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Abstract

Background: Identifying sequence-structure motifs common to two RNAs can speed up the comparison of
structural RNAs substantially. The core algorithm of the existent approach ExpaRNA solves this problem for a priori
known input structures. However, such structures are rarely known; moreover, predicting them computationally is no
rescue, since single sequence structure prediction is highly unreliable.

Results: The novel algorithm ExpaRNA-P computes exactly matching sequence-structure motifs in entire
Boltzmann-distributed structure ensembles of two RNAs; thereby we match and fold RNAs simultaneously, analogous
to the well-known “simultaneous alignment and folding” of RNAs. While this implies much higher flexibility compared
to ExpaRNA, ExpaRNA-P has the same very low complexity (quadratic in time and space), which is enabled by its novel
structure ensemble-based sparsification. Furthermore, we devise a generalized chaining algorithm to compute
compatible subsets of ExpaRNA-P’s sequence-structure motifs. Resulting in the very fast RNA alignment approach
ExpLoc-P, we utilize the best chain as anchor constraints for the sequence-structure alignment tool LocARNA.
ExpLoc-P is benchmarked in several variants and versus state-of-the-art approaches. In particular, we formally
introduce and evaluate strict and relaxed variants of the problem; the latter makes the approach sensitive to
compensatory mutations. Across a benchmark set of typical non-coding RNAs, ExpLoc-P has similar accuracy to
LocARNA but is four times faster (in both variants), while it achieves a speed-up over 30-fold for the longest
benchmark sequences (≈400nt). Finally, different ExpLoc-P variants enable tailoring of the method to specific
application scenarios. ExpaRNA-P and ExpLoc-P are distributed as part of the LocARNA package. The source code is
freely available at http://www.bioinf.uni-freiburg.de/Software/ExpaRNA-P.

Conclusions: ExpaRNA-P’s novel ensemble-based sparsification reduces its complexity to quadratic time and space.
Thereby, ExpaRNA-P significantly speeds up sequence-structure alignment while maintaining the alignment quality.
Different ExpaRNA-P variants support a wide range of applications.
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Background
Genome-wide high-throughput transcriptomics has
revealed evidence for massive transcription of eukaryotic
genomes, vastly exceeding translation to proteins [1-3].
Ultimately, the ENCODE project [4] has established per-
vasive transcription of most of both strands of the human
genome. Remarkably, while only a minor fraction of the
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transcripts codes for proteins, the majority of the non-
coding RNAs (ncRNAs) are associated with function [5].
Nevertheless, the functional annotation is lagging behind
strongly: reliable automated annotation pipelines exist
only for subclasses of ncRNAs like tRNAs, microRNAs,
or snoRNAs [6].
Recent computational screens, e.g. [7], reveal stable,

conserved structures in a large part of ncRNAs, again
pointing to function. The de novo RNA-gene finders
qrna [8], MSARi [9], EvoFold [10], and RNAz [11] identify
conservation of stable RNA structures in whole genome
alignments; this can be boosted by structure-based
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realignment (REAPR [12]). Identifying RNAs with simi-
lar sequence and common secondary structure advances
further towards the automatic annotation of non-coding
RNAs. At genomic scale, clustering approaches like
[13-15] identify remote members of RNA-families as
defined in the Rfam database [16], and determine new
classes of structurally similar – hence, likely functionally
related – ncRNAs. Thus, all such analysis of RNAs relies
on comparing RNAs.

Simultaneous alignment and folding (SA&F)
Aligning RNAs and, simultaneously, inferring their com-
mon structure is considered the gold standard for com-
paring RNAs. [17] solves this problem in O

(
n6

)
time

and O
(
n4

)
space (for RNAs of length n). In practice,

e.g. for searching remote members of RNA-families, this
complexity is strongly limiting. Even worse, identifying
novel RNA-classes in the plethora of newly discovered
RNA-transcripts (by all-against-all pairwise comparisons)
is simply not feasible by Sankoff ’s SA&F method.
Many Sankoff-implementations [18-24] reduce the high

computational demands by sequence-based heuristics. A
prominent line restricts the search space based on align-
ment probabilities that consider only sequence informa-
tion. This idea was introduced by [20], and later refined by
[22] and [24].
PMcomp [25] introduced an orthogonal idea to gain

speed up over Sankoff ’s algorithm. Applying a lightweight
energy model, which assigns energies to single base pairs,
enables to lower computational costs significantly. For –
at the same time – high accuracy, it scores structural
matches by ensemble base pair probabilities, precom-
puted in a full-featured energy model [26]. LocARNA [13]
implements the lightweight energy model of PMcomp,
but gains further speed-up by introducing the structure-
based heuristic ensemble-based sparsification. Employ-
ing the structural sparsity of RNA structure ensembles,
LocARNA’s complexity is improved to onlyO(n4) time and
O(n2) space.
Subsequently, other Sankoff-like methods [27-29] apply

similar ensemble-based sparsifications in lightweight
models. RAF [29] additionally inherits the sequence-based
speed up of [24].
In [30], we have proposed the lightweight SA&F strat-

egy ExpLoc; it cuts down the computational demands
significantly beyond LocARNA’s sparsification, but unlike
other heuristic improvements such as [29], ExpLoc does
not restrict the search space based on structure-ignorant
sequence alignments. ExpLoc computes exactly conserved
elements in pairs of fixed RNA secondary structures,
based on an algorithmwith quadratic time and space com-
plexity [31]; subsequently, these elements provide anchors
for a LocARNA alignment. In hindsight, this strategy suf-
fers from similar problems as the first generation of RNA

alignment methods [32,33]: relying on a single predicted
input structure for each sequence, this strategy fails fre-
quently and causes severe misalignments, since predicting
minimum free energy structures from single sequences is
highly unreliable.

