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Abstract

an open source license at http://bit.ly/1gimnss.

Background: Sequencing datasets consist of a finite number of reads which map to specific regions of a reference
genome. Most effort in modeling these datasets focuses on the detection of univariate differentially expressed genes.
However, for classification, we must consider multiple genes and their interactions.

Results: Thus, we introduce a hierarchical multivariate Poisson model (MP) and the associated optimal Bayesian
classifier (OBC) for classifying samples using sequencing data. Lacking closed-form solutions, we employ a Monte
Carlo Markov Chain (MCMC) approach to perform classification. We demonstrate superior or equivalent classification
performance compared to typical classifiers for two synthetic datasets and over a range of classification problem
difficulties. We also introduce the Bayesian minimum mean squared error (MMSE) conditional error estimator and
demonstrate its computation over the feature space. In addition, we demonstrate superior or leading class
performance over an RNA-Seq dataset containing two lung cancer tumor types from The Cancer Genome Atlas (TCGA).

Conclusions: Through model-based, optimal Bayesian classification, we demonstrate superior classification
performance for both synthetic and real RNA-Seq datasets. A tutorial video and Python source code is available under

Keywords: Classification, RNA-Seq, Model-based, Bayesian

Background

The possibility of genomic phenotype classification arose
with the inception of gene-expression microarrays. From
the outset, two fundamental problems have frustrated the
endeavor: (1) the inaccuracy of microarray measurements,
and (2) small samples. Our particular application of inter-
est is classification using RNA-Seq data. Modern RNA-
Seq technologies sequence small RNA fragments (mRNA)
to measure gene expression, where the number of reads
mapped to a gene on the reference genome defines the
count data. Given that RNA-Seq data has advantages over
microarray data, in particular, more accurate measure-
ment, we still confront the second fundamental problem,
which is statistical, not technological: small samples cause
re-sampling-based classifier error estimators to be very

*Correspondence: jknight@tamu.edu

1 Department of Electrical Engineering in Texas A&M University, 3128 TAMU,
77843 College Station, TX, USA

Full list of author information is available at the end of the article

( ) BiolVled Central

inaccurate due to excessive variance and lack of regres-
sion with the true error [1-4]. Since the error rate of a
classifier quantifies its predictive accuracy, it is the salient
epistemological attribute of any classifier. The inability to
satisfactorily estimate the error with model-free methods
with small samples implies that genomic classifier error
estimation is virtually impossible without the use of prior
information, so that the whole small-sample classifica-
tion problem becomes unapproachable in a model-free
framework [5].

The situation has been addressed by utilizing prior
knowledge via a Bayesian approach that considers a prior
distribution on an uncertainty class of feature-label dis-
tributions [6,7]. For expression-based classification, prior
distributions have been constructed using expression data
not employed in classifier design [8] and known regu-
latory pathways [9]. Given that a prior model must be
assumed to achieve satisfactory error estimation, an obvi-
ous course of action is to derive an optimal classifier based
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on the prior knowledge and the sample data, the result
being an optimal Bayesian classifier (OBC) that is guaran-
teed to have the best average performance of any classifier
relative to the posterior distribution derived from the
prior distribution and data [10,11]. While Bayesian clas-
sification does not depend on particular distributional
forms, closed-form solutions have been derived for the
multinomial model and Gaussian models using linear
classifiers for the minimum mean squared error (MMSE)
error estimate [6,7], the MSE of the error estimate [12,13],
and an optimal Bayesian classifier (OBC) relative to the
prior distribution [10,11], the latter being expressed in
terms of effective class conditional distributions, which are
expectations relative to the posterior distribution of the
class-conditional distributions. The closed-form solutions
depend on particular models (multinomial and Gaussian)
and the existence of conjugate priors, which can be too
constraining for practical applications such as RNA-Seq
classification.

Much of the statistical literature concerning classifi-
cation of RNA-Seq data attempts to address differential
expression testing, that is, univariate statistical testing on
an individual gene basis. These attempts typically model
RNA-Seq data via negative binomial [14,15] and Poisson
distributions [16]. In addition, network inference has
been attempted using a hierarchical Poisson log-normal
model [17], and clustering of RNA-Seq data points has
utilized various approaches [18,19]. However, in clinical
settings one is often interested in sample classification:
the problem of classifying the RNA-Seq data from unla-
beled patients using a set of labeled training data. One
of the few RNA-Seq-specific attempts towards this goal
uses a Poisson modeling assumption with independent
features [20]. The Poisson model is completely parameter-
ized by its mean and thus is known to exhibit problems in
fitting RNA-Seq data due to the overdispersion typically
observed in such datasets.

In this paper, we focus on modeling the pipeline that
starts with extracting the gene concentrations from the
biological samples and their subsequent processing by
the sequencing instrument [21]. This is accomplished
using a hierarchical, multivariate Poisson model (MP).
Specifically, gene concentration levels are modeled by
a log-normal distribution and the sequencing instru-
ment sampling of those is modeled via a Poisson pro-
cess. This allows us to accurately model the RNA-Seq
data overdispersion as demonstrated by marginal variance
calculations and posterior predictive model diagnostics
in Section ‘Overdispersion’. In addition, this hierarchi-
cal model allows for inferring any covariance structure
observed between the features.

