
Bansal and Libiger BMC Bioinformatics  (2015) 16:4 
DOI 10.1186/s12859-014-0418-7

METHODOLOGY ARTICLE Open Access

Fast individual ancestry inference from DNA
sequence data leveraging allele frequencies
for multiple populations
Vikas Bansal1,2* and Ondrej Libiger2,3

Abstract

Background: Estimation of individual ancestry from genetic data is useful for the analysis of disease association
studies, understanding human population history and interpreting personal genomic variation. New, computationally
efficient methods are needed for ancestry inference that can effectively utilize existing information about allele
frequencies associated with different human populations and can work directly with DNA sequence reads.

Results: We describe a fast method for estimating the relative contribution of known reference populations to an
individual’s genetic ancestry. Our method utilizes allele frequencies from the reference populations and individual
genotype or sequence data to obtain a maximum likelihood estimate of the global admixture proportions using the
BFGS optimization algorithm. It accounts for the uncertainty in genotypes present in sequence data by using
genotype likelihoods and does not require individual genotype data from external reference panels. Simulation
studies and application of the method to real datasets demonstrate that our method is significantly times faster than
previous methods and has comparable accuracy. Using data from the 1000 Genomes project, we show that estimates
of the genome-wide average ancestry for admixed individuals are consistent between exome sequence data and
whole-genome low-coverage sequence data. Finally, we demonstrate that our method can be used to estimate
admixture proportions using pooled sequence data making it a valuable tool for controlling for population
stratification in sequencing based association studies that utilize DNA pooling.

Conclusions: Our method is an efficient and versatile tool for estimating ancestry from DNA sequence data and is
available from https://sites.google.com/site/vibansal/software/iAdmix.

Keywords: Admixture estimation, High-throughput sequencing, Allele frequencies, Maximum likelihood, Ancestry,
BFGS algorithm

Background
Allele frequencies at most loci in the human genome
differ between populations as a result of human demo-
graphic history and genetic drift [1]. Individuals can be
grouped into genetic clusters that correspond to major
geographic regions using information about genotypes at
multiple loci [2]. Individuals whose ancestors originated
in different populations, and who are, therefore, admixed,
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exhibit ancestry associated with multiple different genetic
clusters or populations. For example, the majority of
African Americans possess 10-20% of their genetic ances-
try consistent with European genetic background with the
remainder of their ancestry being African [3].
Estimating the unknown admixture proportions of an

individual is valuable for understanding human popula-
tion history as well as controlling the rate of false associa-
tions in disease association studies by avoiding or correct-
ing for population stratification, i.e. differences in ancestry
between cases or controls [4,5]. A widely used approach
to correct for population stratification is to include esti-
mates of admixture proportions for each individual as
covariates in statistical models testing for association [6].
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Two types of methods have been developed for the anal-
ysis of ancestry and population structure using genetic
data: model-based clustering methods such as STRUC-
TURE [7], FRAPPE [8] and ADMIXTURE [9], and princi-
pal component analysis (PCA) [10]. Model-based cluster-
ing methods model a population using allele frequencies
at multiple loci and each individual’s genome as an admix-
ture of alleles from different populations.
Given a fixed number of clusters (populations), K ,

these methods use an unsupervised clustering approach
to simultaneously infer the allele frequencies associated
with the K clusters and estimate the relative contri-
bution of the K clusters to each individual’s ancestry.
The low cost of whole-genome genotyping assays has
enabled comprehensive surveys of genetic variation and
these methods have been highly successful in understand-
ing the population structure in many different human
populations [11-15].
Most existing methods for analysis of admixture and

ancestry have been designed to analyze population struc-
ture in an unsupervised manner. Supervised analyses of
admixture can be valuable for estimating accurate admix-
ture fractions for individuals whose ancestral history is
known. For example, accurate admixture fractions for
African American individuals associated with European
and African ancestral populations can be obtained using
ADMIXTURE and similar software only if European and
African individuals are included as reference. Alexander
and Lange [16] have extended ADMIXTURE to carry
out supervised analysis by including genotype data for
individuals who belong to predefined population clusters.
However, supervised analyses of an individual’s genetic
ancestry can be performed using population allele fre-
quencies alone and does not necessarily require individual
level genotype data.
Another limitation of existing methods is that these

