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Abstract

Background: Protein function prediction is to assign biological or biochemical functions to proteins, and it is a
challenging computational problem characterized by several factors: (1) the number of function labels (annotations) is
large; (2) a protein may be associated with multiple labels; (3) the function labels are structured in a hierarchy; and (4)
the labels are incomplete. Current predictive models often assume that the labels of the labeled proteins are
complete, i.e. no label is missing. But in real scenarios, we may be aware of only some hierarchical labels of a protein,
and we may not know whether additional ones are actually present. The scenario of incomplete hierarchical labels, a
challenging and practical problem, is seldom studied in protein function prediction.

Results: In this paper, we propose an algorithm to Predict protein functions using Incomplete hierarchical LabeLs
(PILL in short). PILL takes into account the hierarchical and the flat taxonomy similarity between function labels, and
defines a Combined Similarity (ComSim) to measure the correlation between labels. PILL estimates the missing labels
for a protein based on ComSim and the known labels of the protein, and uses a regularization to exploit the
interactions between proteins for function prediction. PILL is shown to outperform other related techniques in
replenishing the missing labels and in predicting the functions of completely unlabeled proteins on publicly available
PPI datasets annotated with MIPS Functional Catalogue and Gene Ontology labels.

Conclusion: The empirical study shows that it is important to consider the incomplete annotation for protein
function prediction. The proposed method (PILL) can serve as a valuable tool for protein function prediction using
incomplete labels. The Matlab code of PILL is available upon request.
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Background
The increasing amount of proteomic data produced using
high-throughput technology makes it crucial but chal-
lenging to develop computational models that can identify
hypothetical functions of proteins. Such techniques have
the potential to drive the biological validation and dis-
covery of novel functions of proteins, and to save on the
experimental cost. At the same time, functional anno-
tations of proteins have been incorporated into several
bioinformatics tools (e.g., Panther [1], IntPath [2], and
InterProScan [3]) to investigate the semantic similarity
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between proteins, proteins functional interactions, path-
way enrichment analysis, functional enrichment analysis,
and phylogenetic tree [4,5].
Protein function prediction is a challenging computa-

tional problem, characterized by several intrinsic hard-
ships: the number of function labels is rather large, each
protein can have several labels, and the labels are struc-
tured in a hierarchy and are unbalanced. Furthermore,
function labels associated to proteins are uncertain and
incomplete. Various computational models have been
proposed to address one or more of these issues [3,6-10].
Some models use cost-sensitive learning and hierarchi-
cal classification [8,11], others apply multi-label learn-
ing [12,13], classifier ensemble [8,12] and multiple net-
works (kernel) integration [14] to use the complimentary
information spread across different heterogeneous data
sources. More recent approaches incorporate evolution-
ary knowledge [15], pathways [1,2,16], domains [17], or
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negative examples selection [7,18]. For a complete review
on protein function prediction, see [6,10,19]. Radivojac
et al. [9,19] organized the large scale community-based
critical assessment of protein function annotation, and
suggested that there is significant room for improving
protein function prediction.
Protein function prediction can be viewed as a multi-

label learning problem [7,10,12,20,21]. Recently, multi-
label learning approaches that use the correlation (or
similarity) between function labels have been introduced.
Pandey et al. [22] incorporated label correlation using
Lin’s similarity [23] into the k-nearest neighborhood
(LkNN) classifier; the authors observed that utilizing
the correlation between function labels can boost the
prediction accuracy. Zhang and Dai [24] investigated
the usefulness of functional interrelationships based on
Jaccard coefficients for protein function prediction. Wang
et al. [25] introduced a function-function correlated
multi-label learning method to infer protein functions.
Yu et al. [12] studied a directed bi-relational graph (com-
posed by protein nodes and function label nodes) to
utilize the correlation between function labels for pro-
tein function prediction. Chi and Hou [26] assumed the
label sets of two proteins can influence their similarity and
introduced a Cosine Iterative Algorithm (CIA). In each
iteration of CIA, the function predicted with highest con-
fidence is appended to the label set of a protein. Next,
the pairwise similarity between training proteins and test-
ing proteins is updated based on the extended function
sets. CIA considers the updated pairwise similarity, the
function correlation based on cosine similarity, and the
PPI network topology to predict functions in consecutive
iterations.
Most of these multi-label learning algorithms focus on

