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Mammalian transcriptional hotspots are enriched
for tissue specific enhancers near cell type
specific highly expressed genes and are predicted
to act as transcriptional activator hubs
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Abstract

to be explored and can bring new biological insights.

control of SetDB1 and not DNMT for silencing.

SetDB1 control for silencing.

Background: Transcriptional hotspots are defined as genomic regions bound by multiple factors. They have been
identified recently as cell type specific enhancers regulating developmentally essential genes in many species such
as worm, fly and humans. The in-depth analysis of hotspots across multiple cell types in same species still remains

Results: We therefore collected 108 transcription-related factor (TF) ChIP sequencing data sets in ten murine cell types
and classified the peaks in each cell type in three groups according to binding occupancy as singletons (low-occupancy),
combinatorials (mid-occupancy) and hotspots (high-occupancy). The peaks in the three groups clustered largely
according to the occupancy, suggesting priming of genomic loci for mid occupancy irrespective of cell type.
We then characterized hotspots for diverse structural functional properties. The genes neighbouring hotspots
had a small overlap with hotspot genes in other cell types and were highly enriched for cell type specific function.
Hotspots were enriched for sequence motifs of key TFs in that cell type and more than 90% of hotspots were occupied
by pioneering factors. Though we did not find any sequence signature in the three groups, the H3K4me1 binding
profile had bimodal peaks at hotspots, distinguishing hotspots from mono-modal H3K4me1 singletons. In ES
cells, differentially expressed genes after perturbation of activators were enriched for hotspot genes suggesting
hotspots primarily act as transcriptional activator hubs. Finally, we proposed that ES hotspots might be under

Conclusion: Transcriptional hotspots are enriched for tissue specific enhancers near cell type specific highly
expressed genes. In ES cells, they are predicted to act as transcriptional activator hubs and might be under
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Background

Transcriptional control of gene expression via localisa-
tion and binding of transcription factors at the vicinity
of gene loci lies at the heart of metazoan development.
With the advances in sequencing protocols, ChIP se-
quencing is rapidly becoming the preferred tool to find
genome-wide binding patterns (peaks) of a transcription
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factor in a given cell type. As ChIP sequencing protocols
mature, peaks of multiple transcription factors have been
characterized in single cell types to study combinatorial
control [1]. One of the striking observations of these
multi-TF studies was detection of so-called ‘transcrip-
tional hotspots’. In 2006, Moorman et al. [2] generated
genome-wide binding profiles of seven transcription fac-
tors in D. melanogaster and identified a subset of peaks
bound by all seven TFs (hotspots). Of these 108 hotspots,
when tested using transgenic assays, 94% acted as enhancers
strongly activating the neighbouring developmentally
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important genes [3]. The presence of hotspot regions was
further confirmed in other species such as worm [4] and
humans [5]. Hotspots in C. elegans and D. melanogaster
were enriched for sequence binding motifs of many TFs
including signature motifs such as GAGA and Zelda [3].
However, analysis of human ENCODE data did not sup-
port these observations. In humans, hotspots were specif-
ically deprived of cis-regulatory motifs and no signature
motif similar to the ‘GAGA’ motif was found [5]. At the
other end of the spectrum, most TF binding events were
‘singletons’ (bound by only one TF) accounting for nearly
one third of the binding events in a cell type. These re-
gions when studied in D. melanogaster transgenic assays
did not drive patterned reporter gene expression leading
to the conclusion that they do not act as strong develop-
mental enhancers [6]. This leads to a series of questions
about properties of both hotspots and singletons. For ex-
ample, are they truly distinct genomic regions, do they
have a characteristic sequence or chromatin signature?

In order to answer the above questions, we collected
genome-wide binding patterns of multiple transcription-
related factors in ten murine cell types. For each cell
type, the peaks were classified into three groups: single-
ton genomic regions occupied by only one TF (low-oc-
cupancy), hotspot genomic regions occupied by most
TFs under study (high-occupancy) and combinatorial
genomic regions occupied by a combination of TFs
(mid-occupancy). The genomic regions largely clustered
according to the group suggesting distinct genomic re-
gions marked for occupancy independent of cell type.
The singletons and combinatorials were bound neigh-
bouring similar genes in all cell types while hotspot
peaks occurred near a distinct set of genes in each cell
type and showed functional enrichment for cell type spe-
cific genes. Though hotspots were enriched for many TF
sequence motifs, no signature motif such as GAGA
motif was found in murine cell types. We identified
H3K4mel chromatin modification distinguishing hot-
spots from singletons where hotspots showed a bimodal
H3K4mel peak whereas singletons were mono-modal.
Finally, we collected the differentially regulated genes
after perturbations of multiple transcription-related
factors in ES cells, to show that hotspots were prefer-
entially bound by activators and not repressors. As
genes differentially expressed after Setdbl knockout
but not Dnmt knockout were enriched for ES hotspot
genes we suggest that Setdbl might be involved in si-
lencing hotspots.