methods were designed to process data generated from
genotyping arrays and require precise knowledge of the
genotypes for each individual. As a result, these meth-
ods are not well suited to inferring ancestry from DNA
sequence data where the genotypes may not be known
precisely. As the cost of DNA sequencing has decreased
rapidly, high-throughput sequencing instruments such
as the Illumina HiSeq are being used to sequence
large number of human genomes and disease associa-
tion studies are being pursued using high-throughput
sequencing instead of genotyping arrays [17]. Sequenc-
ing the entire human genome can still be too costly, and
many studies perform low-depth sequencing to obtain
information about variants and genotypes. For example,
the 1000 Genomes project has performed low-coverage
(2-4 x) whole-genome sequencing for thousands of indi-
viduals from diverse populations [18]. Other studies uti-
lize targeted sequencing where only specific regions of

the genome, e.g. the coding regions of genes, are tar-
geted for sequencing. Interestingly, a significant fraction
of the reads derived from targeted sequencing fall out-
side of the targeted regions. Various studies have shown
that 30-50% of the reads map outside target regions [19].
Each off-target read that covers a single nucleotide poly-
morphism (SNP), for which reference population allele
frequency information exists, is weakly informative about
the genotypes of the individual, and can be used to infer
ancestry.
With the increasing use of high-throughput sequencing

for studies of human disease and population history, there
is a need for computationally efficient methods for ances-
try inference that can effectively utilize existing infor-
mation about allele frequencies associated with different
human populations and can work not only with geno-
types but also with DNA sequence reads. Recognizing this
challenge, several methods for ancestry inference from
sequence data have recently been developed [20-22]. The
NGSadmix method [20] essentially extends the ADMIX-
TURE method to work directly with sequence data using
genotype likelihoods. Wang et al. [22] have developed a
new method for estimation of individual genetic ances-
try using analysis of sequence reads that compares each
sequenced individual to a reference panel of individuals
using principal-component analysis (PCA). This method
simulates sequence reads for each reference individual
and uses the simulated data to build a PCA map which is
projected back to the original PCA space. In this paper,
we propose a computationally fast method for estimat-
ing an individual’s global (genome-wide) ancestry using
genotype or sequence data and pre-determined popula-
tion allele frequencies associated with multiple reference
populations. Our method directly incorporates the uncer-
tainty in genotypes by working with genotype likelihoods
calculated from aligned sequence reads. Our method has
some similarities with NGSadmix in the use of genotype
likelihoods to capture uncertainty in genotypes and with
LASER in the use of a reference panel of individuals to
estimate individual ancestry from sequence data. How-
ever, unlike these methods, it does not require individual
genotype data for the reference populations. Using allele
frequencies has two advantages: (1) it eliminates the need
for the reference panel of individuals and the individ-
ual(s) being analyzed to have the same type of genetic
information (genotypes vs sequence reads) and (2) the ref-
erence panel of individuals does not need to be analyzed
again which leads to significant gains in computational
efficiency.
Using simulated datasets, we demonstrate that our

method can accurately infer admixture proportions for
an individual with admixture from multiple continen-
tal populations. Using genotype data from the Human
Genome Diversity Project, we show that the estimates
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of global genetic ancestry obtained using our method
are consistent with those estimated using an exist-
ing method. Using sequence data for admixed indi-
viduals from the 1000 Genomes Project, we demon-
strate that the admixture estimates are high concordant
between whole genome sequence data and exome data.
In addition, our technique compares very favorably with
existing methods in terms of computation time. This
allows us to extend our method to estimate a parsi-
monious set of admixture coefficients using an iterative
approach.

Methods
Previous methods for model-based ancestry analysis [7-9]
perform an unsupervised analysis of the ancestry of mul-
tiple individuals and jointly estimate allele frequencies
for K (where K is user-defined) ancestral populations
and the relative contribution of each ancestral popula-
tion to each individual’s genome. In contrast, our focus
is on estimating the ancestry for a single individual using
information about allele frequencies at a large number
of loci for multiple reference populations. The allele fre-
quencies for the reference populations can potentially
be obtained from previous unsupervised admixture anal-
ysis of individuals from different human populations.
Given an individual’s genotypes at these loci, our goal
is to estimate the admixture coefficients for each pop-
ulation, i.e. the fraction of the individual’s genome that
is derived from that population. We propose to estimate
the admixture coefficients using the maximum likelihood
method.

