitting
as described above. Once the model(s) are generated, on
the model page they will automatically see the relevant se-
lection populations listed. A click on a selection population
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predicts and generates the GEBVs of the candidates using
the model(s).

The graphical representation of data in the browser
enables breeders to interactively explore the input and
output of a model. The analysis result is also download-
able in text format.

Several statistical models are used for genomic predic-
tion, including RR-BLUDP, BayesA, BayesB [1], and Bayesian
LASSO [20]. Lorenz et al. [21] have reviewed the dif-
ferences among the models including their effects on
prediction accuracy. Yi and Jannink [22] suggest a multi-
variate approach for genomic selection of multiple traits
to improve prediction accuracy on low heritability traits
genetically correlated to high heritability traits. Currently,
the solGS tool implements a univariate RR-BLUP method,
which is the most common method [9].

There are some public efforts to build bioinformatics
infrastructure for GS. A United States Department of
Agriculture (USDA) database stores only genotype data of
dairy cattle from a single SNP array for use in genomic
selection and animal tracking [23]. The Triticeae Coordi-
nated Agricultural Project (T-CAP), USDA, is developing
a web portal (http://triticeaetoolbox.org/) for accessing
and analyzing GS data for barley and wheat generated by
the project. An International Crops Research Institute for
Semi-Arid Tropics (ICRISAT) project is also developing
a desktop application called ISMU 2.0 for SNP and GS
analysis with methods including RR-BLUP, Bayesian and
Random Forest methods [24]. However, the application is
for local use only and depends on the user’s computer file
system for data storage. This limitation creates challenges
in a long-term storage, community access, analysis and
data sharing. Also often, project-centric web-portals that
use custom-designed database schemas are difficult to
adapt to new projects.

solGS relies on a generic, modular, flexible database
schema for all GS data storage that can be employed for
any organism. The schema is developed by a community
of curators from several public databases and is already
implemented by the Solanaceae Genomics Network [25],
Cassavabase (http://cassavabase.org), Genome Database for
Rosaceae (GDR; [26], Citrus Genome Database (www.
citrusgenomedb.org), Cool Season Food Legume Genome
Database [27], VectorBase [28] and KnowPulse (http://
knowpulse2.usask.ca/portal/). Therefore, the solGS web
application can be integrated easily into websites that use
the ND database schema as backend for their data storage.

The application can serve as a medium for community
data and knowledge exchange, similar to the functioning
of the SGN community annotation [29] and QTL analysis
and linking to genomes tools [30]. Depending on data
access privileges, solGS can facilitate web access and
exchange of data on breeding material among a commu-
nity of researchers. Sharing GS output can be done
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conveniently through exchanging model output page links
or data downloads.

In the near future, we plan to integrate more features
into the application to enhance the decision-making effi-
ciency and capability of GS breeders. We will calculate
superior progeny values of individuals based on expected
mean values of progenies, expand the univariate RR-BLUP
modeling into multivariate analysis, and run genetic
correlation analysis and principal component analysis of
individuals based on their genotypes. Depending on the
availability of R packages, we will add more modeling
options such as the Bayesian methods and supervised
classification algorithms. We will add algorithms to pre-
process phenotype data from experimental designs newly
added to the database. We will write a comprehensive user
manual and tutorials. To speed up the prediction process,
we will parallelize analyses.

Conclusions

solGS is a web-based tool for genomic selection. It has
an intuitive workflow for choosing a training population
on which to fit a prediction model and estimating GEBVs
of selection candidates. Model input and output is visual-
ized graphically and can be interactively explored or down-
loaded in text format. Its dependence on the generic,
flexible, Chado ND database schema, for its data storage
system, makes the tool adaptable to wide range of GS
breeding programs.

Availability and requirements

e Project name: solGS, Genomic selection tool.
Project home page: http://github.com/solgenomics;
http://cassavabase.org/solgs.

Operating system(s): Platform independent.
Programming language: R, Perl, Mason, JavaScript, D3
Other requirements: Internet connection, a browser.
Any restrictions to use by non-academics: None.

Additional files

Additional file 1: solGS homepage: web-interfaces for choosing a
training population to create a genomic prediction model. From the
tool's homepage breeders decide what individuals to use in their models
in three ways. The first method, shown in panel A, uses a trait name to
search the database for individuals phenotyped for that trait and select
the individuals from any number of trials (Additional file 2). A second way
(panel B) is to search for a training population or trials of interest and use
the set of individuals evaluated in a trial or combination of trials. A third
way (panel C) is to make a custom list of individuals using Cassavabase's
'List’ feature.

Additional file 2: Example of a list of trials in all of which a given
trait was phenotyped. When breeders search using a trait name for
phenotyped individuals to create a training population and use in a
prediction model, they get a list of relevant training populations or trials.
All Individuals from a trial or combination of trials can be used.
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Additional file 3: Example of training population detail page. From
a training population’s page, breeders can select any number of traits
and simultaneously fit models for them. They can also study the
phenotypic correlation among the traits (Figure 3A).
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