Results and discussion

Combinatorial binding events overlap across multiple cell
types

A Chip sequencing experiment typically identifies thou-
sands to hundreds of thousands of genome-wide binding
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sites of a TF in a cell type. In order to investigate if dis-
tinct characteristics of peaks grouped based on the
number of binding factors at a binding location, we
collected genome-wide binding events of transcription-
related factors (TFs) across 10 different normal and cancer
murine cell types. In each cell type, ChIP sequencing data
sets (see Methods for details) for 6 to 21 TFs (108 samples
in total) were collected. Peaks were called in each sample
(see Methods for details) with the number of peaks ran-
ging from 1,000 to 100,000 in 108 samples (Figure 1B).
The number of TFs at binding sites followed an exponen-
tial curve such that about half of the regions were bound
by only one TF in any given cell type and less than 0.5%
occupied by all TFs studied. We divided all peaks in a cell
type into three groups: singletons or low-occupancy, peaks
bound by only one transcription-related factor (Figure 1A),
combinatorials or mid-occupancy, peaks bound by a com-
bination of transcription-related factors (Figure 1A) and
hotspots or high-occupancy, peaks bound by more than
five TFs studied in a given cell type (Figure 1A, Additional
file 1: Table S31). On average about 50% of all the peaks in
a cell type were singletons and combinatorials while only
0.1-2% was classified as hotspots (Figure 1C). We assigned
peaks in these three groups to genomic locations: pro-
moter, 5" UTR, 3" UTR, exon, intron or inter-genic using
HOMER [7]. The location of peaks followed a uni-modal
distribution with a peak at the TSS (Additional file 2:
Figure S1). Singleton peaks were specifically under-
represented in promoter regions (P value: 5.2e-3) and 5’
UTR regions (P value: 8.9e-3) (Additional file 2: Figure S2).

In order to investigate the overlap of the three groups
across cell types, we constructed a hierarchical tree of 30
peak sets (three groups each in 10 cell types). To con-
struct hierarchical tree, we first integrated of all 108
peak sets across 10 cell types resulted in 408,003 unique
peaks. We then constructed a binary matrix of 408,003
rows and 30 columns recording the presence or absence
of peaks in each group for each cell type and built hier-
archical tree using Pearson’s correlation coefficient as a
distance measure. Many samples clustered according to
the group across multiple cell types (Figure 1D). The
peaks in three groups in a given cell type are mutually
exclusive by definition but the fact that combinatorials
across many cell types cluster according to the groups is
a notable observation. This suggests that each genomic
location is marked for occupancy i.e. mid-occupied loci
in one cell type were more likely to be bound by mul-
tiple factors rather than one factor in another cell type.
Hotspots of related cell types cluster into two tight clus-
ters. The two embryonic stem (ES) cell samples were the
most similar to each other as expected. The four related
blood cell types — HPC, Erythroid, MK progenitors and
B cells formed second separate dense cluster of hotspot
peaks.
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Figure 1 Combinatorial binding events overlap across multiple cell types. A. schematic diagram of a genomic region with genome tracks of six ChIP
sequencing samples in a cell type marking singletons (bound by only one transcription-related factor), combinatorials (bound by few transcription-related
factors) and hotspots (peaks bound by more than five transcription-related factors). B. A table listing all 10 cell types used along with the
number of transcription factors C. bar graph of fraction of peaks in hotspots across 10 cell types. D. Heatmap of Pearson's correlation coefficients
of peaks in 30 sets (three groups of 10 cell types) with a hierarchical clustering tree showing that combinatorials clustered according to the groups.
E. box plots for peak heights for the three groups (singletons — red, combinatorials - green, hotspots - blue) for T cells and macrophages.

In D. melanogaster, peaks occupied at high levels by
transcription factors in vivo drive patterned gene expres-
sion, whereas those occupied only at lower levels mostly
do not [6]. We calculated average peak height for the
three groups where peak height was defined as the total
number of tags in a 400 bp window around the peak
summit (see Methods). Singletons consistently showed
significantly lower peak height compared to combinato-
rials and hotspots (Additional file 1: Table S32). For ex-
ample, the average peak height of Flil bound singleton
regions in T cells is significantly lower than combinato-
rials (P value < 1e-323) as were the average peak heights
of Cebpp bound regions in macrophages where single-
tons were significantly lower (P value < 1e-323) than
combinatorials (Figure 1E).

