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Abstract

Background: Identification of individual components in complex mixtures is an important and sometimes
daunting task in several research areas like metabolomics and natural product studies. NMR spectroscopy is an
excellent technique for analysis of mixtures of organic compounds and gives a detailed chemical fingerprint of
most individual components above the detection limit. For the identification of individual metabolites in
metabolomics, correlation or covariance between peaks in 1H NMR spectra has previously been successfully
employed. Similar correlation of 2D 1H-13C Heteronuclear Single Quantum Correlation spectra was recently applied
to investigate the structure of heparine. In this paper, we demonstrate how a similar approach can be used to
identify metabolites in human biofluids (post-prostatic palpation urine).

Results: From 50 1H-13C Heteronuclear Single Quantum Correlation spectra, 23 correlation plots resembling pure
metabolites were constructed. The identities of these metabolites were confirmed by comparing the correlation
plots with reported NMR data, mostly from the Human Metabolome Database.

Conclusions: Correlation plots prepared by statistically correlating 1H-13C Heteronuclear Single Quantum
Correlation spectra from human biofluids provide unambiguous identification of metabolites. The correlation plots
highlight cross-peaks belonging to each individual compound, not limited by long-range magnetization transfer as
conventional NMR experiments.
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Background
NMR (nuclear magnetic resonance) spectroscopy is well
suited for analysis of complex mixtures of organic
compounds and has some distinct advantages com-
pared to other analytical techniques such as GC-MS
(gas chromatography–mass spectrometry) and LC-MS
(liquid chromatography-mass spectrometry). Most import-
ant, NMR spectroscopy is highly reproducible, does not
require any sample derivatization and gives detailed
structural information about the components of a mixture.
The drawback of NMR spectroscopy is the inherent
low sensitivity compared to MS-based methods, but it
has nevertheless become a cornerstone in metabolomic
studies [1].
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A vast majority of NMR-based metabolomics studies
have been based on 1D 1H NMR experiments because of
the high sensitivity of the 1H nucleus. Recent technical
advances with higher magnetic fields and the introduction
of cryogenic probes have drastically increased the sensitivity
and thereby reduced experimental times for inverse
detection experiments of other nuclei such as 13C and
31P. This allows analyses of large data sets of dilute
samples, e.g. biofluids, within a reasonable timeframe.
Heteronuclear 2D NMR methods provide additional
structural information and are important tools for
structure elucidation of new compounds. There are a
number of inverse heteronuclear 2D NMR experiments
available, and the two most important are Heteronuclear
Single Quantum Correlation (HSQC) and Heteronuclear
Multiple-Bond Correlation (HMBC). HSQC spectra reveal
the chemical shifts of 1H and X-nuclei directly bonded to
each other, whereas HMBC spectra reveal correlations
over multiple bonds (typically 2–3). Especially, the 1H-13C
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HSQC experiment has had a pivotal role in organic
chemistry. In addition to being a relatively sensitive
experiment, the large chemical shift range for 13C in a
1H-13C HSQC spectrum reduces spectral overlap which
greatly benefits compound identification. Compared to 1D
1H NMR spectra, the 1H-13C HSQC spectrum provides a
more detailed biochemical fingerprint, which has recently
spurred interest in HSQC based metabolic profiling and
multivariate analysis of human biofluids [2,3].
In order to draw biologically relevant conclusions from