Likelihood model for admixture coefficients: We
assume that all polymorphic sites are bi-allelic. Given
a SNP with two alleles a and b, a diploid individual
can have one of three possible genotypes: aa, ab and
bb. We represent the genotype Gi for an individual at
SNP i as the number of a alleles (0,1 or 2). Let qij
denote the allele frequency of the a allele at the i-th SNP
in population j. Given k reference or ancestral popula-
tions with known allele frequencies, let aj represent the
admixture proportion for the j-th population and A =
[a1, a2, . . . , ak] be the vector of admixture coefficients.We
define fi = ∑k

j=1 qijaj as the weighted allele frequency
at SNP i given the allele frequencies and admixture pro-
portions. Then, assuming Hardy-Weinberg equilibrium
(HWE), the probability if observing the genotypeGi at site
i is:

p(Gi| fi) =
⎧⎨
⎩

(1 − fi)2 if Gi = 0
2fi(1 − fi) if Gi = 1
fi2 if Gi = 2

(1)

For a given vector of admixture proportions, the log-
likelihood of the observed genotypes g for an individual
can be defined as:

L(A) =
n∑

i=1
ln(Pr(Gi = gi| fi)) (2)

where gi is the observed genotype at site i. The above like-
lihood can be also be written as a function of the genotype
at each site as

L(A) =
[ n∑
i=1

giln(fi) + (2 − gi)ln(1 − fi)
]

+ C

where C is a constant.
The above formula assumes that all SNPs are indepen-

dent or in linkage equilibrium with each other. In practice,
SNPs can be pruned to reduce the linkage disequilib-
rium (LD) between the markers [9]. Given the matrix of
allele frequencies qij (1 ≤ i ≤ n and 1 ≤ j ≤ k) for
k populations, our goal is to determine the vector A =
[a1, a2, . . . , ak] of admixture proportions that maximizes
L(A) subject to the constraints aj ≥ 0 and

∑
j aj = 1.

Maximizing the likelihood using the BFGSmethod
The likelihood function defined above is identical to the
likelihood function used in previous methods [8,9] to
update the admixture proportions given the allele fre-
quencies. Our goal is to develop a computationally fast
method for optimizing the likelihood function. The con-
straints on the admixture proportions (aj ≥ 0 and

∑
j aj =

1) make it difficult to utilize standard optimization tech-
niques. ADMIXTURE uses sequential quadratic pro-
gramming combined with a quasi-Newton acceleration
method to optimize the likelihood function. We utilize
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
to optimize the likelihood function. The BFGS algo-
rithm [23] is a popular quasi-Newton method for solving
non-linear optimization problems that utilizes the first
derivatives of the likelihood function and approximates
the Hessian matrix of the second derivatives.
The constraint

∑
j aj = 1 can be addressed by replac-

ing aj with
aj
S(a) in the log-likelihood function where S(a)

denotes the sum of the admixture coefficients. This cor-
responds to scaling the individual admixture coefficients
by their sum. The first derivates of the likelihood function
can be calculated as:

∂L(A)

∂aj
=

n∑
i=1

[giqij
fi

+ (2 − gi)(1 − qij)
S(a) − fi

]
− 2n

S(a)
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To optimize the log-likelihood function, we utilized
the open source implementation of the L-BFGS-B algo-
rithm [24]. This method can handle simple box con-
straints required for our optimization problem (0 ≤ aj ≤
1 for each admixture coefficient).

Genotype likelihoods for sequence data
In the previous section, we assumed that high quality
genotypes determined via genotyping arrays are available.
However, it may not be possible to determine an individ-
ual’s genotypes with high precision from sequence data,
especially if the depth of coverage is low. For each SNP,
the information about the unobserved genotypes that is
contained in the aligned reads covering the SNP can be
summarized using genotype likelihoods. These genotype
likelihoods correspond to the probability of observing
the sequence reads conditional on the genotype at the
site. Once the sequence reads have been aligned to the
genome, we can determine the genotype likelihoods for
each potential genotype at each site of interest using the
base quality values of the individual reads. Several meth-
ods for calculation of genotype likelihoods have been pro-
posed in the context of SNP calling from high-throughput
sequence data [25-27]. We adopt an approach that is simi-
lar to these models. LetR = {R1,R2, . . .Rn} represent the
set of aligned reads covering a SNP. Let a and b be the two
alleles at this position.
Assuming independence between sequencing errors

from multiple reads, we can define the genotype likeli-
hoods as:

Pr
(
R|Gi = g

) =
∏

j,Rj=a

{
r(1 − ej) + (1 − r)ej

}

×
∏
j,Rj=b

{
(1 − r)(1 − ej) + rej)

} (3)

where g = (0, 1, 2) is the number of a alleles and r = g
2

is the probability of sampling the chromosome with the
‘a’ allele. This assumes equal probability of sampling the a
and b for individuals who are heterozygous. For sequence
data, the probability of sampling the reference allele can
be slightly greater than 50% due to mapping bias. How-
ever, this should not significantly affect the estimation of
the admixture coefficients. The sequencing error proba-
bility, ej, can be estimated using the corresponding base
quality value qj as 10−0.1×qj . With these definitions, we
can define the log-likelihood L(A), i.e. the log of the prob-
ability of observing the sequence reads conditional on the
admixture proportions A as:

L(A) =
n∑

i=1
ln

⎡
⎣ 2∑

g=0
Pr(Ri|Gi = g)Pr(Gi = g|A)

⎤
⎦ (4)

whereRi is the set of aligned reads covering the site i.