Simultaneous matching and folding (SM&F)
Here, we present a novel algorithm that enables an
ExpLoc-like speed-up while resolving its fundamental
problem (of relying on fixed structures) by performing
exact matching and RNA folding simultaneously. Studying
exact matching in non-fixed structures with a very differ-
ent focus, we have discussed heavy path decomposition
for related problems [34]; furthermore, we have presented
preliminary work on ensemble-based exact matching in
[35]. The novel algorithm ExpaRNA-P computes exactly
sequence-structure-conserved elements that form highly
probable local substructures in the RNA structure ensem-
bles of both input RNAs.
Analogous to Sankoff ’s SA&F idea, the novel strategy

performs “simultaneous matching and folding” (SM&F) of
RNA sequences. Thereby, it liberates exact patternmatch-
ing from its restriction to a priori fixed structure [31].
We point out that a straight-forward extension of the
fixed input structure matching to SM&F, would require
at least O

(
n4

)
time and O

(
n2

)
space, which is still as

high as the complexity of LocARNA. However, to speed up
RNA comparison significantly, reducing this complexity is
fundamental.

Sparsification of SM&F
Thus, our main technical contribution is to solve SM&F
in quadratic time and space — as efficiently as plain
sequence alignment. This is enabled by a novel sparsi-
fication technique that substantially goes beyond prior
approaches. Utilizing novel ensemble properties of the
sequences, we identify sparse regions of each matrix such
that, in total across all matrices, only quadratically many
matrix entries have to be computed; each of them cal-
culated in constant time. In contrast, LocARNA reduces
only the number of computed DP-matrices, but requires
quadratic time for each of them. This novel sparsification
is based on limiting the joint probability of a sequence
position or a base pair occurring as parts of particular
loops in the ensembles of the single RNAs.
Notably, other sparsification approaches [36-39] apply

a different (not ensemble-based) form of sparsification.
Generally, these methods rule out subsolutions, which are
computed by the DP, that can not occur in the optimal
solution. This allows deriving a provably optimal solution
while reducing the number of required case distinctions.
In contrast, the idea of our sparsification is to remove
subsolutions that are unlikely in the solution ensem-
ble. Consequently, ensemble-based sparsification does not
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only allow much stronger savings, but moreover is appli-
cable even for computing partition functions of RNA
alignments; this is realized in LocARNA-P [40], which com-
putes RNA alignment reliabilities from SA&F partition
functions.

Overview of results
To evaluate the practical benefits of our algorithmic inno-
vations, we construct the pipeline ExpLoc-P for SA&F (in
the spirit of ExpLoc), which we sketch in Figure 1. In its
first stage, it enumerates suboptimal exact matchings of
local sequence-structure patterns due to the introduced
algorithm ExpaRNA-P. In the second stage, the subopti-
mal matchings are chained to select an optimal subset of
compatible matchings that can simultaneously occur in an
alignment of RNAs. Finally, these matchings are heuris-
tically utilized as anchor constraints in the subsequent
LocARNA alignment.
First, we study important design choices in the ExpLoc-P

pipeline, which provides insights into practical implica-
tions of the developed concepts; in particular, we com-
pare strict and relaxed matching in ExpaRNA-P. The
latter allows mismatches at structural positions, which
improves the coverage of low identity sequences. In
extensive benchmarks, ExpLoc-P produces high-quality

alignments. At the same time, due to its heuristic use
of ExpaRNA-P anchors, it achieves a considerable speed-
up (about four-fold) over the benchmark set of typical
RNAs (BRAliBase 2.1). For long sequences (≈400 nt) of the
benchmark set, the speed-up is more than 30-fold.

Methods
Preliminaries
An RNA sequence A is a string over the alphabet
{A,C,G,U}. Ai denotes the base at the i-th position of
A; Ai..j, the substring of A from position i to j, which is
called subsequence in this context; and |A|, the length of
A. A structure of A is a set S of base pairs (i, j) such that
1 ≤ i < j ≤ |A|, whereAi andAj are complementary (A-U,
C-G, or G-U.) Furthermore, structures are non-crossing: in
a structure S, each sequence position is involved in at most
one base pair, i.e. for all (i, j),

(
i′, j′

) ∈ S:
(
i = i′ ⇔ j = j′

)
and i �= j′, and base pairs do not cross, i.e. there are no
base pairs (i, j),

(
i′, j′

) ∈ S s.t. i < i′ < j < j′. The span of a
base pair (i, j) is j − i.
Let S be a structure of sequence A. We define the

pseudo-base pair ψA := (0, |A| + 1). The parent of posi-
tion k in S is the base pair (i, j) ∈ S ∪ ψA with i < k < j
such that there does not exist any

(
i′, j′

) ∈ S with i <

i′ < k < j′ < j. Analogously, the parent of a base pair

Figure 1 The ExpLoc-P pipeline. Using EPMs as anchor constraints to speed up RNA structure alignments.
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(i, j) is the parent of i (which is the parent of j at the same
time). Note that parents are unique, since non-crossing
structures correspond to trees.
Furthermore, we define loopS(i, j) as the set of positions

of A and base pairs in S, whose parent in S is (i, j); note
that loopS(i, j) is empty, if (i, j) /∈ S. Intuitively, if a base or
base pair has the parent (i, j) in S, it belongs to the loop
closed by (i, j) in S.
For a sequence A, let Pr

[
S|A]

denote the probabil-
ity of the structure S in the Boltzmann ensemble of A
[26]. Pr

[
(i, j)|A]

denotes the base pair probability of (i, j),
which is defined as

∑
S	(i,j) Pr

[
S|A]

. Thus, Pr
[
(i, j)|A]

is
the probability that a random structure S, drawn from the
Boltzmann ensemble of A, contains the base pair (i, j).