metabolomics studies, identification of key metabolites is
required. This can be challenging considering the vast
amount of metabolites present in biological samples
such as human biofluids, extracts of plants or cell
cultures which results in many overlapping peaks in
the NMR spectra [4]. For 1H NMR this has partly
been resolved by fitting the experimental spectra to
simulated or experimentally obtained spectra from
single metabolites [5]. Another interesting approach to
identify metabolites is by Statistical Total Correlation
Spectroscopy, STOCSY [6,7], which utilizes statistical
correlation between peaks throughout a series of spectra.
Peaks that vary in intensities in a highly correlated manner
are likely to belong to the same compound. Correlations
may also be observed between related compounds, e.g.
metabolites belonging to the same biological pathway, but
such intermolecular correlations should always be weaker
than intramolecular ones. Together with established
multivariate methods such as principal component
analysis, PCA [8,9] or orthogonal projections to latent
structures, OPLS [10], this approach can be used to
identify metabolites that vary between different classes
of samples. Since STOCSY was first reported, a number of
related tools have emerged which are useful for metabolic
pathway analysis as well as biomarker identification [11].
A common denominator for these tools is that they
exploit the statistical correlation between spectral data
from multiple biological mixtures. On the contrary, a
number of tools for statistical correlation of NMR data
recorded from a single sample have also been developed.
These tools include covariance NMR [12], indirect
covariance NMR [13] and higher-rank correlation NMR
[14]. Covariance NMR is an alternative to traditional 2D
Fourier transformation of homonuclear 2D spectra like
Total Correlation Spectroscopy (TOCSY) and Nuclear
Overhauser Effect Spectroscopy (NOESY). By correlating
the data along the indirect dimension, highly resolved
2D correlation plots can be produced with fewer t1
increments as compared to using standard 2D Fourier
transformation. Indirect covariance NMR uses the same
principles to generate 2D pseudospectra from more easily
obtained spectra, like 13C-13C correlation spectra from
1H-13C HSQC-TOCSY [13] or from a combination of
1H-1H Correlation Spectroscopy (COSY) and 1H-13C
HSQC [15]. Higher-rank correlation NMR takes it one
step further, correlating 2D NMR data from two or more
sources, forming 3D or higher dimensional correlation
spectra. An example of this method, and relevant to the
work presented in this paper, is the merging of 1H-13C
HSQC and 2D 1H-13C HSQC-TOCSY spectra to form a
triple rank (3R) HSQC-TOCSY spectrum [16]. From this
spectrum, HSQC spectra of individual mixture components
may be extracted, providing that the involved protons
belong to the same spin system. If a compound consists of
multiple isolated spin systems, these correlation methods
will fail to reveal all associated peaks. This is not the case
for the STOCSY-like methods, since correlations do not
depend on any spin-spin couplings across multiple bonds.
In STOCSY, peaks which originate from the same

compound should correlate perfectly, but overlapping
peaks from several metabolites in crowded regions of
1H spectra will, however, have a negative impact on
the correlation. This may preclude the detection of
important resonances from key metabolites. In a recent
paper by Rudd et al., a STOCSY-like correlation method
using 2D HSQC instead of 1D 1H NMR data was presented
[17]. This method, termed HSQCcos, was used to extract
structural information from different compositions of
the heterogeneous polysaccharide heparine. Contemporary
with Rudd, we have worked on correlating HSQC spectra
from post-prostatic palpation urine. The aim of this paper
is to demonstrate that the method can be used for
unambiguous metabolite identification in biofluids.
With increased use of HSQC data in multivariate analysis,
we envision that the HSQCcos method will become a
valuable asset for interpretation of multivariate models.

Methods
Sample preparation and NMR analyses
The study was approved by The Regional Committee for
Medical and Health Research Ethics (Norwegian Health
Region III) and informed written consent was obtained
from all 50 patients.
The 50 frozen (−80°C) urine samples from 50 different

patients, collected after transrectal palpation of the prostate
(three strokes over each lobe), were thawed at room-
temperature for 20 minutes. Each sample (1 ml) was spun
at 13000 g for 5 min and 540 μl of the supernatant was
mixed with 60 μl D2O containing PBS buffer and TSP-d4,
resulting in a total volume of 600 μl. The samples
were vortexed and transferred to 5 mm NMR-tubes
(Bruker Biospin, Rheinstetten, Germany) before analysis.
The spectra were acquired using a Bruker Avance III
600 MHz spectrometer, equipped with a QCI cryoprobe.
A Bruker SampleJet and ICON-NMR software (Bruker
Biospin) were used to record all spectra automatically.
The spectra were obtained at a constant temperature
300 K using the HSQC (hsqcetgpsisp.2) pulse sequence
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with 256 increments, 16 transients, a 1 s relaxation delay,
sweep widths of 16 and 165 ppm and offset 4.7 and
75 ppm for the 1H and 13C dimension, respectively. The se-
quence was optimized for direct coupling constants of
145 Hz, which is a common compromise between aliphatic
and aromatic signals. Total acquisition time for each ex-
periment was 77.5 minutes. The data were processed with
Topspin 3.2 (Bruker Biospin) using a 90° shifted qsine win-
dow function to a total of 1024 × 512 data points (F2 × F1),
followed by automated baseline- and phase correction.
All spectra were calibrated relative to the TSP peak in

both dimensions. Most of the metabolites were identified
by comparison with reference spectra from the Human
Metabolome Database (HMDB) [18].