Finally, we collected ChIP sequencing data for Oct4 in ES
cells generated by three independent labs [8-10] and found
about 1000 Oct4 peaks overlapping in all three experiments.
The 1000 peaks were enriched for combinatorials and hot-
spots but were depleted for singleton regions (Additional
file 2: Figure S3). Combinatorials and hotspot binding
events were found consistently across different experiments.

Taken together, singletons were depleted in promoter
and 5" UTR regions, had lower peak height and were not
consistently found across multiple experiments.

Hotspots preferentially bind in cell type-specific gene
neighbourhoods

The hierarchical clustering of 30 peak sets clustered
them largely according to occupancy. To investigate if
the group-wise clustering of peaks is also reflected at a
gene level, we mapped all peaks to the nearest gene
resulting into a total of 21,609 genes. We created a bin-
ary gene matrix of 21,609 rows and 30 columns and
built a hierarchical tree using Pearson’s correlation coef-
ficient as a distance measure. In contrast to the peak
overlap, the gene overlap clustered all singleton and
combinatorial peaks together forming one cluster while
hotspot genes showed a lower overlap across cell types
( an exception of the two ES cell samples, Figure 2A).
By considering peaks only in promoters and perform-
ing a hierarchical clustering, the three groups clustered
largely together and combinatorials formed one tight
cluster (Additional file 2: Figure S4). Thus, combinatorials
were located in the vicinity of similar genes across cell
types but hotspots were present near a distinct set of

genes in each sample. The functional enrichment of hot-
spot genes highlighted enrichment for cell type specific
functions (Figure 2D), such as B cell hotspots which were
over-represented for the B cell receptor signalling pathway
(P value: 1.25e-8) and B cell activation (P value: 1.09e-7),
while stem cell hotspots were enriched for stem cell differ-
entiation (1.49e-11) and stem cell development (9.63e-11).
Though binding events of all peaks were enriched for cell
type specific functions, hotspot genes had a much higher
cell type specific functional enrichment than all peaks in a
cell type.

Recently, three groups generated a list of cell type spe-
cific enhancers in mouse ES cells using diverse experi-
ments. Whyte et al. [11] showed that master transcription
factors such as Oct, Sox, and Nanog form ‘super-enhancers’
at key cell identity genes that span large domains and drive
cell-type-specific gene expression program. We calculated
the overlap of ES cell peaks in all three groups with
super-enhancers and noted that about 30% of super-
enhancers overlapped with hotspots in ES cells (Figure 2B,
P value:2.7e-8). Karwacki-Neisius et al. [12] showed that
Oct4+/- (reduced Oct4d expression) ES cells have in-
creased Oct4 binding at pluripotency enhancers. Only the
enhancer regions strongly bound by Oct4 in Oct4+/-
compared to Oct4+/+ had a preferential bias towards hot-
spot regions (Figure 2C, P value: 4.61e-29). As Oct4 bind-
ing in Oct4+/- was shown to be specifically enriched near
pluripotent genes, this confirmed that hotspots occupied
cell type specific gene loci. Stadler et al. [13] generated a
methylome map in murine ES cells and noted that low
methylated regions mark multi-TF bound enhancer re-
gions in the vicinity of cell type specific genes. The overlap
of high- and low-methylated regions with three groups in
ES cells confirmed that hotspots were specifically depleted
for high-methylated and enriched for low-methylated re-
gions in ES cells (Additional file 2: Figure S6). Taken to-
gether, by comparing the three groups against three
complementary experimental datasets we concluded that
hotspots lie preferentially in the vicinity of cell type spe-
cific genes.

Hotspots are enriched for sequence motifs of multiple
transcription factors and are preferentially bound by
pioneering factors

In order to search for properties distinguishing the three
groups, we calculated the average mammalian conservation
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were enriched for cell type specific genes.