Pattern matchings in RNA structure ensembles
ExpaRNA-P identifies sequence-structure patterns that are
shared by two input RNA sequences. We provide a gen-
eral description of pattern matchings in RNA sequences
and specialize to two different variants (for examples, see
Figure 2). We fix sequences A and B with lengths |A| =
n and |B| = m; for stating computational complexities,

Figure 2 Visualization of the pattern matching definition. Two
different illustrations of the notion pattern matching are shown in
(A) and (B). For the light gray pattern matching, we have
M = {2∼2, 3∼3, 9∼13, 10∼14, 11∼15} and
S = {(2, 11∼2, 15), (3, 10∼3, 14)}. Note that the two separated
regions in both sequences are connected through base pairs.
Furthermore, the set of structure matches is
M|S = {2∼2, 3∼3, 10∼14, 11∼15} and the set of sequence
matches isM \ M|S = {9∼13}. The pattern matching can be
extended by the base pair match shown in dark gray, i.e.,
M′ = M ∪ {1∼1, 12∼16} and S ′ = S ∪ {(1, 12∼1, 16)}. (M,S),
the EPM shown in light gray, is a strict EPM, whereas (M′ ,S ′), the
EPM extended by the dark gray part, is a relaxed EPM as mismatches
in structure matches occur. (C) shows an example of an invalid
matching. Separately, both the small and the big matched gray parts
are valid EPMs, but together they do not form a valid EPM as the two
individual parts are not connected.

we assume m ≤ n. The sets of possible base pairs of
respective sequences A and B are denoted by P and Q.

Definition 1 (connected, Pattern Matching). We denote
the match of positions i and k by i ∼ k and the base pair
match of base pairs (i, j) and (k, l) by ij ∼ kl. We consider
pairs P of arbitrary setsM ⊆ {i∼k | i ∈[1..n] , k ∈[1..m]}
and S ⊆ {ij∼ kl | (i, j) ∈[1..n]2 , i < j, (k, l) ∈[1..m]2 , k <

l}. P = (M,S) is connected, iff the graph GP = (M, E),
where E = {(i∼k, j∼ l) | ( j = i + 1 and l = k + 1) or ij∼
kl ∈ S}, is (weakly) connected.
P is called Pattern Matching iff

• M is a matching,
i.e. i = j ⇔ k = l for all i∼k, j∼ l ∈ M

• M is non-crossing,
i.e. i < j ⇒ k < l for all i∼k, j∼ l ∈ M

• M ‘contains’ S ,
i.e. ij∼kl ∈ S ⇒ {i∼k, j∼ l} ⊆ M

• the structure {(i, j) | ij∼kl ∈ S} is non-crossing
(consequently, together with the previous condition,
{(k, l) | ij∼kl ∈ S} is non-crossing as well).

• (M,S) is connected.

A position i is matched by P (in sequence A) iff there is a
position k, s.t. i∼k ∈ M. This is symmetrically defined for
positions j and sequence B.

We are going to define strict and relaxed exact pattern
matchings (cf. Figure 2AB). In the former, all matched
nucleotides have to be identical. The latter relaxes this by
allowing mismatched nucleotides at matched base pairs
(taking compensatory mutations into account).
For this purpose, we distinguish two kinds of matches

in a pattern matching (M,S): define the set of structure
matches as M|S := {i ∼ k, j ∼ l | ij ∼ kl ∈ S}; the set of
sequence matches is

M \ M|S = {i∼k ∈ M | i∼k /∈ M|S},
i.e. all matches that are not structural matches.

Definition 2 (Strict EPM). A strict Exact Pattern
Matching (strict EPM) is a pattern matching (Def. 1) with
the additional property:

for all i∼k ∈ M : Ai = Bk .

Definition 3 (Relaxed EPM). A relaxed Exact Pattern
Matching (relaxed EPM) is a pattern matching with the
additional property:

for all i∼k ∈ M \ M|S : Ai = Bk .

We introduce the term EPM to refer to strict EPMs
and relaxed EPMs generically. By Definition 1, a pattern
matching, and therefore an EPM, does not necessarily
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match positions of contiguous subsequences, but it is
required that the matched sequence-structure motifs are
structure-local [41,42] in each sequence. For example, in
Figure 2B, the sets of gray sequence positions in each RNA
are structure-local, because these positions are (graph-
theoretically) connected via edges formed by backbone or
base pair bonds; in contrast gray motifs in Figure 2C are
not structure-local, because they consist of two separated
connected components.
To characterize good EPMs, we define the score of an

EPM (M,S) by summing up single score contributions of
base and base pair matches:

score(M,S) =
∑

i∼k∈M\M|S
σ(i, k) +

∑
ij∼kl∈S

τ(i, j, k, l),

(1)

where σ and τ are scoring functions with properties
σ(i, k) > 0 if Ai = Bk and τ(i, j, k, l) > 0 if Ai = Bk
and Aj = Bl. In our studies, we set σ(i, k) to 1 if Ai = Bk
(otherwise, −∞); furthermore, τ is parameterized by

τ(i, j, k, l) = α1
(
c_seq(i, k) + c_seq(j, l)

)
+ α2c_str(i, j, k, l)
+ α3c_sta(i, j, k, l)

c_seq(i, k) =
{
1 if Ai = Bk
str_mm Ai �= Bk

c_str(i, j, k, l) = Pr
[
(i, j)|A] + Pr

[
(k, l)|B]

c_sta(i, j, k, l) = Pr
[
(i, j) ∧ (i + 1, j − 1)|A]

+ Pr
[
(k, l) ∧ (k + 1, l − 1)|B]

(2)

The parameters α1, α2, and α3 weight respective con-
tributions of sequence matches, structure matches, and
stacking. The stacking contribution c_sta rewards stacked
base pairs. Each mismatch at the left or right end of a
base pair match is penalized by str_mm; for scoring strict
EPMs, we set this penalty to −∞, which forbids all kinds
of mismatches. In analogy to the notation Pr

[
(i, j)|A]

,
Pr

[
(i, j) ∧ (i + 1, j − 1)|A]

denotes the joint probability of
the stacked base pairs (i, j) and (i + 1, j − 1). Such prob-
abilities are computed in slight extension of McCaskill’s
algorithm [43].
As in the case of RNA structures (of some sequence A),

one can define parent relations in EPMs of sequences A
and B. In analogy, we define the pseudo-base pair match
to match the two pseudo base pairs, i.e. ψ := ψA ∼ψB. In
the following, we consider the base pair matches i′j′ ∼ k′l′
to be order by their spans j′ − i′ (or k′ − l′; the choice is
arbitrary, since we consider only non-crossing structure.)
According to this partial order, we define parentS(i ∼ k)
as the smallest i′j′ ∼k′l′ ∈ S ∪ {ψ} that satisfies i′ ≤ i ≤ j′;
parentS(ij∼ kl) denotes the smallest base pair match that
satisfies i′ < i < j < j′.