Whereas Dalton and Dougherty have presented a
computational method for nonlinear classifiers in the
Gaussian model [8], this still depends upon conjugate
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priors. In this work, we remove the constraints imposed
by the requirement of a closed-form solution by devel-
oping the optimal Bayesian classifier using a Markov-
chain-Monte-Carlo (MCMC) methodology. This provides
a computational framework for calculating the OBC for
any parameterized class conditional-density and any prior
distribution. Most notably, this allows us to use distribu-
tions designed to closely model particular datasets and
a prior distribution of any form to improve classification
performance in small-sample settings, in particular, for
RNA-Seq-based classification.

Methods

Notation

Throughout, we use capital letters to indicate random
variables, lower case letters to indicate individual realiza-
tions of random variables or indices, bold latin characters
for observed vectors, and Greek letters for latent features
and parameters. We write p(X) as the probability measure
over the random variable X. p(X) may be a probability
mass function, probability density function, or arbitrary
probability measure. p(x|y) denotes the conditional prob-
ability p(X = x|Y = y). Similarly, following Bayesian
convention, we write parameterized distributions by con-
ditioning on the parameter, for instance, p(X|Y,0), and
posterior expectations by conditioning on the sample,
such as E [X]|Y,S,], where S, and all other values are
defined in Section ‘Review of optimal Bayesian classifi-
cation’. If it is unclear which density an expectation is
taken with respect to, then we denote it in subscript nota-
tion, such as Eyjs, [-] , where the expectation is taken with
respect to the density p (0]S,).

Review of optimal Bayesian classification

Binary classification considers a set of # labeled training
data points, S, = {(x,y)};l, where y € {0,1} is the class
label and x € & is the feature vector over a feature space
X. An example of binary classification in a clinical setting
might include class 0 and 1 being two types of cancers,
or normal and cancerous tissues. Available features would
then be the gene or genes that will eventually be used
in the designed classifier to assign this label. The feature
space X would be the set of possible gene expression mea-
surements for all genes in the feature vector. The labeled
training data S, would be the set of gene expression mea-
surements from samples which had undergone further
testing (possibly observation with the passage of time, cell
culturing, or more invasive followup procedures) to iden-
tify the type or malignancy of the tissue. Using S,, we
design a classifier ¢ that hopefully performs well on the
unknown joint feature-label distribution p(X,Y). In the
same clinical example, the classifier ¥ could then identify
the type of cancer using gene expression measurements
alone.
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By parameterizing this unknown joint distribution in
a model-based Bayesian framework one can derive an
optimal Bayesian classifier (OBC) that minimizes the
expected error over the space of all classifiers under
assumed forms of the class-conditional densities. Specif-
ically, under Gaussian and multinomial class-conditional
densities and their corresponding conjugate prior distri-
butions, closed-form solutions for the OBC [10,11] and
the first two moments of the error estimate conditioned
on the sample [12,13] have been obtained.

The parameterization of the feature-label distribution
consists of the marginal class probability ¢ and the class-
conditional densities p (xly, Gy), where a particular value
8y € ©, specifies a single class-conditional density con-
tained in the class of densities defined over the space
0y, which will be a Cartesian product as described in
Section ‘The multivariate poisson model’. Therefore, for
a two-class problem, we specify a parameterized joint
feature-label distribution as 8 = (¢, 0p,6;1) € ® = [0,1] x
B¢ X O1. In the Bayesian classification framework, these
values are then treated as random variables, so that we
may consider quantities such as the expectation of ¢, or
another random variable conditioned on the value of the
parameter vector 6.

Figure 1 describes the inter-relationships between the
quantities of interest in the general theoretic frame-
work of Bayesian classification. The tree shows a subset
of the derivations possible from the posterior feature-
label parameter distribution to the OBC classifier and
error estimates. Specifically, directed edges indicate that
the child can be derived from the parent by perform-
ing the operation indicated by the edge label. Closed-
form solutions of the quantities highlighted in grey have
been calculated for the Gaussian and multinomial feature-
label distributions [6,7]. As in those derivations, the tree
assumes independence between the marginal class prob-
ability ¢ and the class-conditional parameters 6. In addi-
tion, the posterior of ¢ is assumed known throughout
the tree. Figure 1 demonstrates a primary benefit of the
Bayesian approach to classification. Once we obtain the
posterior distribution of the class-conditional parameters,
it is straightforward to calculate many relevant quantities
through appropriately crafted conditional expectations. In
this paper we demonstrate how to approximate any quan-
tity in the tree for arbitrary class conditional densities and
arbitrary prior distributions.

