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Abstract

Background: Many DNA copy-number variations (CNVs) are known to lead to phenotypic variations and
pathogenesis. While CNVs are often only common in a small number of samples in the studied population or patient
cohort, previous work has not focused on customized identification of CNV regions that only exhibit in subsets of
samples with advanced data mining techniques to reliably answer questions such as “Which are all the chromosomal
fragments showing nearly identical deletions or insertions in more than 30% of the individuals?”.

Results: We introduce a tool for mining CNV subspace patterns, namely SubPatCNV, which is capable of identifying
all aberrant CNV regions specific to arbitrary sample subsets larger than a support threshold. By design, SubPatCNV is
the implementation of a variation of approximate association pattern mining algorithm under a spatial constraint on
the positional CNV probe features. In benchmark test, SubPatCNV was applied to identify population specific germline
CNVs from four populations of HapMap samples. In experiments on the TCGA ovarian cancer dataset, SubPatCNV
discovered many large aberrant CNV events in patient subgroups, and reported regions enriched with cancer relevant
genes. In both HapMap data and TCGA data, it was observed that SubPatCNV employs approximate pattern mining to
more effectively identify CNV subspace patterns that are consistent within a subgroup from high-density array data.

different sizes from high-density CNV array data.

Conclusions: SubPatCNV available through http://sourceforge.net/projects/subpatcnv/ is a unique scalable
open-source software tool that provides the flexibility of identifying CNV regions specific to sample subgroups of
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Background

DNA copy-number variations — deletion or amplification
of DNA segments — are one type of structural aberrations
that could lead to phenotypic variations and pathogen-
esis. For example, it has been previously reported that
many CNVs are responsible for cellular function abnor-
malities in cancer [1,2]. Being able to characterize and
identify these causal CNVs is essential in understand-
ing the molecular mechanisms of cancer for developing
effective treatment. Advanced high-throughput genomic
technologies for array-based comparative genomic
hybridization (CGH) or genotyping arrays are capa-
ble of running genome-wide studies to characterize
copy-number variations. CNV data analysis is becoming
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increasingly important as more and more CNV data are
accumulated for international effort in cancer in The
Cancer Genome Atlas (TCGA) and population genetics
studies in HapMap [3]. However, as an important source
of genetic variations spanning a larger fraction of genome
than single nucleotide polymorphisms (SNPs), CNV data
was under utilized in those studies. Previous studies
taking advantage of the high-throughput technology to
identify driver CNVs share little agreement and, as such,
the results are difficult to decipher [4,5] given the uncer-
tainties in CNV data analysis by different computational
methods, in particular, heuristic evaluations of an expo-
nential number of combinations of regions of consecutive
probe features in arbitrary subsets of samples. It is evident
that advanced data mining algorithms, similar to those
methods for difficult SNP analysis problems in GWAS
[6], are in great needed for CNV analysis.

In this paper, we introduce a tool for mining CNV sub-
space patterns called SubPatCNV. The pattern mining
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methodology that SubPatCNYV is built upon overcomes
the computational demand of evaluating an exponen-
tial number of patterns. Specifically, SubPatCNV is an
approximate association pattern mining algorithm [7]
under a spatial constraint on the copy-number variation
probe features. The approximate association pattern min-
ing framework allows consideration of large, common
CNV regions across patient subsets as well as exhaus-
tive analysis of all potential aberrant CNV regions. Sub-
PatCNYV provides the flexibility to identify aberrant CNV
regions that are specific to a subset of patients and cor-
relates clinical variables to patient subsets for cancer
subtype discovery.

To evaluate how effectively SubPatCNV can detect
CNV patterns relevant to true patient subgroups as a
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benchmark test, SubPatCNV was applied to analyze a
collection of HapMap samples of high-density arrays.
In the test, SubPatCNV was capable of detecting large
germline CNV patterns in which the support samples
are only specific to one of the four populations in the
HapMap samples. SubPatCNV was further tested on ovar-
ian cancer CNV datasets to demonstrate its application in
cancer studies. SubPatCNV reported CNV regions highly
enriched with cancer-relevant genes.