exploiting label correlations to boost prediction accuracy,
under the assumption that the labels of labeled proteins
used for training are complete, i.e. no label is missing. Due
to various reasons (e.g., evolving Gene Ontology terms,
or limitations of experimental methods), in practice we
may be aware of some functions only, while additional
functions (unknown to us) may also be associated with
the protein. In other words, proteins are partially labeled.
Learning from partially and multi-label instances (or pro-
teins) can be formulated as a multi-label and weak-label
learning problem [27-29].
Several multi-label and weak-label learning algorithms

have been introduced in the past years. Sun et al. [27]
studied a multi-label and weak-label learning method
called WELL. WELL assumes there is a margin between
instances of different classes and any given label has
a small number of member instances. To make use of
the label correlation among multi-label instances, this
approach assumes that there is a group of low rank
based similarities, and the similarity between instances

of different labels can be approximated based on these
similarities. However, WELL relies on quadratic program-
ming to compute the low rank based similarities and
to make the final predictions. Therefore, it’s computa-
tionally expensive and can hardly make predictions for
samples with a large number of labels. Bucak et al. [30]
proposed a weak-label learning approach called MLR-
GL. MLR-GL optimizes a convex objective function that
includes a ranking loss and a group Lasso loss. MLR-
GL aims at labeling instances with no labels by using
partially labeled instances. Yang et al. [28] introduced a
multi-instance and multi-label weak-label learning algo-
rithm. Yu et al. [29] proposed an approach called ProWL
to predict protein functions using partially labeled pro-
teins. ProWL exploits the label correlation and available
labels of a protein to estimate the likelihood of a missing
function for the protein. ProWL integrates these estima-
tions with a smoothness loss function to replenish the
missing function labels and to predict functions for pro-
teins with no labels. Yu et al. [31] assumed a function label
depends on the feature information of proteins and intro-
duced an algorithm called ProDM. ProDMmaximizes this
dependency to replenish the missing function labels and
to predict functions for unlabeled proteins.
However, these weak-label learning techniques only use

the flat relationships among function labels, and do not
explicitly take into account the hierarchical relationship
among labels. It is widely recognized that the MIPS Func-
tional Catalogue (FunCat) [32] organizes the function
labels in a tree structure and the Gene Ontology (GO)
[33] organizes the function terms (or labels) in a directed
acyclic graph. It is reported that exploiting the hierarchical
relationship among function labels can boost the accu-
racy of protein function prediction [7,8,11,22]. For exam-
ple, Barutcuoglu et al. [11] suggested that organizing the
prediction produced by the binary classifier for each indi-
vidual function label in a Bayes network can improve the
accuracy of gene function prediction. Tao et al. [34] uti-
lized an information theory based metric to measure the
interrelationships between function labels and to deter-
mine whether a certain function label belongs to a protein
or not. However, this method cannot predict functions
for unlabeled proteins, since it only employs the known
annotations of a protein to infer its other potential annota-
tions. Jiang et al. [35] combined the relational PPI network
and the label hierarchical structure to predict consistent
functions by setting the descendants of a function label
as negative whenever this label is set to negative. Pandey
et al. [22] used Lin’s similarity to capture the relation-
ship among hierarchically organized labels. Schietgat et al.
[36] integrated hierarchical multi-label decision trees for
protein function prediction. Valentini [7] post-processed
the prediction made by a binary classifier for each label
according to the true path rule in the GO and the FunCat
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hierarchies, and proposed a method called TPR. Cesa-
Bianch et al. [8] integrated cost-sensitive learning and data
fusion with TPR to further boost the accuracy of protein
function prediction. Valentini [10] advocated in his recent
survey that it is paramount to exploit the hierarchical
relationship among function labels for protein function
prediction.
According to the True Path Rule [7] in GO and FunCat:

(i) if a protein is labeled with a function, then this pro-
tein should be labeled with the ancestor functions (if any)
of this function; (ii) if a protein cannot be labeled with a
function, then this protein should not be labeled with the
descendant functions (if any) of this function. In [29,31],
the incomplete annotation problem was simulated by ran-
domly masking function labels in a flat style, ignoring the
hierarchical relationship between labels. In the simula-
tion, if a function label of a protein is missing, this protein
may still be labeled with the descendant functions of this
function. And in fact, the missing function can be directly
inferred from its descendant function labels.
In this paper, we studied the incomplete label prob-

lem in a hierarchical manner, as opposed to a flat style.
We propose an approach called PILL to predict protein
functions using partially labeled proteins with hierarchical
labels. PILL integrates the hierarchical and flat relation-
ships between function labels to estimate the likelihoods
of missing labels, and the interaction between proteins to
replenish the missing annotations and to predict the func-
tions of unlabeled proteins. Particularly, PILL simulates
the incomplete hierarchical labels by randomly mask-
ing the leaf function labels of a protein, which is closer
to the real situation than the simulation in the previ-
ous study [29,31]. We conducted experiments on three
publicly available PPI datasets, in which each dataset

was annotated with FunCat labels and GO labels. The
experimental results showed that PILL outperforms other
related algorithms on replenishing the missing labels of
partially labeled proteins and on predicting functions for
completely unlabeled proteins.

The incomplete hierarchical label problem
Figure 1 illustrates an example of an incomplete hierar-
chical label problem for proteins annotated with FunCat
labels. A corresponding example for the GO labels is given
in Figure S1 of the Additional file 1. In Figure 1, p1 and
p2 are partially labeled (missing labels are described by a
question mark ?), and p3 is completely unlabeled. Note,
other FunCat labels (i.e., ‘12.03’ and ‘03’) are not really
missing for these proteins, and thus not shown in the
figure; these function labels will also be viewed as candi-
date ‘missing’ labels. The missing labels are leaf function
labels. If a non-leaf function label of a protein is missing,
we can directly append this function label to this pro-
tein from its descendant function labels. Each hierarchy
of non-leaf and leaf function labels is defined with respect
to a single protein. For example, ‘12.04’ is a leaf function
label for p2, but it is a non-leaf function label for p1, since
p1 is labeled with a descendant label (‘12.04.02’) of ‘12.04’.
Our task is to replenish the missing labels of p1 and p2,
and to predict functions for p3. To this end, we define
three kinds of relationships between function labels: (i)
parent-child (e.g., ‘01.03’ is a child function label of ‘01’);
(ii) grandparent-grandson (e.g., ‘01.03.02’ is a grandson
label of ‘01’); and (iii) uncle-nephew (e.g., if we consider
‘01’ as a sibling of ‘12’, although these two labels do not
have an explicit common parent label, ‘12’ is an uncle label
of ‘01.03’). These relationships will be further discussed in
the next Section.

Figure 1 Illustration of incomplete hierarchical labels for proteins annotated with MIPS FunCat labels. A rectangle represents a protein
(pi, i ∈ {1, 2, 3}); an ellipse denotes a function label, and a undirected line between rectangles captures a protein-protein interaction (the more
reliable the interaction is, the thicker the line is). All the functional labels (including the missing function labels denoted by color ellipses with
question marks ‘?’) in the ellipses should be associated with the proteins, but only the functional labels in the white ellipses are known. For better
visualization, other functional labels (i.e., ‘12.03’ and ‘03’, which are not ground-truth labels for these proteins), are not plotted in the Figure.
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Methods
Function correlation definition
A protein often has multiple functions, which are orga-
nized as a tree hierarchy (FunCat) or as a directed acyclic
graph (GO). Some pioneers [7,10,11,22] have demon-
strated that exploiting the hierarchical relationship among
function labels can boost the performance of protein func-
tion prediction. Pandey et al. [22] used the Lin’s similarity
[23] to take advantage of the hierarchical relationship
between function labels. Lin’s similarity measures the sim-
ilarity of two function labels in terms of their proximity
in the hierarchical ontology, as well as their content. It is
defined as follows:

LinSim(s, t) = 2 × log pca(s, t)
log p(s) + log p(t)