Figure 2 Hotspots preferentially bind in cell type-specific gene neighbourhoods. A. A heatmap of Pearson’s correlation coefficients of
genes in 30 sets (three groups of 10 cell types) with a hierarchical clustering tree showing that singletons and combinatorials clustered
together in a tight cluster while hotspot gene sets were very distinct from each other. B. Fraction of ES super enhancers defined by Whyte
et al. [11] in three groups showing hotspots significantly overlapped with super enhancers. C. Fraction of high Oct4 bound regions in
Oct4+/— compared to Oct4+/+ [12] ES cells in three groups showing hotspots enriched for high Oct4 bound regions in Oct4+/— and
also pluripotent genes D. Functional enrichments of hotspot genes in 10 cell types along with p values showing that hotspot genes

score for the genome sequences of peaks in all three
groups. There was no statistically significant difference in
the fraction of conserved peaks between the three groups
(Additional file 1: Table S33). In C. elegans, hotspot-
associated genes were more likely to be essential and were
enriched for a variety of functions such as growth,
reproduction, and larval and embryonic development [4].
To check if this observation holds true in the mammalian
system, we downloaded essential genes in mouse [14] and
investigated whether any of the three groups were preferen-
tially bound near essential genes. Though there was a rela-
tively smaller fraction of essential genes in singletons
compared to hotspots, the difference was not statistically
significant (Additional file 1: Table S34). Thus, genomic
conservation and gene essentiality did not distinguish the
three groups.

In D. melanogaster, hotspots were enriched for se-
quence motifs of many but not all TFs under study and
those without sequence motif enrichment were shown
to bind via protein-protein interaction [2]. They were
enriched for sequence motifs of two global activators
Zelda and GAGA and this sequence signature alone is
sufficient to distinguish the hotspot regions [3]. They
were also enriched for BEAF-32 and Trl/GAF insulator
motifs [15]. In C. elegans, cis-regulatory sequences of
TFs are not always present in hotspots, the binding was
associated with open chromatin [4]. In line with this,
hotspots were enriched for ‘GAGA’ sequence motifs
[16]. On the other hand, the depletion of cis-regulatory
motifs was observed in human hotspots where the se-
quence motif for TFs in ‘cold’ regions were more than
two- fold more enriched than in hotspot regions and no
‘GAGA’ or similar motif was found [5], but they men-
tioned the possible presence of other sequence-specific
motifs. Indeed Foley et al. found that on average, any
given HOT promoter contained about four different
types of motifs [17]. In summary there is no evidence so
far regarding a specific cis-regulatory signature in hotspot
peaks in mammals, nor is there a consensus whether hot-
spots are enriched or depleted for TF sequence motifs.

To check if any sequence motif signature discriminates
the three groups, we calculated the number of occur-
rences of mammalian cis-regulatory sequence motifs and
compared them between the three groups. In most cell

types, the motifs associated with the transcription factors
known to be key players for that cell type were significantly
enriched in hotspot regions compared to singletons. For ex-
ample, Gata (7.0e-2) and Runx (1.94e-8) motifs were
enriched in B cell hotspots, E-box (6.26e-8) and Gfil
(3.00e-3) motifs were enriched in Erythroid hotspots
while Meis (1.58e-17) and Scl-Gata (2.44e-13) motifs were
enriched in HPC hotspots (Figure 3A, Additional file 1:
Table S35). In contrast, there was a significant depletion
of some motifs in hotspots compared to singletons. In par-
ticular, the CTCF motif was less abundant in hotspots
across multiple cell types (Figure 3A). In summary, hot-
spots were enriched for many known transcription factor
motifs (Figure 3B) including the one not characterized by
ChIP sequencing such as HOX motif in HPCs (Additional
file 1: Table S37). As GC content can bias the motif en-
richment, we confirmed that the GC content across three
groups was not significantly different across ten cell types
(Additional file 1: Table S36). Moreover, we validated that
the motif enrichment was consistent only when the pro-
moter peaks were considered in three groups (Additional
file 1: Figure S5).

Siersbaek et al. identified ~1,000 TF hotspots during
adipogenesis and demonstrated that Cebpp marks a
large number of these hotspots and is required for chro-
matin remodeling during differentiation [18]. This hypoth-
esizes that pioneering TFs in a cell type mark hotspots.
We identified TFs preferentially binding in hotspots (more
than 90% regions bound) and found Pu.1 marking B cell
hotspots and Cebps marking macrophage hotspots
(Figure 3B and Additional file 1: Table S37). Med12
was bound at more than 99% of ES hotspots which
proposes hotspots to be under control of mediator
complex [11]. Thus hotspots regions were indeed bound
by pioneering factors across multiple cell types. On the
other hand, only around 1% of peaks of Suz12 overlapped
with hotspots (under-representation p value < 0.05). As
Suzl2 predominantly acts as a transcriptional repressor
this suggests that hotspots might act as transcriptional
hubs mainly for activation.