Methods
This section describes the methodology of SubPatCNV
for data preparation, approximate pattern mining

and implementation. Figure 1 outlines the workflow of
SubPatCNV.
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Figure 1 SubPatCNV workflow on a toy dataset. (a) CNV data are discretized. (b) The approximate pattern mining algorithm (SubPatCNV) is
applied to discover frequent CNV patterns with the support threshold 0.5, error tolerant rate € = 0.2, and merge threshold § = 0.4. The itemsets in
red are pruned by the support threshold or the merging criteria. The green itemsets are the maximum frequent itemsets by the criteria. Note that
by convention approximate pattern mining does not allow any error tolerance for singleton itemsets and thus the itemset {i1} is pruned. (¢) CNV
subspace patterns are visualized as the original log-intensity profiles.
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Data preprocessing

In approximate association pattern mining, the dataset is
first transformed into a m x n binary matrix where m
is the number of items and # is the number of transac-
tions. For array-based CNV data, items are the probes and
transactions are the patient samples and each entry is a
log intensity ratio between the sample and a reference. In
normal DNA regions, the log intensity ratio close to 0 indi-
cates that the sample has the same copy number as the
reference. A copy number gain or loss is indicated by a 1
if the absolute value of the log intensity is larger than a
threshold r and otherwise 0 as shown in Figure la. The
threshold  defines the range of common CNV values and
any values outside of this range are candidate CNVs of
interest. Note that copy number gain and loss are ana-
lyzed separately by pattern mining. The threshold r can be
empirically set to define a predetermined sparsity level in
the dataset, and its value impacts the number of patterns
discovered as shown in the experiments.

Approximate frequent patterns

Consider a binary dataset that consists of transactions
T = {t1,ty,...,t,} and items I = {i1,io,...,iy}. Each ¢;
is a transaction that contains a subset of items from I. If
we represent the dataset as a matrix D and let rows cor-
respond to items and columns correspond to transactions
then D will be a m x n binary matrix where Dj; = 1 if
ij € tx, and 0 otherwise. For any itemset I' C I, its itemset
support is defined as the number of transactions that con-
tainl’,ie, |T':I' Ct,V¢ € T'andI' ¢ t',Vt" € T—T'|.
An itemset is considered a frequent itemset if its support
is greater than a user-specified threshold sup,,y,.

Error tolerant itemsets (ETls)
To account for noise in CNV data, SubPatCNV is based on
a variation of the Dense Itemsets algorithm [8] developed
for discovering approximate frequent patterns that allow a
specified percentage of items to be missing from the item-
set which are often called error-tolerant itemsets (ETIs).
Two kinds of ETIs were defined in [9]: strong and weak.
An ETI [ is said to be weak with tolerance € if 37" C T
W > 1 — €. Such
a definition does not specify the errors in each row and
column and thus it allows for rows or columns to be com-
pletely empty or consisting of all 0’s. An ETI I’ is said to
be strong with tolerance € if 377 C T such that |T’| >
Supmin and Vt € T : % > 1 — e. A strong ETI
adds the constraint that each transaction must contain a
certain fraction of items in order to avoid spurious trans-
actions that contain all 0's. However, strong ETIs often
discover very few useful associations due to their strong
requirements. ETI algorithms have been developed to find
a balance between spurious item requirements and useful
frequent itemset discovery such as Dense itemsets [8].

such that |T| > sup,i, and
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The Dense Itemsets algorithm overcomes spurious
items in the itemset by adding a recursive constraint into
the weak ETI definition. The itemsets discovered by the
Dense Itemsets algorithm are called recursive weak error
tolerant itemsets. In this algorithm an itemset I’ is a recur-
sive weak ETT if I and all subsets of I are weak ETIs. This
algorithm is useful since it adds a natural pruning heuris-
tic in that if an itemset is not a recursive weak ETI then
no superset can be a recursive weak ETT and thus can be
pruned in the combinatorial search.

Subspace patterns in copy-number variation discovery
SubPatCNV discovers recursive weak ETIs of consecu-
tive probe items with two specific changes to the Dense
Itemsets algorithm catered to CNV data. First, we only
consider sets of consecutive probes as candidate frequent
itemsets. Second, we limit itemset merging by requiring
the two itemsets to be similar in support to one another.
Below we outline the two changes.