, (1)

and

pca(s, t) = min
k∈ca(s,t)

p(k) (2)

s and t are two function labels, p(s) denotes the probability
for a protein to be labeled with s. p(s) can be estimated
from the available number of member proteins of s for an
organism. ca(s, t) is the set of common ancestors of s and
t, and pca(s, t) denotes the probability of the most specific
function label in the hierarchy that subsumes both s and
t. Intuitively, Eq. (1) measures the semantic similarity of s
and t in terms of the content of their minimum subsumer
node in the hierarchy. Clearly, pca(s, t) = 1 if s = t, and
pca(s, t) = 0 when their minimum subsumer is the root
node of the ontology, or the function label corresponding
to the minimum subsumer node is associated with all the
proteins of an organism. LinSim(s, t) can also be viewed as
a correlation measure between s and t. According to this
definition, LinSim(s, t) is large if s and t often co-annotate
the same proteins, and their most specific ancestor label
is close to s and t but far away from the root node. On the
other hand, if the most specific ancestor of s and t is (close
to) the root node, but s and t are far away from the root
node in the hierarchy, LinSim(s, t) will be small.
However, if s is an ancestor of t, taking s as the common

ancestor of t is preferable to any other common ancestor
label, since s is more specific than any other label in the
common ancestor label set, and s also subsumes both s
and t. The more specific the function, the fewer member
proteins this function has, and the smaller the probability
is for a protein to be labeled with this function. There-
fore, we substitute pca(s, t) with psa(s, t), which is defined
as follows:

psa(s, t) = min
k∈sa(s,t)

p(k) (3)

sa(s, t) represents the set of shared ancestors of s and t,
which includes s if t is a descendant label of s, or t if t is an
ancestor label of s. Thus, ca(s, t) ⊆ sa(s, t).We extend Lin’s

similarity to a similarity named HSim(s, t) by substituting
pca(s, t) in Eq. (1) with psa(s, t). If s is an ancestor label
of t, HSim(s, t) is no smaller than LinSim(s, t), since s is
more specific than any function label in ca(s, t) (or p(s) ≤
pca(s, t)). When s and t are siblings (or cousins),HSim(s, t)
and LinSim(s, t) are the same.
sa(s, t) often includes more specific functions (i.e., the

parent function label of t) than ca(s, t), since ca(s, t) ⊆
sa(s, t). If t is missing for a protein, but the ancestor func-
tion labels (including parent function label s) of t are asso-
ciated with this protein, it is easy to see that the missing
label estimation from the parent function is more reliable
than that from other ancestor functions (i.e. grandpar-
ent functions). This property of function label hierarchies
motivates us to estimate the missing labels using HSim
instead of LinSim. The statistics computed in the next
Section supports our rationale.
Nevertheless, when s and t have no shared ancestor

(e.g., the function label in the first level of MIPS FunCat
does not have an ancestor label), psa(s, t) = 0; when
the most specific shared function label is associated with
almost all the proteins (e.g., the function label corre-
sponds to the root node of the GO biological process
sub-ontology hierarchy), psa(s, t) ≈ 1 and HSim(s, t) ≈ 0.
But HSim(s, t) ≈ 0 does not mean that s and t have
no correlation. For example, there are 272 proteins in S.
Cerevisiae labeled with ‘40’ (CELL FATE), 448 proteins
labeled with ‘43’ (CELL TYPE DIFFERENTIATION), and
170 proteins labeled with both ‘40’ and ‘43’. If a protein is
labeled with ‘40’ and it is unknown whether this protein
has ‘43’, we have 170/272 = 62.5% confidence that this
protein is also labeled with ‘43’. However, neither HSim
nor LinSim can provide this confidence. The reason is
that ‘40’ and ‘43’ do not have any shared ancestor label,
and both of them only consider the hierarchical relation-
ship between function labels. In fact, it is observed that
flat label relationships are also beneficial for protein func-
tion prediction [24,25,29]. To overcome this limitation of
HSim(s, t), we introduce a ComSim(s, t) to describe the
correlation between function labels:

ComSim(s, t) =
{
HSim(s, t), if psa(s, t) ∈ (0, 1)
JcdSim(s, t), otherwise (4)

where JcdSim is the similarity based on the Jaccard coef-
ficient JcdSim(s, t) = |N(s) ∩ N(t)|/|N(s) ∪ N(t)|. N(·)
denotes the set of proteins labeled with the correspond-
ing function label and |N(·)| is the cardinality of the set.
From the definition, if s and t do not have shared ances-
tor function labels, ComSim(s, t) is large when they often
co-associated with the same set of proteins; ComSim(s, t)
is small when they seldom co-associated with the same
proteins. When s, t and the most specific shared ances-
tors of these two function labels are always associated
with the same proteins, ComSim(s, t) = 1. In this case,
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JcdSim(s, t) is also set to 1. As such, ComSim captures
both the hierarchical and the flat relationships between
functions.