We define additional joint probabilities to characterize
the “interesting” EPMs.

Definition 4 (Joint probabilities). We define joint occur-
rence probabilities of elements in loops of structures in the
Boltzmann ensemble of X, where X denotes either A or B.

• Pr
[
k∈ loop(i, j)|X]

denotes for i < k < j the joint
probability that a structure of X contains the base
pair (i, j) and the unpaired base k such that (i, j) is the
parent of k.

• Pr
[(
i′, j′

)∈ loop(i, j)|X]
denotes for i < i′ < j′ < j

the joint probability that a structure of X contains the
base pairs (i, j) and

(
i′, j′

)
such that (i, j) is the parent

of
(
i′, j′

)
.

For catchy notation, the expressions loop(i, j) in Def. 4
resemble loopS(i, j) – notationally omitting the structures
S in the Boltzmann ensemble of A (analogously, B).
We introduce an efficient algorithm to compute

these probabilities in Section ‘Precomputation: joint loop
probabilities’. Since we want to match only structures that
have high probability in the Boltzmann ensembles of the
given sequences – as computed by McCaskill’s algorithm
[26] – we define the notion of significant EPMs. This con-
straint is crucial for both the quality of the results and
the complexity of the algorithm. To define significance,
we furthermore introduce three thresholds θ1, θ2 and θ3.
We limit the probability of all matched base pairs by θ1;
furthermore, the joint probabilities of matched unpaired
bases and base pairs, occurring as part of their enclosing
loop, by θ2 and θ3, respectively.

Definition 5 (Significant EPMs). Given thresholds θ1,
θ2, and θ3, an EPM is significant iff

• for all ij ∼ kl ∈ S :
Pr

[
(i, j)|A] ≥ θ1 and Pr

[
(k, l)|B] ≥ θ1

• for all i ∼ k ∈ M \ M|S :
Pr

[
i ∈ loop(i′, j′)|A] ≥ θ2

and Pr
[
k ∈ loop(k′, l′)|B] ≥ θ2,

where i′j′ ∼ k′l′ = parentS(i ∼ k) �= ψ

• for all ij ∼ kl ∈ S :
Pr

[
(i, j) ∈ loop(i′, j′)|A] ≥ θ3

and Pr
[
(k, l) ∈ loop(k′, l′)|B] ≥ θ3,

where i′j′ ∼ k′l′ = parentS(ij ∼ kl) �= ψ

We reduce the return set of our algorithm further
by reporting only EPMs that are not included in better
(reported) EPMs and that do not include better EPMs.
The second condition is relevant only for relaxed EPMs,
since this cannot occur for strict EPMs. In the case of strict
EPMs, those EPMs are simply maximal w.r.t. the follow-
ing inclusion order� of pattern matchings. Hence, we call
themmaximal strict EPMs.
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Definition 6 (Inclusion Order on EPMs). Let P =
(M,S) and P ′ = (

M′,S ′) be EPMs. P is included in P ′,
written P � P ′ iff

• M ⊆ M′
• for all i∼k ∈ M:

parentS(i∼k) = parentS ′(i∼k)

Notably, in the inclusion order of Def. 6, EPMs with dif-
ferent structures are not comparable. Consequently, two
EPMs that match the same positions can be both maxi-
mal, if they match different structure. This is illustrated in
Figure 3 (A-C).
In the case of strict EPMs, the highest scoring EPMs

are always maximal EPMs w.r.t. the inclusion order, which
allows us to select the “interesting” EPMs by this simple
property. However, the same does not hold for relaxed
EPMs: for example, typically the score of a relaxed EPM
decreases if it is extended by a structure match with
mismatching nucleotides; still, further extensions can
increase the total score again. These dependencies are
illustrated in Figure 3 (A and D-F).
Consequently, since we want to keep the highest scor-

ing EPMs in the case of relaxed EPMs as well, we define a
score-extended partial order.

Definition 7 (Score Inclusion Order). Let P = (M,S)

and P ′ = (M′,S ′) be EPMs. P is smaller than P ′ in the
score inclusion order, iff score(P) < score(P ′) and (P � P ′
or P ′ � P).

We call a relaxed EPM maximal, iff it is maximal w.r.t.
this order among all relaxed EPMs. In other words, a

Figure 3 Visualization of maximal EPMs.Matches of green bases
refer to exact matches and red ones to inexact (structure) matches.
(A-C) EPM A is not maximal since there exists a larger (strict) EPM
(B or C). EPMs B and C can be maximal simultaneously since in each
case some base matches have different parents. (A and D-F) EPM D
is generated from A by appending an inexact structure match and
has a lower score than A. Further extending the EPM leads to higher
scores again (E and F). D is not maximal since A has the same parents
and a higher score. A is not maximal because there exist (relaxed)
EPMs E and F with the same parents and higher scores. Among A, D,
E, and F, only F is maximal.

relaxed EPM is maximal if and only if there is no sec-
ond relaxed EPM with a higher score that is, by inclusion
order, (a) smaller or (b) larger in the relaxed EPM (see
Figure 3 (A and D-F)). Note that different patterns with
the same score are not comparable so that they cannot rule
out each other.
Both maximality definitions are canonically raised to

maximal significant strict EPMs and relaxed EPMs.