Traditional approximate association pattern mining
algorithms, such as Apriori [10] and Dense Itemsets [8],
consider all combinations of items to be potentially inter-
esting given that the items do not have meaningful orders
associated with them. Directly applying existing approx-
imate association pattern mining algorithms to CNV
datasets with hundreds of thousands of features would not
be computationally feasible.

To address this computational challenge, SubPatCNV
implements a CNV data specific pruning to take advan-
tage of the positional correlations among consecutive
probes in order to scale to large CNV datasets. Probes
that are nearby to one another tend to be involved in the
same CNV event while probes that are far away do not. As
such, the pruning strategy takes this into account by only
considering sets of items (probes) that are continuous.
SubPatCNYV first calculates the support of each individ-
ual probe and if the support is < sup,,;, then the probe
is not considered a frequent itemset and is discarded.
This is illustrated in Figure la and 1b. In this example,
Supmin = 0.5 and probe i has a support of 0.4 < sup,,iy,
and thus this probe is discarded. SubPatCNV then pro-
ceeds in rounds by considering each individual frequent
itemset from the previous round and tries to merge them
together. Each itemset will be merged if two criterion are
passed. The first criterion utilizes the positional depen-
dence between probes by only allowing frequent itemsets
to be merged with their neighbor frequent itemsets along
the chromosome. If the two frequent itemsets only differ
in the first probe and the last probe, which means that
the itemsets contain consecutive probes, they pass this
positional dependence requirement.

The second criterion is that the two frequent itemsets to
be merged need to share enough overlapping support with
one another. A user-defined parameter § is introduced
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to represent the dissimilarity between two itemsets to
be merged as the percentage of non-overlapping trans-
actions. The two itemsets are required to share exactly
the same support when § = 0.0 and have no support
requirement when § = 1.0. For example in Figure 1b with
8 = 0.4, the itemset {ig, i7} is discarded with 0.8 > sup,;,
because the itemsets {i¢} and {i7} have support, 1.0 and
0.5 respectively, that differ too much. This requirement
is useful because a frequent itemset might have a high
enough support that it gets merged repeatedly with other
itemsets with much lower support. These itemsets may
have very different signatures and merging them together
would otherwise fail to capture both unique itemsets
individually.

If both criterion are passed then the two itemsets will be
merged together into a larger candidate frequent itemset;
otherwise the itemsets to be merged will stay as indi-
vidual frequent itemsets. Finally, the candidate frequent
itemsets will be subjected to the recursive weak ETI cri-
terion and if an itemset passes this criterion it is deemed
a frequent itemset. Otherwise, the merged frequent item-
set is discarded and the individual frequent itemsets are
kept.

Figure 1a visualizes the frequent itemset merges along-
side the binary matrix. Figure 1b shows the support values
of each candidate frequent itemset and those in red are
discarded for failing to satisfy the criteria or have a sup-
port value less than sup,,;,. The frequent itemsets in green
are those frequent itemsets identified by SubPatCNV as
frequent CNV regions of interest, which are shown as
bi-clusters in Figure 1c.

Usage

We developed and released an open-source toolbox that
implements our SubPatCNYV algorithm through source-
forge [11]. We provide detailed instructions on how
to use the tool and examples on a real dataset. The
tool was built to be easy to use with little to no
preprocessing of the data. The main tool that imple-
ments the SubPatCNV algorithm is called via the com-
mand line, for example, ./subpatcnv chr data
sup eps delta > output where the first argument
chr data is the binarized data for a specific chromo-
some, the second argument sup is the desired support
level, the third argument eps is the weak ETI tolerance,
and the fourth argument delta is the merging thresh-
old. The output can be captured in a plain text file where
each row is a pattern that specifies the sample indices that
support the pattern.