Parsimonious estimation of admixture coefficients
Given multiple reference populations, the maximum like-
lihood approach finds the admixture coefficients for each
population that maximize the given likelihood function.
Populations with a non-zero admixture coefficient are
likely to contribute to the individual’s genotypes. However,
in the presence of a large number of reference populations,
some of which are closely related, it can be difficult to reli-
ably estimate which populations contribute significantly
to an individual’s ancestry. Imprecise allele frequency
estimates due to incomplete sampling or the absence
of correct parental populations can also result in non-
zero admixture coefficients associated with populations
that do not actually contribute to the individual’s genetic
ancestry. One approach to identifying the populations
that contribute significantly to the individual’s genetic
ancestry is to estimate standard errors for each estimated
admixture coefficient using a bootstrap approach. The
ADMIXTURE method [9] uses a block bootstrap to esti-
mate standard errors. However, this is computationally
demanding since the likelihood maximization needs to
be performed for several hundred resamples. We imple-
mented a simple but rigorous approach to determine a
parsimonious set of admixture coefficients for an individ-
ual by iteratively removing population(s) for which a non-
zero admixture coefficient does not improve the model
fit significantly. This method is analogous to the back-
ward elimination method for variable selection. We find
the population for which setting the admixture coefficient
to zero does not reduce the best-fit likelihood significantly
using the likelihood ratio statistic. The admixture coeff-
cient for this population is fixed to be 0 and this procedure
is repeated iteratively. A description of the method is as
follows:

1. Calculate the maximum likelihood estimate for the
admixture coefficients A

2. For each population j with a non-zero admixture
coefficient, calculate δj = Lmax − L−j obtained by
calculating the maximum likelihood fit with the j-th
admixture coefficient constrained to be 0

3. determine the population p with the smallest value
of δj

4. Set for admixture coefficient p to be 0 if δp < T
where T is a threshold based on the likelihood
ratio test

5. Repeat Steps (2)-(4) until possible

The threshold T can be chosen according to the desired
level of parsimony in the admixture coefficients. We use a
threshold value of T = 5.414 which corresponds to a p-
value threshold of 0.001 using the chi-square distribution
with one degree of freedom.
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Estimating ancestry from pooled sequence data
High-throughput sequencing of targeted genomic loci
in large numbers of cases and controls is an effective
approach for identifying rare genetic variants that affect
risk for disease. Although next-generation sequencing
technologies have the throughput to generate enough
reads for thousands of individuals, the cost of preparing
individual DNA sequencing libraries prior to sequencing
limits the number of individuals that can be sequenced.
A cost-effective approach for sequencing thousands of
individuals is to pool DNA, in equi-molar proportions,
from multiple individuals together to form pools and
sequence the pools, instead of individuals [28]. This
pooled sequencing approach has been used successfully
to identify disease associated rare variants for a number
of complex diseases: type 1 diabetes [29], inflammatory
bowel disease [30], rheumatoid arthritis [31] and anorexia
nervosa [32].
DNA pooling based association studies, similar to stan-

dard association studies, also require some way of cor-
recting for population stratification. If genotype data from
whole-genome arrays or at ancestry informative markers
is available for each individual, this can be used to iden-
tify outlier individuals and exclude them from the pooled
sequencing. However, generating individual level geno-
type data is costly and reduces the cost effectiveness of
pooling based association studies. Therefore, a method
that can estimate the average ancestry of each pool direct-
ly from the sequence reads would be valuable. The pooled
admixture coefficients can be used to remove pools with
very different ancestry compared to other pools from the
association analysis. In addition, the admixture coeffi-
cients can be used as covariates in association analysis
thereby accounting for population stratification. With this
motivation, we extended our method to work with pooled
sequence data derived from high-throughput sequencing
of ‘artificial’ DNA pools derived by pooling DNA in equal
proportions from multiple individuals.
Similar to diploid individuals, we represent the genotype

Gi of a pool as the number of ‘a’ alleles or chromosomes
at this site. Thus, if the pool has p diploid individuals, the
number of potential pooled genotypes at a bi-allelic site is
2p+1. Due to errors in DNA quantification, there is likely
to be some variance in the proportion of each individual’s
DNA in a pool. Kim et al. [33] used a gamma distribution
to model the variance in the DNA proportions from each
individual in a pool. However, it is difficult to estimate
the proportions without individual genotype data [34]. For
ancestry assessment, it is a reasonable approximation to
assume that each individual contributes equal amount of
DNA to a pool.
Given the aligned sequence reads for each pool, we can

calculate the genotype likelihoods Pr(R|Gi = g) (0 ≤ g ≤
2p) as follows:

Pr(R|Gi = g) =
∏

j,Rj=a
fj

∏
j,Rj=b

(1 − fj)

where

fj = g
2p

(1 − ej) +
(
1 − g

2p

)
ej

These pooled genotype likelihoods can then be used to
calculate the log likelihood L(A) as defined in equation 4.