Altogether, murine hotspots did not contain a signa-
ture sequence motif but were enriched for motifs of
many transcription factors including pioneering factors
which mainly act as transcription activators.
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Cell type TF names TFs with > 90% Enriched cis-regulatory motif
hotspot binding

B cells E2A, Ebfl, Fox01, Oct2, Pax5, E2A, FoxOl, EBF1, ETV1, Flil, ETS1, ERG, GABPA,
Pul Pax5, Pul PU.1, ETS, E2A, RUNX-AML, ELFI,
Tcf12, Atohl, MyoG, RUNX2, NeuroD1,
Elk1, Elk4, RUNX1, MyoD, RUNX, Myf5,
SPDEF, Olig2, SCL
Erythroid ETO2, GATAL, GFIIB, GATAL, LDBI, Gatal, Gata2, Gata4, GATA3, GATA:SCL,
LDB1, MTGR1, PU1, SCL MTGRI, PUL Flil, ERG, PU.1, GABPA, ETV1, ETS1
HPC ERG, FLI1, GATA2, GFIIB, ERG, FLII, Gata4, Gata2, GATA3, Gatal, Flil, ETSI1,
LMO2, LYL1, MEIS1, PUI, GATA2, LMO2, ERG, ETV1, GABPA, PU.1, GATA:SCL,
RUNXI, SCL LYLI, RUNXI, Elk4, ELF1, Elk1, RUNX, ETS, RUNX1,
SCL RUNX2, RUNX-AML, SPDEF, ETS:E-box,

Figure 3 Hotspots are enriched for sequence motifs of multiple transcription factors. A. Bar graphs of fraction of peaks with a given
sequence motif in the three groups (singletons — red, combinatorials - green, hotspots - blue) with the name of the sequence motif along with
the sequence in IUPAAC format for three representative motifs for each of B cells, erythroid and HPCs (see Additional file 1: Figure S1 for the
complete list of motifs). B. A table of cell type, transcription-related factors analysed by ChiIP sequencing, transcription-related factors binding to
more than 90% of hotspot peaks and statistically significant known sequence motifs found in hotspots for B cells, erythroid and HPCs (see

Hoxb4

Hotspots lie near highly expressed genes and are
enriched for enhancers in nucleosome flanked regions

In order to investigated whether each group shows a distinct
chromatin signature, we collected data for three activating
chromatin modifications in enhancers and promoters
(H3K27ac, H3K4mel, H3K4me3), CCCTC-binding factor
(CTCEF), RNA polymerase II (Polll) binding as well as
RNA sequencing data in murine erythroleukemia (MEL)
cells from the ENCODE resource. Hotspot peaks showed
significantly higher binding in all six datasets compared to

the other two groups. In D. melanogaster, hotspot genes
were expressed at higher levels during early embryogen-
esis but the difference is reduced later in development [2].
In humans, using ENCODE data, it was shown that genes
associated with ‘hot’ regions were expressed at higher
levels [4]. In line with this, H3K4me3, Polll binding as
well as gene expression measured in RPKM values using
RNA sequencing data (Figure 4A) in MEL cells were sig-
nificantly higher in hotspots (P values: 1.49e-116, 2.40e-
162 and1.9e-20 respectively).
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Figure 4 Hotspots lie near highly expressed genes and are enriched for enhancers in nucleosome flanked regions. A. Boxplots for the
peak height for H3K4me3, RNA polymerase II using ChIP sequencing as well as average RPKM value using RNA sequencing data in MEL cells for
the three groups (singletons - red, combinatorials - green, hotspots - blue) showing higher peak height for all chromatin modifications in
hotspots. B. Bar graph of fraction of VISTA enhancers [19] and Boxplots for the peak height for H3K4me1, H3K27ac using ChIP sequencing in the
three groups in MEL cells concluding hotspots were enriched for enhancers. C. The average density plot of MEL H3K4meT in the 10 kb window
for each of the three groups showing hotspots had a bi-modal H3K4me1 peak while singletons have a mono-modal peak.

Pennachio et al. [20] predicted about 5,500 high-
confidence murine tissue-specific enhancers for 61 tissue
types by integrating tissue-specific expression data, conser-
vation information and cis-regulatory motifs and further
experimentally validated them using transgenic assays in
mouse (VISTA enhancers). MEL hotspots were enriched
in VISTA enhancers compared to the singletons and
combinatorials (Figure 4B, P value: 4.64e-6). Hotspots
in other cell types were also enriched for VISTA enhancers
(Additional file 1: Table S38). MEL hotspots had signifi-
cantly higher H3K4mel as well as H3K27ac (P values
5.81e-120 ad 2.63e-275 respectively). Histone H3K4mel
marks for enhancer regions whereas histone H3K27ac dis-
tinguishes active enhancers from inactive/poised enhancer
elements containing H3K4mel alone [21]. Hotspots there-
fore mark active enhancer regions in a given cell type.