We now examine the tree in more detail. Starting at the
far left of the tree, p (0]S,) is the posterior distribution
of the parameterized feature-label distribution — poste-
rior to the labeled samples in S,. Typically, error estimates
and the optimal classifier are our primary interest, so that
this posterior distribution is traditionally used as a means
to compute other quantities and is not of interest by
itself.
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Figure 1 Bayesian classification derivation tree. A tree summarizing
the relationships between several important quantities in the general
theoretical framework of Bayesian classification. A directed edge
between a parent and its child indicates that the child can be derived
from the parent by the equations indicated in the edge label. The
root of the tree p(6|Sy) is the posterior distribution of the feature
label parameters and by taking expectations with respect to this
distribution, we can derive the effective class conditional densities
p(xly, Sp) and the distribution of the classifier error p(¢|Sy,). Then these
quantities give rise to the OBC, and MMSE and MSE estimates for the
error as described in the text. Quantities highlighted in grey are given

in closed form for Gaussian and multinomial distributions in [12].

The effective class-conditional density is the marginal
predictive posterior of the feature vector X conditioned S,
and the class variable Y,

p x|y, Sn) = /@ p (x1y,6y) p (6,1S,) dby. (1)

y

It gives the distribution of the feature vector using
a weighted average over all the parameterized class-
conditional densities in ®, given a class y. The weights in
this expectation are the posterior, p (9y|S,,), evaluated at
each 6,.

The true error of classifier ¥ is ¢ = p (¥ (X) £ Y).
Given the sample data S, ¢ is a random unknown quan-
tity in the Bayesian framework. The MMSE estimate given
in [12] can be written as

E[elSy] = p (W (X) # Y|Sy)
Egis, [p (0 (X) # Y16, 8]
ceo (B0, ) + (1 —¢)e1 (61, V)

= / (ep (x10, Sy) Ixer,
x

+ (1 - 2)19 (X|1, SVI) IXGRQ) dX, (2)
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where I is the indicator function for event A, ¢ = E [¢|S,,]
is the posterior expectation of ¢, R, is the region of the
feature space the classifier predicts to be class y, X is the
feature space, and ¢, (6), V) is the error of classifier ¥
contributed by class y on the fixed distribution 6.

We can also obtain the full posterior distribution of the
error,

p(elSy) = /()P(8|9)p(9|5n)d9

= Eyis, [ (c10)], 3)

where p(e|6) is the true error for a fixed feature-label dis-
tribution and fixed classifier. We denote this deterministic
function by £(6, ). As shown in Figure 1, the MMSE esti-
mate and the sample conditioned MSE for this error can
also be calculated using the first two moments of the error
distribution.

With the MMSE estimator defined, the optimal
Bayesian classifier (OBC) is the classifier minimizing the
expected error by pointwise minimization of the integral
(2) [11]:

0 ifep(x]0,S,) = (1 —Op(x|1, Sp),
1 otherwise. )

Yopc(X) = {
(4)

Conditional error estimator

If the true feature-label distribution were known, then we
could compute the true error of a classifier exactly as an
expectation over the conditional error [22]:

6= p(Y(X) £ V) = /X PO () # YOpdx

Treating ¢ as a random variable, one can similarly derive
its posterior distribution by conditioning on the feature
vector:

p(lSy) = / P (&,X[Sy) dx
X

= / /p(s,@,x|5,,)d(9dx
xJo
= AP(GISn)fXP(SIX;G)P(XISn)dxdG, (5)

which is different than the derivation of the same quantity
in (3).

This introduces the idea of the conditional error
estimator, which we define as the MMSE estimate of the
classification error conditioned on the feature vector x,

e, x) = Egis, [€]x,S,4]
= p (Y () # YIx,Sy)
_p&IY £ Y(X),S)p (Y # Y(X)|Sy)
B P (xISy)
=Z'p(x|Y £ ¥ ),S)p (Y # YISy, (6)
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as expanded through application of Bayes’ theorem, where
Z is a normalizing constant given by

Z=p&S)= Y p&ly,SHpOIS).
y€{0,1}

In addition to being useful in the above alternative
derivation of the classifier’s error posterior, the condi-
tional error estimate has other practical applications.
When classifying an unlabeled data point, we would like
to estimate the error of the classifier output for that par-
ticular data point, as opposed to the overall error estimate
for the classifier.

For the OBC, from (4) the conditional error estimator
can be written as

~ 1 .
& (Yopc,X) =Z yg}(l)g}{p(XIy,Sn)p(ylSn)}. (7)

In sum, using the effective class-conditional densities
and the posterior marginal probabilities one can calculate
conditional error estimates for points in the feature space
in addition to the earlier quantities described.

The multivariate poisson model

With the widespread use of next-generation sequencing
techniques, classification approaches must be developed
to account for the discrete nature of the mapped sequence
data and to accommodate the various types of prior infor-
mation available regarding these experiments.

Gene concentration levels can be modeled using a log-
normal distribution [23,24]. As discussed in the introduc-
tion, we assume that the sequencing instrument samples
this mRNA concentration through a Poisson process and
obtains X;; reads for sample point i and gene j. We model
this as

P (Xi,jMi,j) ~ Poisson (di exp (Ai,j)) , (8)

where A;; is the location parameter of the log-normal dis-
tribution for sample i and gene j, and d; is a variable
accounting for the sequencing depth as determined by
the sequencing process [21]. For each i, we model the
location parameter vector ; with a multivariate Gaussian
distribution, A; ~ Normal (1, X). We then consider the
mean p and covariance ¥ of the gene concentrations as
independent quantities for each class y.