Results and discussion
Reference populations and allele frequencies
The HapMap 3 data set [12] includes 1,397 individuals
from 11 different populations that have been genotyped
using the Illumina 1M and the Affymetrix 6.0 arrays.
We downloaded genotypes for all the individuals in this
dataset from the HapMap project website (http://hapmap.
ncbi.nlm.nih.gov/) We removed related individuals and
pruned a subset of SNPs based on Linkage Disequilibrium
(LD) (r2 threshold of 0.3) using the Plink software tool [35]
to generate a reduced set of 249,075 SNPs with genotypes
for 1198 unrelated individuals. For each population, allele
counts were calculated for each SNP using plink (–freq
command) and allele frequencies were estimated from the
allele counts.

Simulations
To assess how accurately our method can recover the true
admixture coefficients, we simulated admixed individu-
als using allele frequencies from the HapMap 3 dataset.
We simulated an inter continental admixture scenario
with admixture between the CEU, CHB and YRI popula-
tions. For each individual, the admixture coefficients for
the three populations were sampled uniformly at random
from a 2-dimensional unit simplex (x1 + x2 + x3 = 1)
and the genotypes were simulated using the genotype like-
lihoods defined in Equation 1. We simulated genotypes
for 100 individuals and estimated admixture coefficients
using our method. For each simulated individual, we used
the root mean square error (RMSE) to assess the accuracy
of the admixture coefficients estimated by our method.
The RMSE was calculated using the following formula:

RMSE(â, a) =
√√√√1

k

k∑
i=1

(âi − ai)2

where k is the number of reference populations and ai
is the admixture coefficient associated with population i.
Results from the simulations showed that iAdmix was able
to estimate the admixture coefficients quite accurately
with a mean RMSE of 0.0028 (range from 0.0004-0.015).
The simulations utilized the same set of allele frequen-

cies to estimate the admixture coefficients using iAdmix

http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/
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that were used to simulate the individuals. This does not
capture the variance in the allele frequencies due to finite
sample size of the reference populations. To mimic a
realistic setting with noisy population allele frequencies,
we sampled genotypes for a finite number of individuals
(n = 100) for each population and used the allele frequen-
cies estimated from this sample for admixture analysis
using iAdmix. The genotypes were sampled using the true
allele frequencies. Results using the noisy allele frequen-
cies indicated that admixture proportions associated with
different continents (Europe, East Asia and Africa) can be
estimated with high accuracy (mean RMSE = 0.0037) but
it is difficult to estimate the admixture coefficients associ-
ated with populations within each continental group. For
example, we observed that the European admixture com-
ponent estimated by our method is split between the CEU
and TSI populations. This is likely due to the low differ-
entiation between some populations from the same con-
tinent (e.g. Fst between the CHB and CHD populations
from East Asia is 0.001 while the Fst between the CEU and
TSI populations is 0.004 [12]). We also estimated admix-
ture coefficients using the ADMIXTURE program run in
supervised mode using the simulated genotypes for 100
individuals per population as the reference clusters. The
mean RMSE averaged over 100 simulations was 0.0031,
marginally lower than the mean RMSE for our method.
Overall, the simulations indicated that our method can
estimated admixture coefficients associated with different
continental populations with high accuracy.

Analysis for Mozabite individuals in the HGDP
To evaluate the ability of our method to estimate admix-
ture coefficients from real data, we analyzed genotype
data from 25 individuals from the Mozabite population
in the Human Genome Diversity Panel (HGDP) [11].
We downloaded Illumina genotypes at ∼ 650,000 mark-
ers for these individuals from the HGDP website and