Additionally, we provide shell scripts to set up the file
structure required by the tool and automatically run full
genome experiments for varying values of the arguments.
We also provide MATLAB scripts to support result anal-
ysis and visualization.
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Related work

In the literature, relatively few tools were specifically
developed to identify common CNV regions across sam-
ples. GISTIC [12,13] and its variation JISTIC [14] are two
tools designed to detect causal CNVs of tumor genesis
from a patient cohort. GISTIC [12,13] takes a statis-
tical approach by calculating a (probe-)positional sum-
mary statistic (G-score) for the positional CNVs across
all patients in the dataset. Using this G-score, GISTIC
performs permutation tests and assigns each position a q-
value to evaluate the significance of the CNV in relation
to background rates. Only those positions with a lower
q-value than a user-defined threshold value are retained.
Finally, a “peel-off” heuristic procedure iteratively selects
CNV regions from the retained positions with the greatest
frequency and amplitude within each continuous region
of significant CN'Vs. The selected CNV regions are then
zeroed out in all samples that contribute, and the q-values
are recalculated. The iterative process repeats to grow the
positions into “peak” regions. JISTIC [14] improves upon
GISTIC by introducing a variation of the “peel-off” search
heuristic called “limited peel-off”. JISTIC’s motivation is
that it is expected that the G-score of each probe position
can be decomposed into two parts: the first represents the
peak to be peeled off and the second is the contributions
independent to the peak. Thus, only the sample contri-
butions that make up the first part are subtracted. In this
way, JISTIC peels off the G-score portions that contribute
to the current peak region while leaving the other portions
that contribute to other secondary peaks.

GISTIC and JISTIC identify frequent CNV regions that
might contain loci identified from different patient sub-
groups since calculations of G-scores do not utilize the
positional dependence between probes. Those probes in
the same peak might only be present in different groups
of patient samples. It is reasonable to report those regions
because the adjacent loci might suggest the same func-
tional abnormality such as disruption of the function of
the same gene by different somatic CNVs. However, in
the case of detecting inherited germline CNVs in pop-
ulation genetics, the assumption is less reliable. More-
over, CNV data are often noisy and high-dimensional.
Advanced computational methods are needed to explic-
itly handle the noise in microarray data and to evaluate all
combinations of samples and probes as patterns.

Results

Since there is no ground truth in available large-scale
CNV datasets, directly benchmarking the performance
of frequent CNV discovery is not possible. Instead, we
benchmarked the performance of frequent CNV discov-
ery by SubPatCNV on HapMap data [3] by utilizing the
population information as a measure of the quality of
the discovered frequent CNV patterns. We expect that
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frequent patterns which are true germline CNV patterns
in some population(s) will show population preferences.
To demonstrate SubPatCNV’s applicability to cancer CNV
analysis, we also performed experiments on the TCGA
ovarian cancer dataset.

HapMap data preparation

The affymetrix 500k HapMap data were downloaded from
the HapMap data repository [15]. The data include 30
mother-father-adult child trios from the Yoruba in Ibadan,
Nigeria (YRI); 30 trios of northern and western Euro-
pean ancestry living in Utah from the Centre d’Etude du
Polymorphisme Humain collection (CEU); 45 unrelated
Han Chinese individuals in Beijing, China (CHB); and
45 unrelated Japanese individuals in Tokyo, Japan (JPT).
We grouped the samples into 3 populations (YRI, CEU,
CHB+JPT) with 90 samples in each. We used PennCNV-
Affy protocol from PennCNV [16] to convert raw CEL
files into Log R Ratio (LRR) signal intensity files. The com-
parison focuses on larger patterns of at least size 2 since
it is easy and straightforward to detect frequent single-
probe CNVs. In this section, we use population specificity
on patterns to demonstrate the performance of Sub-
PatCNV and JISTIC. In the classification test, we removed
44 samples with very large variations to retain a subset of
data of high quality (see PCA analysis in Additional file 1:
Figure S2). This subset contains 226 samples with 75 in
CEU, 79 in CHB+JPT, and 72 in YRL

Hyper-parameter selection

Additional file 1: Figure Sla shows the distribution of
the probe intensitie-ratios in the Hapmap data. We set
a threshold 7 as 0.192 to let 10% data to be CNV on
the steep slope of the curve. There are three SubPatCNV
hyper-parameters to tune - sup;,: the sample support
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for CNV patterns; €: the error tolerance of ETL; and §:
non-overlapping between two merged itemsets.

To show the effect of each parameter, we vary one
parameter and fix the other two. In Figure 2, the left plot
shows the higher support threshold used the fewer pat-
terns detected by SubPatCNV. When support is larger
than 35%, no frequent CNV is detected. This observation
might relate to the equal proportions of the three groups
in the data. The middle plot shows that larger ¢ allows
more errors and thus larger patterns to be discovered. The
right plot shows that intuitively, large § encourages detec-
tion of larger patterns since more patterns are allowed to
be merged. However, the relation stops when § is above
0.15. The reason is because amplification and deletion
patterns are relatively sparse (10% among all the probes).
Therefore, the support is weakened or gone in merged pat-
terns as § increases as, after a certain point, there are no
neighbor patterns available to merge.