Correlation analyses
Statistical Total Correlation Spectroscopy performed on
1H spectral data is based on equation 1, where C is the
correlation matrix, n is the number of spectra and X is
the autoscaled and mean-centered matrix of the spectra
with size n x K where K is number of variables (data
points) in the spectra.

C ¼ 1
n−1

XtX ð1Þ
Figure 1 Procedure for generating correlation plots. Each spectrum is
13C are encoded, forming a matrix with dimensions n x K (step 1). By plotti
and an appropriate noise threshold may be selected. Data points are remo
HSQC spectra) are lower than the selected threshold. This noise exclusion s
contains all relevant information (step 2). Any of the rows in X can be tran
HSQC-spectrum. From this plot, a cross-peak (coordinate) of interest may b
At this point, X (and vpeak) is auto-scaled and a correlation vector cpeak is c
between −1 and 1, i.e. correlation coefficients, and can be visualized as a 2D s
noise exclusion step, followed by transformation to a matrix with the same d
chosen for the visualization, for example 0.9, to only show peaks highly correl
In this study we opted for an alternative approach,
where instead of calculating the complete correlation
matrix, one peak of interest, vpeak, is chosen and only
correlations to that peak are calculated (equation 2).
Thus, cpeak will in this case be a vector from which a 2D
correlation plot is constructed.

cpeak ¼ 1
n−1

vpeaktX ð2Þ

This approach is similar to the one used by Rudd et al.
[17]. The peaks of interest were selected in a point-and-
click fashion from a plot of a representative HSQC
spectrum. Each HSQC cross-peak encompasses a number
of data points, and to remedy small changes in chemical
shift, the most central data point within each cross-peak
was selected. This usually coincided with the local
maxima. The correlation coefficients calculated range
from −1 to 1, with 1 meaning perfect positive correlation.
By only plotting the most highly correlated data points,
i.e. setting a high cutoff for the correlation coefficient,
HSQC spectra of seemingly pure compounds could
be produced. A pictorial overview of the procedure is
presented in Figure 1, starting from aligned and normalized
(optional) 1H-13C HSQC spectra. All steps, including
transformed to a row vector where the chemical shifts for both 1H and
ng one of these vectors, real signals are easily discerned from noise
ved from the matrix only when all values in the column (from all
tep results in a final matrix X of a more manageable size that still
sformed to a matrix of the original format and plotted as a noise-free
e selected, corresponding to the column vector vpeak (step 3) in X.
alculated according to equation 2. This vector will contain values
pectrum after re-introducing zeros to the data points omitted in the
imensions as the original data (step 4). A cutoff for the correlation is then
ated (>0.9) with the chosen peak.



Öman et al. BMC Bioinformatics  (2014) 15:413 Page 4 of 8
alignment and normalization, have been implemented
in Matlab (Mathworks, Natick, MA) scripts together
with a graphical user interface developed in-house.
The scripts import 1H-13C HSQC spectra in Bruker
format (2rr files) and can also export the resulting
correlation plots in Bruker format for visualization in
Topspin. All functions are activated from an intuitive
graphical interface, making them easily accessible for
unexperienced Matlab users. Matlab scripts are available
upon request.

Results and discussion
A representative 1H-13C HSQC spectrum from post-
prostatic palpation urine is shown in Figure 2a. The Human
Metabolite Database (HMDB) [18] was browsed for
urinary metabolites with expected high levels (above
20 μmol/mmol creatinine). When HSQC data was
available, correlation plots were produced selecting
one of the cross-peaks from the metabolites in question.
The Pearson correlation coefficients calculated range
from −1 to 1, with 1 meaning a perfect positive correlation.
To generate clean plots, only the most highly correlated
peaks were shown. In many cases, a cutoff value of
0.9 provided perfect correlation plots, only containing
the cross-peaks as expected from the reference. In
other cases, some fine tuning of the cutoff was required
before a satisfactory plot could be produced. In addition
to typical urinary metabolites, post-prostatic palpation
urine contains metabolites originating from the prostate.
Figure 2 Real and constructed 1H-13C HSQC spectra from post-prosta
HSQC spectra from post-prostatic palpation urine. To the right (b) is a constru
23 metabolites. Peaks from 7 metabolites with only one 1H-13C HSQC cross-p
One of these is spermine, which is included in the list
of 23 metabolites unambiguously identified by their
correlation plots (Table 1).
Some of the plots contained unexpected additional