Statistics of hierarchical function label relationships
From the true path rule of function label hierarchies, it’s
easy to observe that:

• p(s|par(s)) ≥ p(s|gpar(s))
• p(s|gpar(s)) ≥ p(s|uncle(s))

where par(s) denotes the parent function label of s,
gpar(s) is the grandparent function label of s, and uncle(s)
is the uncle (parent’s sibling) function label of s. p(s|par(s))
is the conditional probability that a protein is labeled
with s given that it’s already labeled with par(s). These
equations hold since if a protein is labeled with s, then
this protein is also labeled with the ancestor functions of
s (including par(s) and gpar(s)), and if a protein is labeled
with uncle(s), this protein is also labeled with gpar(s). In
contrast, if a protein is labeled with par(s) (or gpar(s)),
it is uncertain whether this protein is labeled with s (or
uncle(s)).
Based on these rules, we investigate the parent-child

relationship by counting the cases in which a protein is
labeled with both a function label in par(s) and with
s. Similarly, we investigate the grandparent-grandson (or
uncle-nephew) relationship by computing the cases in
which a protein is labeled with both a label in gpar(s)
(or uncle(s)) and with s. The distributions of these three
statistics for proteins in S. Cerevisiae (labeled with FunCat
labels) are shown in the first three boxplots in Figure 2.
In addition, we report p(s|par(s)) − p(s|gpar(s)) in the
fourth boxplot in Figure 2. We also provide the distri-
bution of all pairs of function correlations based on the
proposed ComSim, Lin’s similarity, Cosine similarity, and
Jaccard coefficients on the same protein data in Figure 2.

The corresponding distributions obtained on the S. Cere-
visiae proteins labeled with GO labels are given in Figure
S2 of the Additional file 1. For a fair comparison, all the
zero elements in these likelihoods and similarities are
removed, since some pairwise function labels do not have
the hierarchical (i.e., parent-child) relationships, or are not
associated with the same proteins.
The boxplots of Figure 2 support the relation-

ships p(s|par(s)) ≥ p(s|gpar(s)) and p(s|gpar(s)) ≥
p(s|uncle(s)). If s is missing for a protein, and the protein is
labeled with labels in par(s), gpar(s) and uncle(s), the esti-
mated likelihood of the missing label s from par(s) is more
reliable than that from gpar(s) and uncle(s). The expla-
nation is straightforward: the more specific the function
label is, the fewer member proteins the label has. In other
words, if the function label in par(s) is associated with a
protein, we can ensure that the function label in gpar(s) is
also associated with the same protein, but not vice versa.
Similarly, given that uncle(s) is the sibling of par(s) and
the two share the same parent, if a protein is annotated
with uncle(s), this protein is also annotated with gpar(s).
Similar results are obtained for the S. Cerevisiae proteins
annotated with GO labels (see Figure S2 of the Additional
file 1).
In Figure 2, p(s|par(s)) is more evenly distributed than

p(s|gpar(s)) and p(s|uncle(s)), and it has fewer outliers
than the latter two. We can also observe that the distribu-
tions of the function correlations defined by LinSim and
ComSim are closer to p(s|par(s)) than the correlations
defined by the Cosine similarity and the Jaccard coef-
ficient, and the label correlations based on LinSim and
ComSim are more evenly distributed than the correlations
based on Cosine and Jaccard similarity, since the former
two have fewer outliers than the latter two. ComSim con-
siders both the hierarchical (measured by HSim) and flat
(measured by JcdSim) relationships among labels, and its
margin between 25% and 75% percentiles is wider than

Figure 2 Label relationship statistics and four label similarities on proteins of S. Cerevisiae annotated with FunCat labels. In the figure,
each boxplot describes the distribution of a likelihood (or similarity), the central line is the median, the edges of the box are the 25% and 75%
percentiles, the whiskers extend to the most extreme datapoints that are not considered as outliers, and the outliers are plotted individually as ‘+’.
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that of LinSim. In addition, the overlap between ComSim
and p(s|par(s)) is larger than that between LinSim and
p(s|par(s)). In fact, we also studied the Gaussian function
(exp

(
− (x−μ)2

σ 2

)
, where μ and σ are the mean and stan-

dard deviation of x, x corresponds to a kind of likelihood
or similarity) distribution of these likelihoods and sim-
ilarities, and also observed that ComSim overlaps more
with p(s|par(s)) than with other similarity metrics (not
reported). Since ComSim will be used to estimate the
likelihoods of missing labels, these differences indicate
that ComSim can estimate the missing labels more accu-
rately than the other three techniques. The advantage of
ComSim will also be verified in our experiments.