Precomputation: joint loop probabilities
Fundamentally, our novel sparsification technique relies
on the joint probabilities of Def. 4. For sequences X ∈
{A,B}, one efficiently computes base pair probabilities
Pr

[
(i, j)|X]

by McCaskill’s algorithm [26]. In this work,
we extend this algorithm to compute the probabilities
Pr

[
k∈ loop(i, j)|X]

and Pr
[
(i′, j′)∈ loop(i, j)|X]

for X ∈
{A,B}. For this purpose, we introduce – on top of the
McCaskill matrices – the auxiliary matrixQm2

ij , which rep-
resents parts of a multiloop with at least two outermost
base pairs. This enables computing the additional joint
probabilities efficiently in the complexity bounds of the
McCaskill algorithm (Additional file 1).
Importantly, all these probabilities are efficiently pre-

computed independently for each sequence. Hence, e.g.
in clustering scenarios, where all pairs from a set of
sequences need to be matched, this preprocessing needs
to be done only once for each sequence and not for all
quadratically many pairs.

ExpaRNA-P: Optimizing over significant EPMs
Figure 4 provides formal recursion equations of the
dynamic programming EPM optimization algorithm; the
same recursions are presented graphically in Figure 5.
Fundamental to our approach, all matrices and evalu-

ations in the recursions are sparse, i.e. only entries and
cases are considered where the probabilities of elements
pass the respective probability thresholds (cf. Def. 5).
Corresponding constraints are given in the recursion
equations – this is also illustrated in Figure 5, using
arrows. Otherwise, we can largely postpone this aspect
until Section ‘ExpaRNA-P: Sparsification’.
The matrix entriesD(ij, kl) score the best EPM enclosed

by each base pair match ij ∼ kl, i.e. D(ij, kl) denotes the
best score of a significant EPM (M,S) of Ai..j and Bk..l
with ij∼kl ∈ S .
Inside of the base pair match ij ∼ kl, we determine the

(score of the) best (M,S) that is either a significant EPM
itself or forms a (connected) significant EPMonly together
with the closing base pair match ij ∼ kl. The first case
is covered by the single matrix L, whereas the latter case
requires three matrices GA, GAB, and LR. By and large, for
deriving one D-entry one starts matching from the left
using L. Potentially, one introduces a gap using matrices
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Figure 4 Recursion equations. Recursions for computing the significant strict EPMs and relaxed EPMs, respectively. These equations are visualized
in Figure 5.

GA and GAB and continues using matrix LR to match the
part that is only connected to the right end of ij∼kl.
In more detail, first we determine the best score of a sig-

nificant EPM P = (M,S) that is connected to the left
end i ∼ k of the base pair match, i.e. M is empty or con-
tains i + 1 ∼ k + 1. Concretely, Lijkl(j′, l′) is such a score,
where M ⊆[ i + 1..j′]×[k + 1..l′] and j′ ∼ l′ ∈ M. To
introduce a gap, the latter condition is changed forGA and
GAB. In the case of Gijkl

A (j′, l′),M does not match j′ but
matches l′; for Gijkl

AB (j′, l′),M does not match l′ and poten-
tially does not match j′. Finally, LRijkl(j′, l′) is the best sum
of scores of two significant EPMs P1 = (M1,S1) and
P2 = (M2,S2) where the first is connected to the left
base pair match end i∼ k and the second contains j′ ∼ l′.
Intuitively, the two EPMs are separated by a gap; formally:
(for all i1 ∼ k1 ∈ M1 and i2 ∼ k2 ∈ M2, i1 < i2 − 1 and
k1 < k2) or (for all i1∼k1 ∈ M1 and i2∼k2 ∈ M2, i1 < i2
and k1 < k2 − 1).

Our recursion equations (Figure 4 and Figure 5) show
the precise case distinctions and dependencies. In L, we
check whether there is a sequence match (second case) or
a structure match (third case); otherwise, we assign −∞
(first case). LR is analogous to L, only allowing to close
a gap left of the structure or sequence match. For this
purpose, we introduce an auxiliary matrix H , which does
not need to be stored. The gap itself, computed in GA
andGAB, allows skipping an arbitrary number of positions
in both sequences. The recursion structure ensures that
such a gap is introduced at most once per loop match and
sequence. To avoid ambiguity, the recursion enforces to
first skip positions in A (using GA) and after that posi-
tions in B (using GAB); furthermore we enforce a gap in
the matchings computed via LR by its initialization.
We compute entries of D in increasing order with

respect to their size so that when computing some
D(ij, kl), any D(i′j′, k′l′) with i < i′ < j′ < j and k < k′ <

l′ < l is already computed.
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Figure 5 Recursion visualization. Visualization of the recursions to compute the matrix entries Lijkl(j′ , l′),GijklA (j′ , l′),GijklAB (j′ , l′), LRijkl(j′ , l′),D(ij, kl),
F(j′ , l′) and the auxiliary matrix Hijkl(j′ , l′).
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Since EPMs are not necessarily closed by a base pair
match (like the EPMs ofD), we finally compute the matrix
F . The entries F(j′, l′), for 0 ≤ j′ ≤ n and 0 ≤ l′ ≤ m,
denote the maximum score of a significant EPM of A1..j′
and B1..l′ , which ends at (j′, l′), i.e. with j′ ∼ l′ ∈ M.
The recursion for F is almost identical to the recursion
for L, except for the first case, which is 0 instead of −∞,
since the EPMs in F can start at any point (similar to local
sequence alignments). Also, since the matched base pairs
in EPMs of F are external (i.e. they are not enclosed by
some other base pair of the EPM), we do not perform
checks for the second and third condition of significant
EPMs (Def. 5).

Matrix initialization Matrix entries corresponding to
matches of empty subsequences are initialized. Here, we
take special care to disallow such matches for certain
matrices (by assigning −∞).

• Lijkl(i, k) = Gijkl
A (i, k) = Gijkl

AB (i, k) = 0 and
LRijkl(i, k) = −∞ (first matrix entry)

• Lijkl(i, l′) = Gijkl
A (i, l′) = LRijkl(i, l′) = −∞ and

Gijkl
AB (i, l′) = 0 for all l′ > k (first matrix row)

• Lijkl(j′, k) = Gijkl
AB (j′, k) = LRijkl(j′, k) = −∞ and

Gijkl
A (j′, k) = 0 for all j′ > i (first matrix column)

By initializing the LR matrix with −∞, we keep match-
ings represented by LR and L distinct (because in this way,
finite LR entries have to be derived via GA or GAB entries,
which enforces a gap).
The final matrix F is initialized by F(j′, 0) = F(0, l′) = 0

for all j′, l′.