Hoffman et al. [22] showed high nucleosome position-
ing at the center of bimodal H3K4mel peaks compared
to mono-modal in mouse islets and liver. The average
density plots of H3K4mel showed a very strong bi-
modal distribution at hotspots while singletons showed
a mono-modal distribution (Figure 4C). This suggests
that multiple transcription-related factors can indeed
displace nucleosomes for strong enhancer activity at
hotspot regions. Hotspots were therefore enriched for
nucleosome flanked multiple TF-bound loci. As expected,
genes associated with flanked TF-bound loci were more
abundantly expressed than those associated with nucleo-
somal loci, consistent with flanked sites being active
enhancer elements [23].

In order to validate these observations in another cell
type, we collected genome-wide chromatin modification
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data sets in ES cells. Similar to MEL cells [24], all acti-
vating chromatin modifications as well as expression
values in RPKM using RNA sequencing data showed signifi-
cant enrichment in hotspots (Additional file 2: Figure S6).
The repressive chromatin modifications such as H3K27me3
were depleted in hotspots (Additional file 2: Figure S6).
Taken together, we integrated genome wide chromatin bind-
ing patterns with TF ChIP sequencing data to show that hot-
spot regions were enriched for enhancer regions which are
located near highly expressed cell type specific genes. Fur-
thermore, the H3K4mel profile showed a strong bimodal
peak at hotspots suggesting nucleosome displacement for
transcription activation.

ES hotspots are preferentially occupied by activators and
hotspots regions and might be under Setdb1 control for
silencing

In order to establish the functional relevance of the
binding in three groups, we collected a range of differen-
tially expressed gene sets after TF perturbations in ES
cells. Firstly we collected differentially expressed genes
after Oct4 knockdown from two independent experiments
[25,26]. ES hotspot genes were specifically enriched for
down-regulated genes (P value 3.23e-17) after Oct4 knock-
down but not up-regulated genes (Figure 5A). This sug-
gests that Oct4 binds to hotspot regions to act as a
transcriptional activator.

Nishiyama et al. [27] identified potential functional
targets by identifying differentially expressed genes after
overexpressing 50 TFs in ES cells. ES hotspot genes were
over-represented for differentially expressed regulators
such as Etv3 (8.28e-3). However, ES hotspot genes were
under-represented (Additional file 3: Figure S7) in differ-
entially expressed genes after overexpression of repres-
sors such as Atf3 (6.62e-3), Gadd45a (6.62e-3), Mybl2
(1.65e-3), Rhox6 (1.65e-3) and Tcf4 (4.97e-3). This cor-
roborates the previous observation that hotspot regions
were predominantly occupied by activators of transcrip-
tion (Additional file 1: Table S39).

Not only transcription factors but also other chroma-
tin modifiers such as Baf250 [28], a subunit of the BAF
chromatin remodelling complex, as well as Hdacl [29],
a histone deacetylase involved in the removal of acetyl
groups from core histones, were preferentially bound at
ES hotspots (Additional file 1: Table S40). Enrichment in
hotspot loci suggests Hdacl might act as a transcriptional
activator. Though HDACs are generally considered re-
pressors of transcription, it has been noted recently that
Hdacl can indeed act as an activator [29].

As hotspots mark highly active enhancers driving cell
type specific gene expression, these regions need to be si-
lenced in other cell types. Karimi et al. [30] showed DNA
methylation and Setdbl methylation work on different
sets of genes, where only 7% of the genes up-regulated in
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a Setdbl knockout also were up-regulated in Dnmt knock
out in ES cells. No significant difference was observed
between singletons, combinatorial or hotspot genes for
differentially expressed genes after Dnmt knock out
(Figure 5B). Challen et al. [31] found ~1,500 loci under
Dnmt3a control in HPCs. There was no bias in Dumt3
occupied loci in HPC, neither towards CpG islands in the
three groups. However, genes differentially expressed after
Setdb1 knock out were enriched for hotspots (Figure 5B)
suggesting that hotspots might be regulated by Setdb1.