114,056 of these markers were in common with the
reduced set of 249,075 SNPs from the HapMap dataset.
We ran our method, iAdmix, on each individual sepa-
rately using allele frequencies from 8HapMap populations
(the three admixed populations GIH,MXL andASWwere
excluded). The admixture estimates (see Figure 1(a)) show
that all the individuals are admixed with both European
and African components of ancestry. Price et al. [36] ana-
lyzed the same set of individuals using their local ancestry
inference method, HAPMIX, and estimated that the Moz-
abite individuals have approximately 78% ancestry from a
European-related population and 22% from a population
related to sub-Saharan Africa. Our estimates of admixture
coefficients are consistent with the local ancestry based
estimates.
For comparison, we also ran ADMIXTURE (in super-

vised mode using the HapMap reference panel of individ-
uals) on the same dataset (see Figure 1(b)). The European
and African admixture estimates for each individual were
highly consistent between the two methods. For some
individuals, the European component of ancestry using
our method was split between the TSI and CEU popula-
tions. This could reflect one important difference between
the twomethods in how they use data from reference indi-
viduals. Ourmethod finds amaximum likelihood estimate
of the admixture coefficients for each individual using the
fixed set of allele frequencies. In contrast, ADMIXTURE,
in the supervised mode, utilizes data for all individu-
als (both the reference populations and the individual(s)
being analyzed) to estimate the allele frequencies for each
cluster or population and maximize the likelihood func-
tion summed across all individuals. Therefore, the allele
frequencies are determined not only by the genotypes
of the reference individuals but also by the individual(s)
that are analyzed for admixture. To confirm this, we esti-
mated allele frequencies by running ADMIXTURE twice:
(1) using 800 reference individuals simulated using allele

Figure 1 Admixture proportions for 25 Mozabite individuals. The coefficients were estimated using allele frequencies from the HapMap
reference populations and using two methods: iAdmix (a) and ADMIXTURE (b). The population labels are as follows: TSI (blue), CEU (light blue), MKK
(red), YRI (green) and LWK (yellow).
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frequencies for 8 HapMap populations (100 individuals
per population, see previous section) and (2) 800 reference
individuals and 1 additional individual with 100% CEU
ancestry simulated using the HapMap allele frequencies.
Subsequently, we used our method to estimate admix-
ture coefficients for the simulated CEU individual using
the two sets of allele frequencies separately. We found
that using the first set of allele frequencies, the admixture
coefficients for both CEU and TSI were non-zero. In con-
trast, using the second set of allele frequencies, only the
CEU admixture coefficient was non-zero. This was simi-
lar to the results observed in the analysis of the Mozabite
data and provided an empirical validation of our hypoth-
esis regarding the difference in the admixture coefficients
estimated by the two methods.

Estimating ancestry from DNA sequence reads
Next, we assessed the performance of our method on
sequence data from the 1000 Genomes Project [18]. For
this, we utilized 6 individuals from the ASW population
(individuals with African ancestry in SouthWest USA)
whose genomes have been subjected to both low cover-
age whole-genome sequencing and exome sequencing on
the Illumina sequencing platform. We downloaded bam
files with the aligned sequence reads for the 6 individ-
uals from the 1000 Genomes Project website (ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/data/). For each bam
file, genotype likelihoods (defined in equation (3)) were
calculated at each site in the HapMap3 allele frequency
data that had one or more reads covering it. We analyzed

the distribution of the depth of coverage across the sites
using the reads for one individual (see Figure 2). Interest-
ingly, the exome data had at least one read covering 78.2%
of the 249,075 sites. In comparison, 95.8% of the sites had
non-zero read depth using the low-coverage data. We cal-
culated admixture proportions using iAdmix for each of
the 6 individuals (see Table 1) and summed the admix-
ture proportions associated with population within three
continental groups (African, European and East Asian).
We observed very high concordance between the admix-
ture proportions estimated using the low-coverage and
the exome sequence data (root mean square difference
between the two admixture vectors for each individual
ranged from 0.003-0.0064). Unexpectedly, one individual
(NA19625) was estimated to have significant East Asian
related ancestry (16.5%). Analysis of genotype data from
this individual carried out in the HapMap project also
indicated the presence of East Asian ancestry [12], con-
firming our results. Overall, these results demonstrate
the feasibility of directly estimating ancestry from both
whole-genome and targeted sequencing experiments.

Analysis of pooled sequence data
To assess the ability of our method to estimate admix-
ture coefficients from pooled sequence data, we utilized
exome sequence data from the 1000 Genomes Project [18]
to simulate pools. We downloaded bam files contain-
ing exome sequence data for individuals from a Euro-
pean population (Britain, GBR), an East Asian population
(Southern Han Chinese, CHS) and an African population

Figure 2 Distribution of the number of reads covering the 249,075 polymorphic sites in the HapMap3 allele frequency panel using
low-coverage whole-genome and exome sequence data from one individual (NA19704) sequenced in the 1000 Genomes Project.