The entire MP model is represented in Figure 2 as a plate
diagram. The distribution of a single class y is parame-
terized by 6, = (i, £,d, ), whered = (dy,...,d,) and
A= (Ai,j) ,i=1,2,...n,j=1,2,...,D,for nsample points
and D total genes. Therefore, 6, € ®, = RP x RP*D % R" x
RP*", The feature-label distribution parameterization for
the two-class problem is then given by 6 = (c,6p,061),
where ¢ = p(Y = 0), the prior probability for class 0.

To ensure a proper posterior with unit integral, we place
weakly informative priors over the latent variables in the
MP model. In choosing these values, we have aimed to
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Figure 2 Multivariate poisson model plate diagram. A plate
diagram for the multivariate Poisson model. The outermost plate
represents the classes that we are interested in classifying against,
where i is the index of the sample in class y, and j are the genes being
modeled.

avoid the complications that can occur with overly diffuse
priors, such as Lindley’s paradox [25,26]. We choose:

fy ~ Normal (ny, v2Ip)
%y ~ Inverse-Wishart (/cy, Sy)
¢ ~ Beta(1,1),

where each element of u, is distributed according to a
univariate Gaussian. Unless otherwise stated, n is the D
dimensional zero vector, v2 = 25, k = 10, and S =
(¢« — 1 — D)Ip. For computational and identifiability rea-
sons, d is fixed to be a vector of normalization constants
in order to match the different sequencing depths across
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all the samples. In practice, d can be approximated by an
upper quartile normalization, which has been shown to be
effective [27].

In any Bayesian approach the choice of prior affects
the results, especially when only a few data points are
given. In the case of MMSE classifier error estimation in
the Bayesian framework, robustness to incorrect model-
ing assumptions has been extensively studied in [7] and in
those studies performance held up well for various kinds
of incorrect modeling assumptions. Robustness of opti-
mal Bayesian classifiers to false modeling assumptions was
extensively studied in [11]. Again, good robustness was
exhibited. Of course, one can get bad small-sample results
by intentionally selecting an inaccurate prior. In general,
if one is confident in his knowledge, then a tight prior
is called for because tighter priors require less data for
good performance; on the other hand, when one is not
confident, then prudence calls for a less informative prior.
As proven in [11], OBC classification is consistent under
very general conditions; however, a prior whose mass is
concentrated far away from the true parameters will per-
form worse than one that is non-informative. These issues
have been extensively discussed in the Bayesian literature
[9,28-30]. In the end, performance is the measure of worth
and our results with synthetic and real data indicate solid
performance for the modeling approach used herein.

Overdispersion

The MP model uses the Poisson distribution in a hierar-
chical scheme. It is important to note that, while the read
counts are modeled as conditionally Poisson in equation 8,
the observed read counts are not marginally Poisson dis-
tributed. To demonstrate this, consider a one-dimensional
simplification of the MP model in which X is the number
of reads observed,X is the log of the RNA concentration,
and

A ~ Normal (M,az)
X ~ Poisson(exp(1)).
Then for the marginal variance of X,
Var(X) = E [Var(X|A)] + Var(E [X]|1])
_ e(“+"2/2) +( 602 -1 e(2“+"2>

e/ = Var (Poisson ("))

v

where 11 and o2 are the mean and variance of the log of the
concentration. Therefore, when 02 > 0, the marginal vari-
ance of X is always greater than that of a Poisson random
variable with the same effective rate.

In addition, by carrying out a posterior predictive model
check [31], p. 143, by computing marginal posterior
p-values against real RNA-Seq data, we can quantitatively
assess the ability of the MP model to fit the dispersion
of the TCGA data. For a test statistic 7, we compute the
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p-value by comparing the test statistic on the true data
T'(S,) and the value of the statistic averaged across the
posterior predictive distribution T (x"”), where ™ ~

P (x[Sn):

pr =Pr(T(&"P) = T(S,)|Sy)
=Pr(T(x"?) > T(Sy)|Sn)
+ (0.5)Pr(T (") = T(Sy)|Sn)

Ls
~ — Y HTEPD) > T(Sy))
Mi:O

+ 05T (X9 = T(S,)},

where %) are Monte Carlo samples taken from the
posterior predictive distribution p (x|S,) using the M
Monte Carlo samples from the posterior distribution
of 0 as described in Section ‘Computation’. The term
(0.5)Pr (T (x™P) = T (S,) |S») is necessary due to the dis-
crete nature of RNA-Seq data. P-values away from 0 and
1 indicate that the model posterior produces test statistics
both above and below that measured on the real data.

We also consider where the real test statistic falls in rela-
tion to credible intervals of the test statistic to consider
the magnitude of any differences. We apply the inter-
quartile distance test statistic to provide a measure of
the MP model’s ability to fit the dispersion of RNA-Seq
data. We also consider several other test quantities in the
Additional file 1: Table S1-S5.