ExpaRNA-P: suboptimal traceback & enumerating maximal
EPMs
For enumerating only maximal EPMs during subopti-
mal traceback, we take special care that EPMs cannot be
extended at the left or right end of gaps (GA and GAB
matrices.) For strict EPMs this is decided independently of
the other traced strict EPMs. It suffices to check whether
the strict EPM can be extended into the gap matrices, i.e.
whether a sequence or structure match is possible at the
borders of the gap matrices.
However, the same does not work for relaxed EPMs,

since while extending a relaxed EPM, the score might first
decrease and then increase again (Figure 3). Therefore, we
filter relaxed EPMs in two steps. First, we discard EPMs
due to the same criterion as in the case of strict EPMs,
checking for exact sequence or structure matches at the
borders of the gap matrices. If an EPM cannot be dis-
carded in this way, it is stored until all relaxed EPMs in the
sameDmatrix are traced back. Only then, we compare the
withheld relaxed EPMs of the same D matrix according
to Def. 7.

Since we complete the whole traceback for a D matrix
before tracing into its “enclosed” D matrices, we identify
and remove all non-maximal relaxed EPMs in an early
stage of the traceback.
To enumerate all maximal EPMs, we start such trace-

backs only from entries F(j′, l′) that satisfy Aj′+1 �= Bl′+1.
Due to Lemma 1, this condition is necessary and sufficient
for strict EPMs.

Lemma 1. Let P = (M,S) be a maximal strict EPM of
A1..j′ and B1..l′ with j′ ∼ l′ ∈ M. P is a maximal strict EPM
of A and B, iff Aj′+1 �= Bl′+1.

Proof. “⇒”: LetAj′+1 = Bl′+1. ThenP ′ := (M∪{j′+1∼
l′ + 1},S) is a strict EPM with P � P ′; hence P is not
maximal for A and B (i.e. among all strict EPMs of A and
B). “⇐”: Let Aj′+1 �= Bl′+1.
Assume P is not maximal for A and B. Then, there is a

strict EPM P ′ = (M′,S ′) �= P with P � P ′ that is not a
strict EPM of A1..j′ and B1..l′ .
Consequently, to satisfy M ⊂ M′, there has to exist

ij∼kl ∈ S ′ with i ≤ j′ < j and k ≤ l′ < l. However in this
case, while clearly the parent of j′ ∼ l′ in S is ψ , there is a
parent of j′ ∼ l′ in S ′ different from ψ (i.e. either ij∼ kl or
some “smaller” base pair match). This contradictsP � P ′,
because P and P ′ are not comparable by inclusion order
(Def 6).

By the same argument, the forward direction holds
for relaxed EPMs. Therefore, we enumerate all maximal
relaxed EPMss by restricting the traceback in the same
way. However, since the backward direction does not hold
generally, this procedure can enumerate non-maximal
relaxed EPMs. In practice, we observe this very rarely;
consequently, while redundant relaxed EPMs could be
removed explicitly, we let the chaining procedure handle
those EPMs.

ExpaRNA-P: Sparsification
ExpaRNA-P’s efficiency depends fundamentally on the
sparsity of the DP matrices, which we leverage through
fixed thresholds θ1, θ2, and θ3. Consequently, we compute
all DP matrices in only O(n2) time and space. We com-
pute matrices Lijkl,Gijkl

A ,Gijkl
AB, and LR

ijkl only for base pairs
(i, j) and (k, l) that are significant (i.e. Pr

[
(i, j)|A] ≥ θ1

and Pr
[
(k, l)|B] ≥ θ1). Furthermore, we compute only

relevant entries of these matrices.
This is best illustrated by the notion of candidates;

each j′ is a candidate of (i, j) in sequence A if it is
either a significant single-stranded position within (i, j),
i.e. Pr

[
j′ ∈ loop(i, j)|A] ≥ θ2, or contained in a significant

helix of (i, j), i.e. Pr
[
(i′, j′)∈ loop(i, j)|A] ≥ θ3 for some i′.

Analogously, we define candidates l′ of (k, l) in sequence
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B. (For candidates l′ holds Pr
[
l′ ∈ loop(k, l)|B] ≥ θ2 or

Pr
[
(k′, l′)∈ loop(k, l)|B] ≥ θ3 for some k′).

Theorem 1. There are only O(n2) entries
Lijkl(j′, l′),Gijkl

A (j′, l′), Gijkl
AB(j′, l′), and LRijkl(j′, l′) such that

j′ is a candidate of (i, j) and l′ is a candidate of (k, l).
Consequently, ExpaRNA-P has quadratic time and space
complexity.

Proof sketch: By definition, only candidates j′ or l′ can be
part of a significant EPM as defined in Def. 5; otherwise,
we assign −∞ to Lijkl(j′, l′) and LRijkl(j′, l′). Furthermore,
in the latter case, we neither store nor compute the values
for Gijkl

A (j′, l′) and Gijkl
AB(j′, l′). Due to these considerations,

in the matrices Lijkl, LRijkl,Gijkl
A , and Gijkl

AB, we skip each
complete row or column whose index is no candidate.
Consequently, after computing a mapping from candi-
date sequence positions to matrix positions — indepen-
dently for each sequence and for all significant base pairs,
the sparsified algorithm operates on “contracted” matri-
ces that contain only the candidate rows and columns.
The first threshold θ1 reduces the number of base pairs
to a constant number of base pairs per sequence posi-
tion; in total, quadratically many base pairs pass the filter.
The thresholds on joint probabilities guarantee that each
sequence position is candidate of only constantly many
base pairs. In consequence, each position is considered
only a constant number of times during the entire compu-
tation; this directly results in quadratic time complexity.
(Full proof in Additional file 1: Sec. 2)