Population-specific patterns
To assess the quality of detected large frequent CNV
patterns, we measured the population specificity of the
patterns. SubPatCNV was used to generate patterns of
support threshold sup,,;x = 10% or 20% and error toler-
ance € = 0.2 or 0.4. For each pattern of size at least two,
samples are divided into the support group and the non-
support group by the dense itemsets algorithm. Based on
the two groups and the populations, p_values are calcu-
lated with yx2-test for each pattern. In comparison, for
each non-singleton pattern of JISTIC, the support and
non-support groups were identified and then a p_value
was calculated in the same way.

Figure 3 reports the detected patterns by popula-
tion specificity. The left plots show the percentage of
population-specific patterns detected by the methods

§=0.2, £=0.2

4=1.0, sup

- =0.2 sup_. =0.2, e=0.2
min min

total length of patterns
total length of patterns

total length of patterns

0.05 0.1 0.15 0.2 0.25

min

Figure 2 Parameter selection on Hapmap data. The total length of frequent CNV patterns detected under different choices of supmin, € and §
parameters. Each plot shows the total number of probe features in the frequent patterns of size at least 2, 3 and 4.
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Figure 3 Comparison of population specific patterns on Hapmap data. In (a) and (b), the left plots show the ratio of population specific
patterns detected by SubPatCNV and JISTIC under different significance levels in x?-test of each pattern against the populations. SubPatCNV
was tested under several different combinations of € and sup,,;,. The right histograms show the number of population specific and
non-population-specific patterns detected by the two methods with y2-test p_val < 1073,

under the different combinations of sup,; and e.
SubPatCNV detected higher ratio of population specific
patterns in all the combinations of the parameters. With
the least stringent cutoff on p_value at 1073, 55% — 70%
of the patterns detected by SubPatCNV are population-
specific. The lower ratio of population-specific patterns
detected by JISTIC could be due to either the incoher-
ence within the CNV regions or the noise in the array
data. To further explain why SubPatCNV detected more
population-specific patterns, several examples of patterns
are shown and discussed in the next section.

To test whether the large frequent CNV patterns fully
describe genetic characteristics of the populations, we
performed a cross-validation with forward selection to
choose patterns based on the p_values on a set of sam-
ples and then applied leave-one-out classification with
support vector machine on the remaining samples. Note

that patterns with more than one probes are averaged
as one feature in classification. The results are shown in
Figure 4. The large patterns selected by SubPatCNV are
compared with the patterns selected by JISTIC with only
the large patterns (JISTIC-L) or all the patterns including
the singletons (JISTIC-S) in forward selection. When only
10% of data are used to rank the patterns in Figure 4a,
SubPatCNYV clearly identified patterns that are more pre-
dictive of the populations than JISTIC. p_values by t-test
in most of the cases with different number patterns used
for classification are significant by cutoff 0.05. When more
data is available for ranking the patterns in Figure 4b, the
large patterns selected by SubPatCNV are more predic-
tive than the large ones selected by JISTIC and compa-
rable to all the patterns including singletons. Note that
the large patterns by SubPatCNV show smaller variance
compared with the JISTIC singletons. The observations
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suggest that when less data are labeled for pattern selec-
tion for classification, large patterns are usually more
consistent between the set used for pattern selection and
the set used for classification test since large patterns are

often more population specific compared with singletons.
While some singletons might be very predictive, there
are also more non-population specific features selected
with a small label set. When more data is labeled for
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pattern selection, there are less false positive singletons
selected. However, since there are many more singletons
compared with larger patterns, higher variance is also
expect even if the average performance is similar. To bet-
ter illustrate how the selected patterns are predictive of
the populations, Additional file 1: Figure S3 shows a few
cross-validation examples. It is clear that the larger pat-
terns selected by SubPatCNV show high consistency in
the pattern selection set and the classification set.