Prior calibration using discarded features

Since designed classifiers typically use very few of the
totality of observed genes, only a small fraction of the
data is used for classifier design. Similarly to [8], we can
use the discarded features to calibrate the inverse-Wishart
prior for our MP OBC. Our goal is to obtain hyperpa-
rameters S, m, «, and v? for each class from our training
data S,. In general, we do not expect the discarded fea-
tures to give us information about any particular genes
and the specific covariances between genes, so we make
the simplifying assumptions that we learn information
from the discarded genes in an aggregate sense. Thus, we
consider the following structure on the hyperparameters:
m=m[L1,...,1]7 and

s=o2| 700,

where m € R, 02 > 0,and —1 < p < 1. For each class,
we need to determine values for five scalar quantities:
m, vZ, 02, p,and k.

Due to the hierarchical design of the MP model, we can-
not apply the method of moments in a direct fashion, as
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did [8]. Instead, we utilize a sampling based approach to
the method of moments. This MCMC sampling approach
has been examined in [32] as an extension to the gener-
alized method of moments [33]. The sampling approach
uses the discarded features in an additional MCMC run
evaluated prior to the primary classification MCMC pro-
cedure as discussed in Section ‘Computation’ — and then
proceeds to the method of moments. In this calibration
MCMC, we initialize all prior distributions with flat priors
and use the discarded features to obtain samples from the
posterior distribution of i and X. Typically, the number
of discarded features F is much larger than the dimen-
sionality D of the classification problem. Therefore, due
to computation time, we uniformly sample F; pairs of fea-
tures from F and average the resulting runs rather than
using all or large groups of discarded features in a sin-
gle MCMC run. We use the following procedure (for the
complete algorithm, see Additional file 1):

1. For each randomly chosen discarded feature pair
(s in total):

(a) Obtain MCMC samples using the feature
pair as data and flat priors.
(b) Record posterior averages of ;« and X.

2. Average over these posterior averages as given by
Equations (15)- (19).

3. Using the resulting five hyperparameter estimates,
run the final MCMC for classification.

Following [8], we use the moments of the posterior
samples to determine the hyperparameters through the
following relations: The mean of an inverse-Wishart
distribution is

S

EE = —p 1

)

which together with our simplified covariance structure
implies

0=k -D-1E[Zu], (10)
_ E[Zmn]
P = EEa (1)

The variance of the first diagonal of an inverse-Wishart
matrix can be used to solve for « via

_ 2(E[Zu)?

D+ 3.
Var(zi)

(12)

As we have samples of i directly from our posterior, we
obtain

(13)
(14)

m = Efu1],
v = Var [u1].
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In order to use Equations (9)-(14), we obtain estimates
of the moments from MCMC performed over the F; dis-
carded feature pairs. For the i-th feature pair we obtain the

posterior means ,uY), )y ﬁ), and /E\YZ) and then average:

L
Elul = 7 >4 (15)
S =1
e RS ~ ()
Var 1] = (Buar-a) e
F—14
Fs  &(3D) (D)
~ 1 T+ X
E[Zul = - ) ——= (17)
5 i=1
1 &L
E[Sp] = - Y 2 (18)
5 =1
1 & N2
Var [Bn] = = S (EEu-). a9
5T =1

We substitute the estimates from Equations (15)-(19)
back into Equations (9)-(14) to obtain the final hyperpa-
rameter estimates.

One must keep in mind that the calibration procedure
explicitly assumes the MP model. Hence, one can only
expect an improvement in the classification performance
if the data follow the MP model.

Computation

To obtain the MP OBC, we approximate the effective class
conditional densities in order to minimize the expected
error in a pointwise fashion:

p (x19,6y) p (6y1S) 46

Y

L M

)
b Zp (xly’ey )’
M=

p x|y, Sn) Zf

®

(20)

where Qy(l) are M samples of 6, from the model posterior
distributions.

For clarity of presentation, we do not consider the class
variable y, and we assume a single class. We do this
because the computation can be performed per-class due
to the assumed independence between the classes and the
marginal probability, p (c, 6o, 61) = p(c)p (6o) p (61)-

To obtain posterior samples of 6 using the Metropolis
Hastings MCMC algorithm we define a proposal distribu-
tion p (0’ |0) to obtain a new value for the class parameters
0’ from the old values 6. We then calculate the acceptance
ratio

/ /
R=min {1, p(GIS,,)p(OIO)} = min{l,

p©1Sy) p (010)

2oz,

P (Snl0) p (0)
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under the assumption of a symmetric proposal distribu-
tion (p (9'16) = p (010’)). The process of proposing and
accepting samples from this distribution with the proba-
bility R induces a Markov chain. Positivity of the proposal
distribution (p (9’ |9) > 0 for any 0) is a sufficient condi-
tion for ergodicity of this Markov chain. Furthermore, this
Markov chain admits a steady-state distribution equal to
our desired posterior distribution p(0|S,) [34].
From the definition of the likelihood,

=[]rxi10) =[] p &xilss)
i=1 i=1

n D
=[[I]r &ialria)

i=1d=1

P (Sxl6)

where p (x;0) = p (x;|1;) owing to conditional indepen-
dence. From the definition of the prior,
pO) =p(u, X, 2)
=pAp, D)p(ulX)p(X)

= T pilie, DpIDp(E).
=1

The posterior predictive distribution in (20) is approxi-
mated by

pXIS) ~ - Zp (x109)

Il
X[~
"Mi‘l
>\
/-\ /‘\
S

i=1 k=1

p (xkp\/(;q)) )

where, p (x¢|Ax) ~ Poisson (diexp (Ag)), A ~ Normal
(n, 2), A = R"*D and the 1©) are T vector-valued sam-
ples drawn from the appropriate class’s posterior distri-
bution used to approximate the inner intractable integral.
In addition, we use this approximation of the effective
class-conditional density to calculate the conditional error
estimates of (7) in a pointwise fashion.