cross-peaks (found peaks > expected peaks), possibly
because of correlation with some unknown metabolite
due to similar biological regulation. Other plots had
missing correlations, as expected when certain cross-peaks
fall into regions with heavy overlap. The presence of
phenylacetylglycine in human urine is controversial,
with some groups claiming to have identified it by
NMR [21], and others claiming it cannot be detected by
GC-MS [22]. If NMR-based identification of phenylacetyl-
glycine is based on signals from the benzyl group, it is likely
to be mistaken with phenylacetylglutamine, which
contains a similar group with overlapping signals.
Creating a correlation plot from one of these signals clearly
shows cross-peaks indicative of phenylacetylglutamine, and
no sign of the expected phenylacetylglycine signal at 3.74/
46.2 ppm (1H / 13C) (Figure 3). No 13C NMR data of phe-
nylacetylglutamine could be found from literature, but 1H
NMR data is compatible with reported values [19].
Although we cannot disproof small amounts of phe-
nylacetylglycine by our method, it is obvious that
phenylacetylglutamine is the dominating of the two in
our study. The example also demonstrates how statistical
correlation can connect signals from isolated spin systems
(benzyl part and amino acid part), not depending on
weak/impossible long-range magnetization transfer. This
tic palpation urine. To the left (a) is one of the 50 recorded 1H-13C
cted 1H-13C HSQC spectrum, prepared by merging correlation plots from
eak are also included. TMAO appears broad due to phase distortion.



Table 1 Identified metabolites from post-prostatic palpation urine

Metabolite Selected peak (1H/13C) [ppm] Cutoff Number of correlating peaks (found/expected)

Trigonelline 9.12 / 148.4 0.9 5 / 5

Hippuric acid 7.82 / 129.6 0.9 4 / 4

Indoxyl sulphate 7.69 / 119.9 0.8 4 / 5

Phenylacetylglutamine* 7.41 / 131.5 0.8 8 / 8

trans-Aconitic acid 6.58 / 133.5 0.74 3 / 2

Levoglucosan 5.45 / 104.0 0.883 9 / 7

Carnitine** 4.56 / 66.8 0.7 4 / 4

Creatine 3.92 / 56.5 0.9 2 / 2

Mannitol 3.80 / 72.0 0.9 4 / 4

Erythritol 3.69 / 74.9 0.867 3 / 3

Galactitol 3.66 / 72.6 0.65 3 / 3

Glycine 3.56 / 44.2 0.8 1 / 1

Taurine 3.44 / 38.0 0.9 2 / 2

4-Hydroxyphenylacetic acid 3.44 / 46.1 0.9 3 / 3

Methanol 3.36 / 51.6 0.8 1 / 1

1-Methyluric acid 3.28 / 30.3 0.8 1 / 1

Betaine 3.26 / 55.8 0.8 2 / 2

TMAO 3.26 / 62.0 0.8 1 / 1

Ethanolamine 3.14 / 44.2 0.85 2 / 2

Isocitric acid 2.98 / 51.6 0.8476 5 / 4

Dimethylamine 2.72 / 37.4 0.8 1 / 1

Citric acid 2.54 / 48.1 0.899 2 / 2

Succinic acid 2.40 / 36.7 0.8 1 / 1

Glutamine 2.14 / 29.0 0.8 3 / 3

Acetic acid 1.92 / 26.1 0.8 1 / 1

Spermine 1.81 / 25.4 0.9 5 / 5

Lysine 1.70 / 29.0 0.7 5 / 6

Adipic acid 1.54 / 28.3 0.83 2 / 2

3-Hydroxyisovaleric acid 1.26 / 30.6 0.8 2 / 2

3-Aminoisobutanoic acid 1.20 / 17.6 0.8 4 / 4

*NMR data not reported in HMDB. Correlating 1H signals compatible with literature values [19].
**HSQC data not available in HMDB, compared to data from YMDB [20].
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is in contrast to triple rank correlation NMR which is
purely based on spin-spin correlation [16].
Although HSQC experiments are optimized for direct

coupling 1 J 1H-13C of 145 Hz, long-range cross-peaks
due to large 2 J or 3 J couplings can often be seen. These
peaks are present in the original spectra at low intensities,
but appear clearly in the correlation plots as they are just
as highly correlated to the chosen peak as the peaks
from 1 J 1H-13C couplings. These peaks resemble what you
would expect to see in a 1H-13C HMBC spectrum and
actually provide additional information that could benefit
structural assignment. One example of such long-
range cross-peak is 2.27 / 30.4 ppm (1H / 13C) as
noted in Figure 3 for phenylacetylglutamine. Naturally, for
metabolites at low concentration, these peaks fall below
the detection limit.
Merging all the produced correlation plots gives the