Chaining
Chaining selects a non-crossing and non-overlapping sub-
set of EPMs. Our algorithm generalizes the chaining of
ExpaRNA [30]. The chaining algorithm recursively fills the
holes of all EPMswith other EPMs. For this purpose, it fills
one O(n2) matrix for each hole and takes O(Hn2) time,
whereH is total number of holes withH � n2. In contrast
to ExpaRNA, there may exist more than one EPM ending
at each sequence position pair, i.e. there is no one-to-one
correspondence between EPMs and EPM’s end positions.
This is why each matrix requires additional steps in the
order of the number of input EPMs E in ExpaRNA-P’s
chaining; the complexity of the generalized chaining algo-
rithm is O(H · (n2 + E)). Since in the most general case,
when we enumerate all suboptimal EPMs up to a maximal
difference to the optimal score, E ∈ O(n2) is not guaran-
teed, we implement in addition several ways to control the
number of EPMs. For example, ExpaRNA-P allows setting
an ad hoc limit on this number. Furthermore, we suggest
a heuristic strategy: for each sequence position pair, keep
only the best EPM ending there. Consequently, typical use
cases of ExpaRNA-P maintain the chaining complexity of
ExpaRNA, i.e. O(Hn2).

Results and discussion
We implemented ExpaRNA-P and the chaining algorithm
in C++. In particular, we implemented two versions of
the traceback: the suboptimal traceback and a heuristic
version that, for each match i∼k, considers only the opti-
mal EPM ending at that match. Our tool supports two
ways to control the EPM enumeration by the suboptimal
traceback: either by defining the maximum score differ-
ence to the optimal score or the maximum number of
EPMs.
In order to assess the performance of ExpaRNA-P, we

designed the following pipeline: In a first step we compute
the significant EPMswith ExpaRNA-P and use the chaining
algorithm to extract from these EPMs an optimal non-
overlapping and non-crossing subset. Then we compute
a sequence structure alignment that includes all matches
of the chained EPMs. For this purpose, we utilize the
EPMs as anchor constraints for LocARNA. Consequently,
LocARNA runs much faster, since each anchor reduces the
alignment space. In correspondence with the analogous
idea ExpLoc [30], which utilizes ExpaRNA anchors, we call
our pipeline ExpLoc-P.
We performed all benchmarks over the pairwise align-

ment instances of the BRAliBase 2.1 benchmark set [44,45].
To measure the quality of the calculated alignment in
comparison to the (for each instance) known reference
alignment, BRAliBase 2.1 [44] provides the scoring tool
compalignp. It computes the similarity between the two
alignments as sum-of-pairs score (SPS). Identical align-
ments receive the SPS score 1; alignments without any
correspondence, 0. In this way, we evaluated different
variants of our method and later compare them to exist-
ing tools. At the same time, we opposed quality to
runtime.

Impact of EPM selection on the performance
We study five ExpLoc-P variants, where we generate
anchor constraints respectively by

1) heuristic traceback with exact matches
2) heuristic traceback with inexact structure matches
3) suboptimal traceback with exact matches
4) suboptimal traceback with inexact structure matches
5) suboptimal traceback with inexact structure matches

and the additional second filter step

In particular, we compare exact modes (1,3), which fol-
low the strict EPM definition, and inexact modes (2,4,5),
which allow mismatches at structure positions (relaxed
EPMs.) The score parameters were selected ad-hoc with-
out parameter learning; in particular, we set the cutoff
probabilities to restrictive values θ1 = θ2 = θ3 = 0.01 to
predict less false positives. Furthermore, we enumerated
EPMs that have a score of at least 90 and fix the maxi-
mal number of traced EPMs in the suboptimal traceback



Otto et al. BMC Bioinformatics  (2014) 15:404 Page 11 of 14

Figure 6 Comparison of ExpLoc-P variants. (A) Alignment quality
(SPS) vs. sequence identity. (B) Coverage vs. sequence identity.
Dependencies are visualized as LOWESS curves.

to 100. The scoring – as defined in Eq. 1 and 2 was instan-
tiated by setting the structure mismatch score str_mm
to −10 for structure mismatches in inexact modes. Fur-
thermore we set α1 = 1,α2 = 5 and α3 = 5 in order to
favor structured regions. In addition to SPS and runtime,
we computed the coverage for each benchmark instance –
consisting of sequences A and B. For this purpose, we
define coverage as the fraction of nucleotides that are
matched by the best chain of EPMs C = ⋃

(M,S):

coverage =
∑

(M,S)∈C |M|
min(A,B)

(3)

Figure 6A shows the alignment quality (SPS) versus the
sequence identity; we visualized the dependency by esti-
mating a LOWESS curve [46] for each series of bench-
mark evaluations. Overall, we observed that the differ-
ence between the suboptimal and heuristic traceback is
not significant, solely for inexact modes, the suboptimal
traceback leads to slightly better results. Furthermore, in
inexact modes the additional second filter step did not
change the quality significantly. Exact modes produced
better alignments, however these modes generated much
less anchor constraints for low sequence identity regions;
in turn, the speedup decreases in these modes. This effect
is visible in Figure 6B, which plots the estimated coverage
vs. the sequence identity. The exact modes predict EPMs
only for sequence identity values above 60%. For the inex-
actmodes, we obtainedmuch higher coverage; notably, we
predicted many more relaxed EPMs than strict EPMs for
the sequence identity interval from 40-60%.
In Table 1, we report total runtimes and average SPS

scores of different ExpLoc-P variants over the entire
benchmark set. Furthermore, we provide single timings
for preprocessing (first value in brackets), computing
and chaining the EPMs (second value), and subsequent
LocARNA alignments (third value). The differences in cov-
erage directly impact the runtimes of the different vari-
ants, but not as pronounced, since – like one would
expect for many real world applications – the bench-
mark set contains many high identity sequences. Con-
sequently, relaxed EPMs significantly reduced the run-
time for instances with sequence identity between 50-80%
(Additional file 1: Figure S3A). Furthermore, the heuristic
traceback was slightly faster than the suboptimal one for
long RNA sequences (Additional file 1: Figure S3B), while
suboptimal traceback could not significantly improve the
alignment quality in this setting. Consequently, for this
specific benchmark, the two variants with heuristic trace-
back turned out to provide the best balance of quality and
speedup.