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/
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Table 1 Comparison of admixture estimates for
individuals from ASW population

SampleID Data type European African East Asian

NA19625 lowcov 0.6657 0.1718 0.1626

exome 0.6672 0.1674 0.1654

NA19700 lowcov 0.8308 0.1692 0

exome 0.8341 0.1656 0

NA19703 lowcov 0.8554 0.1445 0

exome 0.8564 0.1437 0

NA19704 lowcov 0.8622 0.138 0

exome 0.8577 0.1423 0

NA19707 lowcov 0.7397 0.243 0.0173

exome 0.7354 0.2456 0.0189

NA19701 lowcov 0.8447 0.1313 0.024

exome 0.8446 0.1286 0.0268

Admixture estimates were calculated using low-coverage whole-genome
sequence data (lowcov) and exome sequence data for 6 individuals from the
ASW (African-American) population in the 1000 Genomes project.

(Luhya, LWK). We created four pools by merging the
reads from the individual bam files. The first pool con-
tained reads from 20 GBR individuals, the second pool
was composed of reads from 19 GBR individuals and 1
CHS individual, a third pool contained reads from 19 GBR
individuals and 1 LWK individual, and the fourth pool
was comprised of reads from 18 GBR individuals, 1 CHS
individual and 1 LWK individual. The rationale for creat-
ing these simulated pools was to assess the ability of our
method to determine if the ancestry of the individuals in a
pool was homogeneous or if one or more individuals in a
pool had ancestry from other populations. This would be
useful in a case-control association study to identify pools
with non-homogeneous ancestry. To mimic the scale of
a targeted sequencing experiment, we utilized reads that
mapped to chromosome 11 only.
For each pool, we calculated the admixture coeffi-

cients using our method and the allele frequencies from
the HapMap dataset. To maximize overlap between the
sequence reads and the variants in the HapMap dataset,
we utilized all genotyped SNPs instead of the LD pruned
subset of SNPs.
For the pool with the 20 GBR individuals, only the Euro-

pean populations (CEU and TSI) had non-zero admixture
coefficients. For the pool that included reads from a sin-
gle CHS individual, an East Asian population (CHD) had
a non-zero admixture coefficient that was statistically
significant (see Table 2). Similarly, we observed a non-
zero African admixture coefficient for the pool with one
LWK individual and two non-zero admixture coefficients
(corresponding to East Asian and African populations)
in the pool with 2 non-European ancestry individuals

Table 2 Admixture coefficients for simulated pools

Pool composition European East Asian African

20 GBR 1.0 0 0

19 GBR, 1 CHS 0.9465 0.0535 0

19 GBR, 1 LWK 0.9653 0 0.0347

18 GBR, 1 LWK, 1 CHS 0.9116 0.0562 0.0323

39 GBR, 1 CHS 0.9705 0.0295 0

59 GBR, 1 CHS 0.9793 0.0207 0

Pools were constructed using exome sequence data from the 1000 Genomes
data and the admixture coefficients estimated using allele frequencies from 8
HapMap reference populations.

(Table 2). To assess the ability to detect admixture in
larger sized pools, we simulated pools with 40 individ-
uals (39 GBR and 1 CHS) and 60 individuals (59 GBR
and 1 CHS). Our method was able to detect the pres-
ence of East Asian ancestry in the pool with 40 individuals
(expected = 0.0257, observed = 0.0295) as well as the
pool with 60 individuals (expected = 0.0164, observed =
0.0207). These results demonstrated that our method
can reliably detect the presence of individuals with non-
European ancestry in a pool of European ancestry individ-
uals using sequence reads from the pool.
The ability to estimate admixture coefficients is depen-

dent on the number of variants with genotype information
from the sequence reads. For each pool, the number of
SNPs that had non-zero coverage was ∼ 72,000 and of
these, ∼ 3,300 SNPs had an average coverage of 20× or
greater per individual. To assess the accuracy of estimat-
ing admixture coefficients as a function of the number of
SNPs, we analyzed the pool with 19 GBR individuals and 1
CHS individual (East Asian admixture coefficient = 0.05)
with random subsets of SNPs with varying percentage (5-
40%) of the total numbers of SNPs. Not surprisingly, the
standard deviation of the admixture coefficient for the
East Asian ancestry was high (0.0096 for 50 samples) at 5%
and decreased to 0.0032 as the percentage of SNPs used
increased to 40% (see Additional file 1: Figure S1).