Figure 5 shows the overlap of frequent CNV patterns
of size at least 2 predicted by SubPatCNV and JISTIC.
Among all the overlapping patterns, a much higher ratio of
population-specific patterns detected by JISTIC are also
detected by SubPatCNV. The comparison shows that Sub-
PatCNV indeed capture many more population-specific
patterns detected by JISTIC.

lllustrations of frequent CNV patterns
To further establish the role of approximate pattern min-
ing in detecting more population-specific patterns, we
illustrate examples of patterns detected by JISTIC and
SubPatCNYV to discuss the potential weaknesses and the
strengths of the two methods.

JISTIC does not explicitly use positional dependence
in pattern discovery, and thus might detect patterns of

inconsistent intensity profiles. Figures 6a and 6b show
two such patterns. By the visualization, it is clear that
the samples support each probe in the whole pattern are
inconsistent. For example, in Figure 6b, for the size-3 dele-
tion pattern, the support samples reported by JISTIC only
show consistency on the first two probes but miss the
third probe. Therefore, this pattern is not a peak reporting
a single CNV event. SubPatCNV builds on approximate
association pattern mining algorithm to accommodate
noise in the pattern. Figure 6¢ and 6d shows two patterns
detected by SubPatCNV with at least 15% support. In the
examples, JISTIC reported fragmentary CNV regions due
to the noise in the data while SubPatCNV accurately cap-
tured complete probe set as a single pattern. Additional
file 1: Figure S9 shows the maximum support under dif-
ferent fraction of probes in a pattern (region). The two
JISTIC patterns have a drastically lower support when
larger fractions (e.g. >50%) of probes are considered,
which indicates that very few samples contain coherent
CNVs in all the probes. The two SubPatCNV have relatively
flat trend indicating higher coherence acrvoss all the probes.
For example, the JISTIC amplification pattern has a 50%
support when one probe is considered and a much lower
7% support when two probes are considered. More such
patterns are shown in Additional file 1: Figure S4 and S5.
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Results on TCGA ovarian cancer data

The TCGA dataset was downloaded from TCGA data-
portal [17]. SNP level 2 tangent data, generated from
Affymetrix Genome-Wide Human SNP Array 6.0 plat-
form. There are 1,737,682 probe measurements from
chromosome 1 to 22. Patient samples were classified into
two groups with survival time less than 1 year as posi-
tive samples and longer than 5 years as negative samples.
In total, 124 patient samples (46 positive and 78 nega-
tive) were included in the experiment. Additional file 1:
Figure S1b shows the data distribution. We set 7 to be
0.6227 to allow a 20% density of the data to be CNV signals
since more CNV events are expected in cancer data. Sub-
PatCNV detected 388,214 patterns, out of which 23.4%

were of size at least two. JISTIC did not scale to this high
density CNV dataset and terminated with errors. By run-
ning JISTIC on each individual chromosome by modifying
the code, we were able to detect 287,908 peak results from
all the chromosomes except chromosome 14 with JISTIC
package. Only about 4.1% of the patterns detected by JIS-
TIC were of size at least two, and most of the patterns are
single probe CNVs.

Figure 7a and 7b show inconsistent CNV regions
reported by JISTIC. Similarly, the samples that support
each probe in one region are not consistent. Figure 7c
and 7d show two large-size patterns detected only by
SubPatCNV. Clear consistent support can be easily identi-
fied. In these patterns, JISTIC reported fragmented CNVs.
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For example, in Figure 7c, SubPatCNV clearly identi-
fied a large amplification region in about one-third of
the patients while JISTIC missed the region by report-
ing five fragmented smaller regions. The plots of support
against the probe ratios in Additional file 1: Figure S10
similarly show that the JISTIC patterns have lower sup-
port while SubPatCNV patterns have relatively stable
supports as the fraction of probes gets larger. More
such patterns are shown in Additional file 1: Figure S7
and S8.