Comparison to other tools
We benchmarked three existing approaches: LocARNA,
ExpLoc [30], and RAF [29]. LocARNA without anchors
serves as base line approach; in contrast to ExpLoc-P,
ExpLoc identifies EPMs in a single predicted structure
for each RNA (using ExpaRNA); and RAF is currently
the fastest Sankoff-style alignment approach due to its

Table 1 Comparison of ExpLoc-P variants

ExpLoc-P variant 1 2 3 4 5

Total time 3.5 h 3.0 h 3.7 h 3.1 h 3.1 h

(0.6 h + 0.4 h + 2.6 h) (0.6 h + 0.5 h + 1.9 h) (0.6 h + 0.4 h + 2.7 h) (0.6 h + 0.5 h + 2.0 h) (0.6 h + 0.5 h + 2.0 h)

Total SPS 0.86 0.84 0.86 0.84 0.84
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Table 2 Comparison of RNA alignment methods

LocARNA ExpLoc-P ExpLoc-P ExpLoc RAF
(variant 1) (variant 2) γ = 10

Speedup 1 3.9 4.6 5.0 14.4

Runtime 13.8 h 3.5 h 3.0 h 2.8 h 1.0 h

SPS 0.87 0.86 0.84 0.81 0.86

heuristic filtering based on sequence alignments. We
compared these approaches to ExpLoc-P variants 1 and 2,
which performed best in the previous section.
Table 2 summarizes the results; we report the speedup

over LocARNA, total runtime, and average alignment qual-
ity (SPS) across the entire benchmark set (Opteron 2356,
2.3 GHz, single thread). Figure 7A shows the behavior of
the compalignp score dependent on the sequence iden-
tity. LocARNA aligned with the best quality at the expense
of the highest computation time. The best alignment
quality that has been obtained with ExpLoc in [30] has
been achieved with parameter minsize = 10. Even this

Figure 7 Comparison with sequence-structure alignment
methods. (A) Comparison of alignment quality vs. sequence identity.
(B) Comparison of speedup over LocARNA vs. length (LOWESS).

quality is significantly lower than the one for the two vari-
ants of ExpLoc-P (0.81 vs. 0.84 and 0.86). Moreover, the
overall speedup for this setting is not much higher than
the speedups for ExpLoc-P. Although RAF achieved the
best speedup of 14.4, the quality drops tremendously for
sequence similarities below 50%.
The quality drop of RAF alignments at low sequence

identities is strongly reminiscent of pure sequence align-
ment methods. Thus, we conjecture that the specific use
of sequence-based heuristics by RAF, while guaranteeing
sequence alignment like run-time behavior, compromises
RAF’s use for ‘hard’ RNA alignment instances that require
structure-based alignment methods.
Furthermore, we investigated the dependency of the

lengths of the input sequences on the speedup (see
Figure 7B). As expected, the speedup increased for longer
input sequences. For RNA sequences longer than 150
bases, we obtained a significantly better speedup with
both variants of ExpLoc-P compared to ExpLoc. Moreover,
the speedup difference increases with the lengths of the
input sequences (Additional file 1: Figure S4 provides a
detailed comparison of ExpLoc-P variants 1 and 2). For
the longest input sequences, ExpLoc-P achieved respective
speedups of 32 and 35 for variants 1 and 2, and RAF of
almost 50.
To summarize, ExpLoc-P provided the best trade-off

between alignment quality and speedup in this setting;
robustly, it maintained high alignment quality over the
entire range of sequence identities; finally, it proofed to be
particularly suited for long instances.

Conclusion
We have introduced the algorithm ExpaRNA-P that very
efficiently identifies exact pattern matches in RNAs by
matching and folding them simultaneously. Themethod is
a major achievement over previous approaches (including
the “predecessor” ExpaRNA) that – without being more
efficient – are much less flexible, since they require a
priori known or unreliably predicted structure.
Due to its novel ensemble-based sparsification, the algo-

rithm ExpaRNA-P has only a very low (quadratic) time
and space complexity, equalling sequence alignment. This
sparsification technique is particularly relevant, since sim-
ilar techniques can likely be applied to other RNA analysis
methods.
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We have developed two major variants of this method;
one requires strict matches in all positions of an EPM
(strict EPMs), the other relaxes this (therefore, relaxed
EPMs) to allow mismatches at structural positions. The
latter supports compensatory mutations, which are highly
relevant in RNA structure analysis in general.
Our benchmarks study EPMs as anchor constraints to

speed up RNA structure alignments (in the form of simul-
taneous alignment and folding by LocARNA). EPMs from
structure ensembles have turned out to be substantially
more reliable than EPMs from fixed structures. At com-
parable speed ups, this results in increased quality. Most
importantly, the novel approach keeps up the alignment
quality even for sequences of low identity, which is ulti-
mately decisive for structure alignment. In striking con-
trast, the alignment quality of the similarly fast alignment
tool RAF breaks down – very much like pure sequence
alignment.
We have implemented rigorous suboptimal traceback,

which provides extensive control of the set of enumer-
ated EPMs. For example, this level of control is required in
the analysis of structural variants common to the RNAs.
In addition, we have developed a heuristic traceback,
which performs almost indistinguishable in our bench-
mark. Being much faster than the rigorous method, it
offers the best speed-quality balance in such settings.
Finally, we conjecture that EPM-based anchor con-

straints can be combined advantageously with other RNA
alignment tools such as RAF. While for LocARNA the
constraints yield a considerable speedup, the combina-
tion with RAF has the potential to improve RAF’s poor
alignment quality for low sequence similarity.

Additional file

Additional file 1: Supporting Information. Supplementary document
containing details about precomputing joint loop probabilities (including a
complexity analysis), the proof of ExpaRNA-P’s complexity and
supplementary results.
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