Implementation and running time
To optimize the likelihood function, we utilized the open
source implementation of the L-BFGS-B algorithm by Zhu
and colleagues [37]. The computational complexity for
each iteration of the BFGS algorithm is O(nkp) where n
is the number of SNPs, k is the number of reference pop-
ulations and p is the pool size. However, the total run
time depends on the number of iterations required for
the convergence of the BFGS optimization. The BFGS
method was run until the difference between successive
log-likelihoods was less than 0.00001. The same conver-
gence criterion has been used by previous methods [9].
In all the evaluations using both real and simulated data,
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the number of iterations for convergence was typically 20-
30 and did not exceed 50. We initialized the admixture
coefficients with random values between 0 and 1. Empiri-
cal evaluation showed that the optimization converged to
the same final solution regardless of the initial admixture
coefficients.
The main method was implemented in C and the input

and output files were processed using Python. To calcu-
late genotype likelihoods for variant sites from BAM files,
we implemented a custom program using the Samtools
library [38].
Our method analyzes one sample at a time and the aver-

age run time per sample for our method (averaged across
100 simulations) was 5.2 seconds for the initial BFGS opti-
mization and 14.8 seconds for the full method including
the parsimonious estimation of admixture coefficients.
In comparison, the average run time for ADMIXTURE
in supervised mode was 87.6 seconds per sample. To
assess the ability of our method to estimate admixture
proportions associated with a large number of reference
populations, we estimated admixture proportions for the
Mozabite individuals using allele frequencies at 16,433
SNPs derived from a reference panel of 26 global pop-
ulations [39]. Our method was able to estimate admix-
ture coefficients with an average run time of 6.4 seconds
per individual compared to 57 seconds for a supervised
ADMIXTURE run (results not shown). All evaluations
were done on a single core of an Intel Xeon processor (2.6
GHz) with 64-bit Linux system.

Conclusions
In this paper, we have described a computationally fast
and efficient method, iAdmix, which can be used to
infer global andmixture proportions from genotype or
sequence data using a reference set of population allele
frequencies. This method employs the BFGS optimiza-
tion algorithm, which makes it possible to estimate an
individual’s admixture proportions from whole-genome
genotype data in seconds even in the presence of multi-
way admixture. Using simulations, we have demonstrated
that our method is able to deconvolute admixture associ-
ated with multiple continental populations with compara-
ble accuracy and significantly better speed then existing
methods. The increased computational efficiency is the
main advance of our method as it allows us to estimate
admixture proportions associated with a large number of
ancestral populations and also to run iAdmix iteratively in
order to obtain parsimonious admixture estimates.
The likelihood model for estimating the admixture pro-

portions assumes Hardy-Weinberg equilibrium (HWE)
to calculate the genotype likelihoods. This model can
be extended to capture deviations from HWE due to
inbreeding [40] and simultaneously estimate the admix-
ture coefficients and the inbreeding coefficient. This may

be useful for analysis of individual genomes from popu-
lations with some level of inbreeding in order to identify
disease causing mutations. Preliminary results indicate
that the admixture coefficients are robust to deviations
from HWE (results not shown) and we plan to investigate
this further in the future.
Another key advantage of our method is that it

uses allele frequencies rather than individual genotypes.
Therefore it can leverage allele frequencies for popula-
tions for which no ‘pure’ or non-admixed exist or are
difficult to obtain. For example, Bustamante and col-
leagues [41] have estimated allele frequencies for Native
American populations using local ancestry analysis of
populations sequenced in the 1000 Genomes Project that
can be used for admixture analysis of Hispanic individ-
uals. The accuracy of ancestry inference by our method
relies on the availability of accurate allele frequencies for
a large number of reference populations. In this paper, we
used allele frequencies calculated from samples collected
as part of the HapMap3 project. While an impressive
undertaking, the populations contained in this resource
are a limited sampling of the global population diversity. A
more comprehensive panel would be extremely useful as
it would allow for a more meaningful and accurate infer-
ence. The 1000 Genomes project is generating sequence
and genotype data on more than 25 different popula-
tions and once completed, it would be a valuable resource
for reference human populations. Many populations have
already been sampled by various research groups, and a
large number of publicly available genotype datasets exist.
The collation of these disparate resources is an important
topic for future work.
The described method addresses the problem of esti-

mating the genome-wide average or global ancestry of an
individual. In many applications, local ancestry, i.e., the
ancestry of a chromosomal segment that has been inher-
ited from an ancestor associated with a single parental
population, is of interest. However, this is a difficult prob-
lem and existing methods for inference of local ancestry
typically consider only two or three ancestral popula-
tions [36,42-44]. Our method was motivated by the need
for estimating ancestry in sequencing based association
studies where global admixture estimates can be used
as covariates in association analysis or to exclude out-
lier individuals. Sequencing data poses new challenges
for admixture estimation but also presents opportunities
for the development of methods that can exploit infor-
mation present in sequence data that may be missing
in genotype data, e.g. relating to rare or population-
specific variants [45]. With the increasing use of high-
throughput sequencing technologies, methods such as
iAdmix and other recently developed methods [20-22,45]
should prove useful for the assessment of ancestry in
studies of human genetic variation and disease.
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