Finally, because we have assumed a conjugate prior dis-
tribution for the marginal class probability c, the posterior
expectation takes the closed form

no + oo
)
no+n +oo+ a1

Egis, [c] =

where the 7, are the number of training samples obtained
from class y and the a, are hyperparameters set to 1
for an uninformative prior. Conjugacy was used for this
one parameter because the increased flexibility of the
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full sampling approach was deemed not necessary due
to the constrained, univariate nature of the parameter. If
more complex relationships between ¢ and other param-
eters were desired, then a sampling approach using non-
conjugate priors would be straightforward to implement.

Synthetic data

To evaluate OBC performance in the setting of the MP
model, we generate synthetic data using the method pro-
posed in [35] to simulate gene expression/mRNA con-
centrations (see Additional file 1). These gene expression
values are then statistically sampled to emulate modern
sequencing machines as described in [21]. Parameter val-
ues are drawn from the following distributions to examine
a wide variety of classification problems:

ty ~ Normal(0, 0.2),
oy ~ Inverse-Gamma(1, 3),
o = Uniform(0.0, 1.0),
diow =9,
dhigh = 11,
blocksize = 5.

With these parameters, ten global, twenty heteroge-
neous, and ten non-marker features are generated. Then
four features are randomly chosen to represent a mixture
of features of various classification quality. Following [21],
the features in the data are zero mean and unit standard
deviation normalized except for the MP OBC. The excep-
tion occurs because the MP model expects features to be
positive integers and normalization is not necessary. The
discarded features are used for calibration of the MP OBC
priors, and 3000 samples are generated from each class to
estimate the true classification rate for each classifier.

We use four features in this synthetic data classifica-
tion study owing to limited computational resources as
discussed in Section ‘Computational limitations’.

The synthetic data generation method proposed in [35]
imposes the strong assumption of a homogeneous covari-
ance (HC) structure between the two classes of data.
This assumption does not hold for biological situations
where interactions between features are not necessarily
preserved between classes, and this occurs frequently in
biology when considering the possible effects of canal-
izing genes, nonlinear gene regulation, and mutations in
the case of cancer [36,37]. Specifically, if the canalizing
gene is not observed, and differs in activity between the
two classes, then the measured correlation between two
downstream genes could potentially be negligible in one
class while strong in the other class. Similarly, for highly
nonlinear gene regulation, if a gene in one class is in the
saturation region of its response curve from a master gene,
then the correlation will be low, while a lower expression
level in the other class would allow for a large measured
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correlation with the same canalizing gene. And finally, if
one class represents normal gene expression and the other
tumor-related expression, then a correlation might exist
from a functioning pathway in the normal tissue, but a
mutation could result in a lack of correlation effects in the
tumor.

Hence, we modify the synthetic data generation proce-
dure in an attempt to produce synthetic datasets more
representative of such nonlinear phenomena in biology.
In this modified procedure, we allow independent covari-
ance (IC) matrices for the features of the two classes. To
generate these covariance matrices, X, we utilize inde-
pendent draws from inverse-Wishart distributions with
parameters k, = 22,D = 20, and scale matrix § = ‘73/2
(¢« — 1 — D)Ip. To examine the effects of feature correla-
tion in IC datasets, we can also generate low-correlation
covariance matrices by zeroing the off-diagonal terms.
Once the covariance matrix for class y is obtained, loca-
tion parameters for gene-expression values for each sam-
ple point are drawn from the respective multivariate
normal distribution A, ~ N (,u,y, Ey). Each sample point
is then assumed to be normalized through an upper
quartile or other suitable method, but in practice any
sample-based normalization is imperfect. We reflect this
variation by drawing the sequencing depth d; from a
Uniform (diow, dhigh) distribution, giving the rate of the
Poisson process as d; exp A;. The number of reads for a
single gene from a single sample is then drawn from this
Poisson distribution. See Additional file 1 for more detail.

The OBC is optimal on average across the space of dis-
tributions determined by its prior distributions. To avoid
biasing the performance comparison, we draw the classifi-
cation problem datasets using different distributions than
those of the OBC priors. See Additional file 1 for more
detail.