Objective function
Given n proteins, letK be the number of distinct functions
across all proteins. Let Y = [

y1, y2, . . . , yn
]
be the original

label set, with yik = 1 if protein i has the k-th function,
and yik = 0 if it’s unknown whether this protein has the
k-th function or not. We assume the first l ≤ n pro-
teins are partially labeled and the remaining n− l proteins
are completely unlabeled. We set the normalized function
correlation matrix as Cm(s, t) = ComSim(s,t)∑K

t=1 ComSim(s,t)
.

Based on the definition ofCm, we can estimate the likeli-
hood of amissing function label on the i-th (i ≤ l) partially
labeled protein as follows:

ỹik =
{
yTi Cm(·, k), if yik = 0
1, otherwise (5)

If yik = 0 and the k-th function label has a large correla-
tion with the already known functions of protein i, then it
is likely that the k-th function is missing for this protein,
ỹik is assigned to a large value. ỹi is the label vector for the
confirmed labels (the corresponding entries are set to 1)
together with yi and Cm estimated likelihoods of the miss-
ing labels (for entries corresponding to yik = 0) on the i-th
protein.
Based on ỹi, we can define the empirical loss function

on l partially labeled proteins as follows:

�1(f ) = min
f

l∑
i=1

∥∥fi − ỹi
∥∥2
2

= min
F

∥∥∥(F − Ỹ )TU(F − Ỹ )

∥∥∥2
2

(6)

where fi ∈ R
K is the to be predicted probability likelihood

on the i-th protein, F = [fi, f2, . . . , fn] is the predictions on
n proteins, Ỹ = [

ỹ1, ỹ2, . . . , ỹn
]
is the likelihood matrix for

confirmed labels along with the estimated missing labels
on n proteins, U is an n × n diagonal matrix with Uii = 1
if i ≤ l, and Uii = 0 otherwise.
Proteins with similar amino acid sequences are likely to

share the same functions. Schwikowski et al. [37] observed

that two interacting proteins are more likely to share the
same functions than two proteins with no interaction with
each other. This observation is recognized as the ‘guilt
by association’ rule. Inspired by the work [38] that states
that the labels of an unlabeled instance can be linearly
inferred from the labels of its neighbors, we introduce a
smoothness term to utilize the interactions (or similarity)
between proteins as:

�2(f ) = min
f

n∑
i=1

∥∥∥∥∥∥fi −
∑

pj∈N (pi)
Wijfj

∥∥∥∥∥∥
2

2

= min
F

∥∥∥FT (I − W )T (I − W )F
∥∥∥2
2

s.t.
n∑

j=1
Wij = 1 (7)

where N (pi) is the set of proteins interacting with pi,
Wij is the weight of the interaction (similarity) between
proteins i and j, and I is an n×n identity matrix. Ourmoti-
vation to minimize Eq. (7) is three-fold: (i) if two proteins
i and j are quite similar to one another (or Wij is large),
then the margin between fi and fj should be small, other-
wise there is a big loss; (ii) if protein i has missing labels
and its interacting partners do have those labels, then we
can leverage this information to assist the replenishing
process of the missing labels for protein i; (iii) if protein i
is completely unlabeled, its labels can be predicted using
the labels of its partners. Alternative ways (i.e., based on
functional connectivity or homology between proteins)
to transfer labels among proteins have been suggested in
the literature (see [5,39-41]). These methods can also be
adapted to replace Eq. (7). Since our work focuses on how
to replenish the missing labels and how to predict pro-
tein functions using incomplete hierarchical labels, how
to more efficiently utilize the guilt-by-association rule and
how to reduce noise in PPI networks to boost the accu-
racy (i.e., by enhancing the functional content [42], or by
incorporating additional data sources [5,15,16]), is out of
scope.
Based on Eq. (6) and Eq. (7), the objective function to be

minimized by the PILL algorithm is:

�(F) = tr
((
F − Ỹ

)T U
(
F − Ỹ

))

+ λtr
(
FT (I − W )T (I − W )F

) (8)

where λ > 0 is a scaler parameter that balances the
importance of the empirical loss and the smoothness loss.