combined spectrum shown in Figure 2b. This spectrum
also includes peaks from 7 metabolites with only one
HSQC cross-peak, namely acetic acid, dimethylamine,
glycine, methanol, 1-methyluric acid, succinic acid,
and trimethylamine N-oxide (TMAO). These are all
expected urine metabolites and their cross-peaks did
not correlate with any other peaks (with correlation
coefficient >0.8). Correlation plots of each individual
metabolite are available in Additional file 1.
Not all cross-peaks may be accounted for, but the

combined spectrum shows clear resemblance to the real



Figure 3 HSQC correlation plot of phenylacetylglutamine. Correlation plot showing all data points correlating strongly with 7.41 / 131.5 ppm
(1H / 13C) (correlation coefficient higher than 0.8). Correlation to long-range cross-peak is circled. Two cross-peaks are marked with “7” due to
diastereotopic protons in this position.
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HSQC spectrum in Figure 2a. Each HSQC cross-peak is
usually defined by more than one data point, meaning
that each data point or coordinate is likely to correlate
very well with one or more of its neighbors. This explains
why some peaks in Figure 2b appear broader than others,
including the signal from (TMAO) at 3.26 / 62.0 ppm
(1H / 13C) which is slightly phase distorted in some of the
recorded HSQC spectra. Correlation to such clusters of
data points can prove beneficial in cases where the number
of recorded spectra is low, clearly distinguishing correlation
to real cross-peaks from coincidentally correlating data
points (e. g. regions with much overlapping signals).
In biofluids, and especially in urine samples, chemical

shift variation can be substantial due to differences in
ionic strength and pH. However, the current result
shows that spectra from challenging and complex biofluids
can be used to create HSQC correlation plots, without
need for any peak alignment algorithm. However, in
extreme cases chemical shift variation will result in
low correlation between peaks belonging to the same
compound. Peak alignment tools like icoshift [23] adapted
to HSQC-spectra might remedy this. However, our results
show that small deviation of chemical shifts is tolerable
and the robustness of the method is demonstrated by
using non-peak aligned spectra.
Selecting only one data point within each peak to
create correlation plots proved very satisfactory. However,
the method could be further expanded by selecting
multiple data points for each cross-peak (e.g. all
points within predefined 1H and 13C NMR chemical shift
ranges), generating multiple correlation plots that could
be merged into one. For this merged correlation plot
we should expect more clusters of actually correlated
cross-peaks, distinguishing them from coincidentally
correlating data points.
Structure elucidation by an HSQC spectrum alone is a

difficult task since it lacks the necessary long range
couplings needed to identify extended spin systems.
Regardless, HSQC spectra of individual metabolites
represent useful fingerprints for structure confirmation,
especially with more reference spectra like those from
HMDB becoming available. When real reference spectra
are not available, the HSQC-correlation plots may be
compared to calculated spectra from quantum mechanic-
ally based NMR prediction software. In principle, similar
correlation plots could be produced from other 2D NMR
spectra like COSY, TOCSY or HMBC. If sample integrity is
preserved during acquisition, metabolite variation should
be identical within each type if 2D spectrum. This implies
that a selected HSQC cross-peak not only correlates with
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other HSQC cross-peaks belonging to the same com-
pound, but also e.g. the corresponding COSY cross-peaks.
Combining 2D NMR spectra this way constitutes a power-
ful tool for the elucidation of novel compounds without
tedious and often difficult chromatographic separation.

Conclusions
In this paper, we have shown how covariance analysis of
2D 1H-13C HSQC spectra can be used to create sub-
spectra from individual metabolites in complex human
biofluids. These sub-spectra are derived from the variation
in metabolic composition within a series of spectra and do
not depend on long–range magnetization transfer between
spins. As a result, HSQC cross-peaks from isolated
spin-system, separated by magnetically silent regions,
are effectively displayed in the same plot. From the
post-prostatic palpation urine spectra, 23 metabolites
were easily identified by their sub-spectra. The results
demonstrate that HSQCcos in general is a useful tool
for identifying key metabolites in biofluids, producing
HSQC-spectra resembling pure compounds without
chromatographic separation. These spectra provide useful
fingerprints for database queries. If combined with similar
analyses of additional 2D NMR datasets such as COSY
and/or TOCSY, complete structure elucidation could be
achieved without isolating the individual components.
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