Real data

We consider a real RNA-Seq dataset composed of level 3,
RNASeqV?2 data from the Cancer Genome Atlas (TCGA)
project. It contains 484 and 470 specimens from lung ade-
nocarcinoma and lung squamous cell carcinoma tumor
biopsies, respectively. The samples are mapped read
counts against 20531 known human RNA transcripts as
generated by the University of North Carolina at Chapel
Hill, one of the Genome Sequencing Centers for the
TCGA. The data for each cancer type is the result of
processing approximately 20 billion reads and the read
count files for each are one gigabyte apiece. The prob-
lem is to classify the tumor types. Because the class-0
(lung adenocarcinoma) and class-1 (lung squamous cell
carcinoma) sample sizes, 484 and 470, are not chosen ran-
domly, we are confronted with the problem of separate
sampling. This means that there is no way to obtain a
posterior distribution for ¢ and therefore ¢ must be known
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in advance. Based upon records from 2006-2010, we have
a very accurate estimate, 48,600/141,300 =~ 0.34 [38].
Whereas we can use the value of ¢ directly, along with all
of the data, in designing the OBC, for classification rules
that do not use c explicitly, the separately sampled data
must be maximally subsampled to the proper sampling
ratio ¢ before applying the classification rule [39]. This
means that for Ny, desired samples, the sample subsets
will contain round ((1 — ¢)Ny,) and round(cNy,,,) for class
0 and 1, respectively. Moreover, holdout error estimation,
which we use here, must be properly adapted for separate
sampling for all design methods, including the OBC. The
holdout estimate is given by

&, = c&p + 1- C)él,

where & and &; are the ordinary holdout estimators (per-
formed on all remaining data samples not used for train-
ing) for the class-0 and class-1 errors, respectively [39].
We note that many studies have made the mistake of using
classification rules designed for random sampling when
sampling is separate. This can have devastating effects on
classifier performance [39].

While averaging over sample subsets for holdout error
estimation, we also average over uniformly, randomly
selected gene subsets of size 4. This sampling occurs
from low (1-10 average reads per gene) expression genes.
We sample from these lower expression genes because
we are ultimately interested in classification problems
where the delineation between phenotypes is determined
by genes with low expression. We used 10,000 for aver-
aging in order to obtain a large enough sample over
this feature and sample subset space to achieve repeat-
able results (data not shown). Computational runtime for
each sample and gene subset was similar to the synthetic
data.

Results and discussion

The Additional file 1 contains a simple two-class, two-
feature demonstration of the overall procedure to allow
for easy visualization and interpretation. Here we discuss
the results for the synthetic and real data.

Synthetic data

To evaluate classification performance, classifiers were
trained using 3NN, LDA, and c-support vector machines
with a radial basis function kernel [22]. Starting with
the homogeneous-covariance model, Figure 3a shows that
the performance of the multivariate Poisson OBC is bet-
ter than nonlinear SVM when more than 10 samples are
available and is significantly better than any other classi-
fier when using calibrated features. Equivalently, by using
discarded features, we can obtain the same classification
performance while requiring fewer training samples.
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In the case of independent-covariance data with highly
correlated features, Figure 3b shows superior classifica-
tion performance of the MP OBC at nearly all sample
sizes considered. In addition, for calibrated prior distri-
butions, the performance of the MP OBC improves. This
improvement is greater when the sample sizes are small,
which demonstrates the importance of additional knowl-
edge (through discarded features) when data are expensive
to obtain or not readily available.

The superior performance of the OBC relative to LDA,
3NN, and SVM in Figure 3b is on account of classification
optimization relative to the model, which characterizes
prior information. To further investigate OBC improve-
ment, we again considered heterogeneous covariance
matrices but with independent features to determine if
there is any difference in the relative performance between
the classifiers. In fact, the results provided in Figure 3c
show identical relative performance to the error curves in
Figure 3b, thereby indicating that both the standard clas-
sifiers and the OBC, relative performance (at least in the
case considered) is not affected by whether or not the
features are correlated. Indeed, comparing Figure 3a with
Figures 3b and 3c, we see that the relative performance of
SVM, MP OBC, and calibrated MP OBC is the same in
both the homogeneous and heterogeneous models. The
switch in relative performance between LDA and 3NN
between Figure 3a and Figures 3b and 3c is not surprising
because LDA is optimal for a fixed (known) homogeneous
Gaussian model but not for a heterogeneous Gaussian
model.

The larger overall classification errors in Figure 3a
as compared to Figures 3b and 3c are due to the dif-
ferent covariance matrices generated by the HC and
IC models. Each model required different generating
distributions for {Uy,p} and {S,«} for the HC and IC
cases, respectively, and the particular choices made in
Section ‘Synthetic data’ resulted in larger dispersions and
higher errors in the HC models than the IC models. To
demonstrate this, we tested LDA with 1000 training and
testing samples across 1000 random generating distri-
butions and found the average HC classification error to
be 0.41 and the IC error to be 0.32. This is despite LDA
being optimal for homogeneous, fixed, known Gaussian
cases and sub-optimal for heterogeneous, fixed, known
Gaussian cases, where the former is similar to the HC
case.