Altogether, hotspots might be used by activators to
control expression of neighbouring genes as they were
enriched for differentially expressed genes after perturb-
ation of activators in ES cells. Furthermore, we sug-
gested that ES hotspots might be under Setdbl control
for silencing.

Conclusion

The combinatorial action of multiple TFs controls regu-
lation of gene expression where TFs activate or repress
gene expression via binding to cis-regulatory sequence
elements in gene loci. Identification of functional target
genes regulated by specific transcription factors is crit-
ical for understanding of the molecular mechanisms be-
hind transcriptional control. Multi-TF ChIP sequencing
studies have led to a remarkable observation that there
were regions in the genome bound by almost all of the
factors, the so called “Transcriptional Hotspots’ [1-4].
These regions acted as active enhancers of developmen-
tally essential genes [3]. On the other hand, low occu-
pancy regions did not drive reporter gene expression [6]
questioning the functional significance of these peaks.

In order to study whether there are indeed classes of
peaks with distinct characteristics based on their occu-
pancy, we collected 108 TF binding ChIP sequencing
datasets in 10 murine cell types. All peaks in a cell type
were classified into three groups based on the number
of factors bound: singletons (low occupancy), combina-
torials (mid occupancy) and hotspots (high occupancy).
Singletons were depleted in promoters and 3" UTR, had
a low peak height and were less conserved across
multiple biological replicates putting in doubt their
functional relevance. On the other hand, conserved
cis-regulatory sequences were thought be more func-
tionally relevant but the three groups could not be
distinguished with respect to sequence conservation.
Indeed, it has been shown in yeast that the low affin-
ity protein-DNA interactions were conserved as well
as being functionally relevant [32].

The hierarchical clustering of 30 peak sets (three groups
each in 10 cell types) clustered combinatorials according
to occupancy. Putative target gene sets of singletons and
combinatorial peaks clustered into one tight cluster
whereas each hotspot gene set consisted of unique set
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Figure 5 ES hotspots are preferentially occupied by activators. A. Overlap of genes in three groups in ES Ng dataset with up- and down-regulated
genes upon Oct4 knockdown in ES cells showing hotspots were enriched for only down-regulated genes. B. Fraction of up- and down-regulated genes upon
Dnmt and Set1db knock out in three groups in ES Ng dataset showing hotspot enrichment only in Set1db KO down-regulated genes.

of genes with cell type specific functional gene enrich-
ment. The presence of hotspot regions near cell type
specific genes has previously been observed in many
cell types across species (e.g. Siersbaek et al. [18]). We
have shown previously that most TF peaks cluster ac-
cording to the cell type [33].

GAGA and Zelda signature sequence motifs were as-
sociated with hotspots in C. elegans and D. melanogaster

[16]. We did not find a signature sequence motif for any
of the groups but hotspots were enriched for sequence
motifs of many key transcription factors as well as for
pioneering factors in a cell type. Hotspots were specific-
ally depleted for CTCF sequence motif across all cell
types. Though depleted in CTCF sequence motifs com-
pared to singletons, the fraction of CTCF peaks and
their mean peak height at hotspots is higher (data not
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shown). We further intersected three groups with di-
verse chromatin marks and concluded that hotspots
were enriched for enhancers present in the vicinity of
highly expressed genes. Moreover, we identified a chro-
matin modification that can distinguish hotspots from
singletons. Bimodal H3K3mel peaks were specifically as-
sociated with hotspots, and mono-modal peaks with sin-
gletons. This suggests that three events, binding by
multiple factors, creation of a nucleosome-depleted re-
gion at the binding site and establishment of bivalent
H3K4mel marks go hand in hand.

We so far confirmed that hotspots had strong occu-
pancy (high peak height) and were enriched for cell type
specific enhancers but their functional relevance is still a
puzzle. There are various theories such as it has been
suggested that they might serve as sinks for TFs [34]. In
humans, as hotspots were depleted for TF motifs, hot-
spots were thought to be highly open chromatin marks
where TFs bind non-specifically. Contrary to this, we
find hotspots enriched for TF motifs especially for pio-
neering cell type specific factors such as Pu.l in B cells.
Pu.l binding has been shown to initiate nucleosome
modeling followed by H3K4 mono-methylation [7]. Our
hypothesis therefore is that pioneering factors establish
stable open chromatin regions at hotspots by recruiting
specific chromatin marks which in turn facilitates bind-
ing of additional TFs at their motifs or non-specifically.