We also correlated the discovered group-specific pat-
terns with ovarian cancer genes. We found 14 pat-
terns with support at least 20% and with a p_value
less than 10~* between the two groups. Table 1 shows
the regions of the CNV patterns and the overlapping
genes, four of which are known ovarian cancer genes.
Low BMPR?2 expression [18] and down-regulated UNC5C
[19] are associated with epithelial ovarian cancer. DLEU1
was related with increased frequency of loss in the
chemoresistant [20] and RNASEH2B had reduced expres-
sion involved in inhibition of gene transcription and

expression [21] in ovarian cancer. The associated GO
annotations of the four genes are shown in Additional
file 1: Figure S11. Collectively, the evidences support that
SubPatCNV is capable of detecting larger CNV events
in subset of patients from high-density cancer CNV
datasets.

Discussions and conclusions

In this paper, we motivate and introduce a new copy-
number variation discovery software tool called Sub-
PatCNV. This tool is based on different fundamentals
compared with other existing methods since it is built
on approximate association pattern mining techniques
and takes advantage of the inherit correlation between
log-intensity values of nearby probes to improve the prun-
ing strategy in order to search through very large CNV
datasets. SubPatCNV are excel in identifying all CNV
events as a coherent regions specific to sample sub-
groups. In Additional file 1: Table S1, we report the overall
density of CNV patterns in the chromosomes. The den-
sities varies by the cutoff for binarization and support
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Table 1 Group-specific CNV patterns detected by SubPatCNV on TCGA ovarian cancer data

Chromosome BP Start BP Stop p_value Gene Type
2 203,309,381 203,309,495 9.9e-05 BMPR2 amp
5 18,404,830 18,405,744 5.7e-06 amp
7 153,041,965 153,042,465 6.6e-06 amp
4 96,394,794 96,395,108 9.1e-05 UNC5C del
4 104,496,565 104,496,585 4.6e-05 del
4 123,047,859 123,049,424 1.1e-05 del
4 10,278,3351 102,787,549 9.1e-05 BANK1 del
13 29,955,805 29,955,844 7.9e-05 MTUS2 del
13 37,798,703 37,799,335 7.4e-05 del
13 50,741,528 50,741,888 3.7e-05 DLEUT del
13 51,515,940 51,516,056 7.9e-05 RNASEH2B del
13 110,545,737 110,546,191 7.9e-05 del
21 17,086,255 17,086,366 5.5e-05 del
21 24,418,912 24,419,862 9.1e-05 del

but are comparable to the 0.5% density of the HapMap
Consortium CNV calls (http://hapmap.ncbi.nlm.nih.gov/
downloads/cnv_data/). For example, when the binariza-
tion is 1% density and the support is 0.1, the overall
density of the CNV patterns is also 0.5%. The comparison
shows that the CNV discovery trends with segmentation
of individual samples or pattern discovery of subgroups
are consistent with the HapMap data.

Note that GISTIC and JISTIC were primarily developed
to identify recurrent CNVs, which are not necessarily
coherent patterns. Thus, the primarily focus of the com-
parison with JISTIC in the experiments on the HapMap
data is to show that SubPatCNV is a more appropriate
tool to identify CNVs in population stratification. The
same conclusion also applies to cancer CNV data if the
primary goal is to detect the same patterns. However,
in general, SubPatCNV probably will not perform bet-
ter than GISTIC or JISTIC to identify recurrent cancer
CNVs regardless of whether the CNVs in a region co-
occur. In addition, another limitation of SubPatCNYV is
absence of the overall significance of the patterns. Eval-
uation of the statistical significance of pattern mining
requires advanced statistical approaches such as swap per-
mutations, multiple testing correction and holdout set
evaluation [22,23], which are often not directly applica-
ble in large real datasets with approximate patterns. Other
advanced methods such as large-margin-based clustering
[24] can detect subsets with globally similar CNV pro-
files without focusing on detecting local patterns. Thus,
SubPatCNYV is a useful unique tool that is highly supple-
mentary to the existing tools.

Recently, the new generations of DNA sequencing tech-
nology also provide short read data for CNV detection.

Previous work demonstrated that when a reference data
is available, CNV detection from the short reads is also
reliable. In the future, we will extend SubPatCNV to
include a second module to handle short read data for the
same analysis.

Availability and requirements

Project name: SubPatCNV

Project website: http://sourceforge.net/projects/subpatcnv/
Operating system(s): Platform independent
Programming language: C++ / MATLAB

Other requirements: None

License: Free

Any restrictions to use by non-academics: None

Additional file

Additional file 1: contains additional experimental results on the
HapMap data and the TCGA data.
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