Still using independent-covariance data, we fixed the
mean of class 0 at ;o = 0.0 in Figure 3d, and varied
wn1 from 0.0 to 1.0 to make the classification problem
harder and easier, respectively. Across this range of clas-
sification problems, the MP OBC had better classification
performance than the other classification methods. In
addition, calibrated priors improved performance further,
especially for harder classification problems.
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Real data

In Table 1, we chose ten genes at random from adeno-
carcinoma tumor TCGA samples and performed model
diagnostics [31], p. 143, by calculating posterior predic-
tive p-values for interquartile distance (IQR) as a mea-
sure of dispersion. In the Additional file 1, we provide
additional test statistics and graphical predictive poste-
rior model diagnostics. These results indicate that RNA-
Seq overdispersion is modeled sufficiently with the MP
model.

In Figure 4, we see mean holdout errors averaged
over 10,000 training sets and testing sets of TCGA data
as described in Section ‘Real data’. Here the MP OBC
performs better than all other classifiers across most train-
ing sample sizes considered, but calibration does not
improve performance for this particular dataset. Recall

that improvement owing to calibration depends on the
extent to which the data satisfy the MP model. If the aim
of this paper were to build an operational classifier based
on the TCGA data, then we would have to go back and
extensively study the data set to examine deviations from
the model — for instance, outliers; however, here our aim is
to show the functionality of the OBC with non-Gaussian
data based on MCMC and apply it to the MP model.
The fact that the MP OBC performs well on the real data
satisfies this aim. Calibration is a tricky business and it
would be a major separate study to characterize the man-
ner in which model variation affects calibration, even if
we were to perform an intensive study of this particular
data set. Performance on the synthetic data demonstrates
the effectiveness of the calibration when the model is
satisfied.
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Table 1 Posterior predictive model diagnostics are given
for 10 randomly selected genes from adenocarcinoma
TCGA samples

Gene ID IQR (Sp) 95% int. for IQR (x"P) p-value
UPK1A[11045 2.12 [1.0,3.0] 0.09
OR4P4/81300 0.00 [0.0,0.0] 0.50
PCDHA12|56137 139.22 [107.8,187.0] 0.54
MDS2|259283 1.85 [2.0,5.0] 1.00
AXIN2|8313 347.69 [331.5,439.3] 0.85
DYNLT1]6993 84841 [830.0, 1043.3] 0.90
RARA|5914 78643 [706.8,881.3] 0.62
TMEM194A|23306 396.06 [367.0,471.3] 0.76
AGPS|8540 49645 [505.8,636.5] 0.97
NLRP2|55655 854.47 [381.3,677.5] 0.00

Inter-quartile distance (IQR) is used as a robust measure of dispersion. In the
table, IQR(Sp) is the training data’s IQR, followed by the 95-th credible interval,
and the posterior predictive P-value. In cases where the P-value is close to 0 or 1,
the true test statistic’s distance from the 95-th credible interval can be used to
determine the magnitude of the mis-fit.

Computational limitations

The results in Figure 3 and Figure 4 required tens of
thousands of MCMC runs. Owing to limited available
computational resources, we could only allocate around
30 seconds on a single CPU core for each MCMC run.
This necessitated using only four genes for these classifi-
cation results as each iteration of the MCMC procedure
has time complexity of O(D?), where D is the number
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of features. In practice, one would have a small number
of data sets and could use parallel computing to devote
more time and computing effort for the classification. For
example, in timescales on the order of hours on a typical
workstation, we have successfully performed classification
using 50 genes.

The other classification methods compared in this study
have smaller computational requirements and can cor-
respondingly handle larger numbers of features given
the same available resources. However, for the small
sample sizes often available in biology, 50 genes is
typically beyond the “peaking” point where most classi-
fiers decrease in classification performance as more fea-
tures are added (for a fixed number of training samples)
[40]. Incidentally, the OBC does not suffer this “peaking
phenomenon” as shown in [10].

In addition, the computational time requirements of
classification is typically not a bottleneck in translational
medicine given the timescales used in collecting biologi-
cal data. In these settings, the accuracy of classification is
much more valuable than rapid runtimes, and this is the
primary advantage of the computational OBC framework
proposed in this paper.

Conclusions

We have demonstrated that Bayesian classification can be
applied to specific problem domains such as RNA-Seq
through statistical modeling and MCMC computation.
The resulting classifier provides superior classification
performance compared to state-of-the-art classifiers such
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as SVM with a radial basis kernel. Although we have not
discussed error estimation — our interest in the present
paper being classification, ipso facto, the MCMC approach
to optimal Bayesian classification can be applied, via [6,7]
and [12,13], to obtain optimal MMSE error estimators for
any classification rule and sample-conditioned evaluation
of the MSE for error estimation.

Future work includes examining the normalization
parameter d and determining if additional performance
improvements can be made by considering the distribu-
tion over d rather than transforming the original data
through the process of data normalization. Additionally,
more efficient computational techniques could be used to
allow for larger feature sizes, including program optimiza-
tion and utilizing structure in the feature covariance to
reduce the size of the parameter space.

Additional file

Additional file 1: Supplementary Materials. Algorithms and Model
Diagnostics. Supporting details including in-depth algorithms and model
diagnostic plots and figures are given in a single multi-page PDF.
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