Finally, as hotspots are cell type-specific active enhan-
cer regions, they need to be silenced in other cell types.
Hotspot genes in ES cells significantly overlapped with
genes perturbed after Setdbl knockout and not Dnmt
knockout suggesting that Setdbl might play a role in ES
hotspot silencing.

Methods

Data collection and classification

Genome wide binding patterns of transcription-related
factors were obtained for five blood lineages (B cells,
erythroid, haematopoietic progenitor cells (HPC), macro-
phage and T cells) [35], two embryonic stem cells [36],
dendritic cells [37], MEL cells [38]. Peaks were called, with
default parameters, using the peak calling program MACS
[39] using an input control if provided in the original
study. In total 108 peak sets were collected across 10 cell
types (Additional file 1: Table S31). The binding events
(peaks) of all transcription-related factors in a given cell
type were merged to produce the total number of peaks in
each cell type. These peaks were then divided into three
groups according to the occupancy. To divide the regula-
tory peaks into three groups, we defined singletons as the
genomic regions bound by one factor only in a cell type;
hotspots were defined as genomic regions bound by more
than five transcription-related factors. The choice of cri-
terion for defining hotspots is discussed in detail in
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Additional file 3. Combinatorials were then defined as
peaks which did not belong to either of the two groups.
Additional file 3: Tables S1-30 are the peaks in BED for-
mat using mm9 genome assembly for all 30 peak sets
(three peak lists corresponding to the three groups in each

cell type).

Clustering, overlap and enrichment calculation

Genomic location bias such as promoters, 5 UTR,
3UTR, exon and intron as well as known and de-novo
cis-regulatory sequence motif enrichments and func-
tional enrichments were calculated using HOMER [7].
The promoter was defined as -1 kb to +100 bp region
around transcription start site. Mammalian conservation
tracks were downloaded from the UCSC genome browser.
To calculate peak height, each peak was made of uniform
width 400 bp and the total number of tags in the 400 bp
window was used as a proxy for peak height. UCSC gene
annotation was used to map peaks to genes. Peaks present
in the promoter or gene body were assigned to the corre-
sponding gene and inter-genic peaks were assigned to the
nearest gene within 50 kb (both upstream and down-
stream). The total of unique genome-wide peak locations
was 408,002 which mapped to 21,607 unique genes. A
binary peak matrix of 408,002 rows and 30 columns (three
groups in 10 cell types) was created where ‘1’ represents
presence of a peak and ‘0’ the absence. Similarly, a gene
matrix of 21,607 rows and 30 columns was created.
Hierarchical clustering of peak and gene matrices was
performed using Pearson’s correlation coefficient as a
similarity measure and complete linkage. All boxplots and
bar charts were generated using R. Genomic sequences of
the peaks were downloaded using UCSC galaxy tool and
the occurrences of cis-regulatory sequence motifs were
obtained using TFBSseach [40]. The percentage of total
hotspot peaks occupied by each transcription-related fac-
tor in a given cell type was calculated and TFs with more
than 90% hotspot binding were tabulated in Figure 4
(Additional file 2: Table S37 for full list). Statistical signifi-
cance of the differences between groups was calculated
using the Mann Whitney U test.

Additional datasets

CpG islands in mouse were downloaded from CpG_MI
[41]. Methylation density plots for the three groups
using H3K4mel data in MEL cells were generated using
SeqMiner [42]. Experimentally validated tissue specific
enhancers (VISTA enhancers) in mouse were obtained
from VISTA [19]. The lists of differentially expressed
genes upon overexpression of transcription factors in
embryonic stem (ES) cells were obtained from the data
of Nishiyama et al. [27]. ChIP sequencing data for chro-
matin modifications in ES cells was obtained from Teif
et al. [24] whereas methylation profiling in ES cells was
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obtained from Stadler et al. [13]. The list of super-
enhancers in ES cells were downloaded from Whyte
et al. [11] and the genomic regions differentially occu-
pied in Oct4+/- compared to Oct4+/+ were downloaded
from Karwacki-Neisius et al. [12]. Differentially expressed
genes at multiple time points after Oct4 knockdown were
obtained from Hall et al. [25] and Sharov et al. [26]. Dif-
ferentially expressed genes after Baf250 and Hdacl were
obtained from Gao et al. [28] and Zupkovitz et al. [29].
For consistency the differentially expressed gene lists after
perturbation of transcription factors in ES cells were com-
pared against both the ES Ng dataset (Figure 5) and the
ES Young dataset (Additional file 1: Figure S6). The
RNA sequencing data for ES cells is available at GEO
(GSE42152).

Availability of supporting data
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The raw data used in this study is available at GEO with
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