Results and discussion
Datasets and experimental setup
We report the results on three PPI networks, namely
CollingsPPI, KroganPPI, and ScPPI. We annotated pro-
teins in these networks according to MIPS FunCat [32]
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and Gene Ontology [33] (Biological Process non-IEA
terms) respectively. The statistic of these preprocessed
datasets is listed in Table 1. The CollingsPPI dataset, for
example, has 1620 proteins labeled with 168 distinct GO
labels and 176 FunCat labels; these proteins in total are
labeled with 22,023 GO labels and 13,320 FunCat labels,
and on average each protein has about 13.59 GO labels
and 8.22 FunCat labels. More details on these datasets and
experimental setup are provided in the Additional file 1.
The label vector of proteins implicitly encodes the hier-
archical relationship among labels. For example, suppose
the entry index corresponding to ‘01.01’ in label vector
yi ∈ R

K is t, and the entry index corresponding to ‘01’
(the ancestor function label of ‘01.01’) is s, if yit = 1, then
yis = 1.
There are no off-the-shelf proteomic datasets that can

be directly used to test the performance of the solution of
the incomplete labels problem, although this problem is
practical and common in real world scenarios. To address
this issue, we assume the labels of the currently labeled
proteins are complete and randomly mask some of the
ground truth leaf functions of a protein; these masked
functions are considered as missing for this protein.
For representation, we use m as the number of miss-

ing functions of a protein. For example, if a protein has
10 functional labels, m = 3 means that three functional
labels are masked for this protein. If a protein does not
have more than m labels, we do not mask all the available
labels and ensure it has one function label. A small num-
ber of proteins in these networks doesn’t have any label;
we keep these proteins in the network to retain the net-
work’s structure, but do not test on them. We introduce
Nm to represent how many labels are missing for all the
proteins for a given setting ofm.

Comparing methods and evaluation metrics
We compare PILL against ProDM [14], ProWL [29], LkNN
[22], TPR [7], MLR-GL [30], CIA [26], and Naive [9].
ProDM and ProWL are designed to replenish the miss-
ing labels and to predict protein functions using partially
labeled proteins; neither explicitly considers the hierar-
chical relationship among function labels. LkNN utilizes
LinSim in Eq. (1) to predict the functions of unlabeled

proteins. TPR uses the true path rule (or hierarchical
relationship) in label hierarchies to refine the predictions
of binary classifiers trained for each label. We use the
weighted version, TPRw, for the experiments. MLR-GL
uses partially labeled instances in the training set to pre-
dict the labels of unlabeled instances. CIA is an iterative
algorithm that uses function correlations based on Cosine
similarity to infer protein functions. Naive, which ranks
functional labels based on their frequencies, is a baseline
approach in the community-based critical assessment of
protein function annotation [9]. It is reported that very
few methods performed above the Naive method. There-
fore, we take the Naive method as a comparing method
for reference. More details about the implementations and
parameter settings of these methods are reported in the
Additional file 1.
The performance of protein function prediction can be

evaluated according to different criteria, and the choice
of evaluation metrics differentially affects different pre-
diction algorithms [9,29]. For a fair and comprehensive
comparison, we used five representative metrics, namely
MacroF1, MicroF1, AvgROC, RankingLoss and Fmax.
These evaluation metrics are extensively applied to eval-
uate the performance of multi-label learning algorithms
and protein function prediction [9,21,29]. The formal def-
inition of these metrics is provided in the Additional file 1.
To keep consistency across all evaluation metrics, we use
1-RankLoss instead of RankingLoss. Thus, the higher the
value, the better the performance is for all the used met-
rics. These metrics evaluate the performance of function
prediction in different aspects, and thus it is difficult for
an algorithm to outperform another technique on all the
metrics.

Replenishing missing function labels
In this section, we conduct experiments to study the per-
formance of PILL on replenishing missing annotations
of n hierarchically and partially labeled proteins. In the
experiments, we consider all the proteins in the dataset as
training and testing data. The experimental results with
m = 1, 3, 5 on CollingsPPI with respect to the FunCat
labels are reported in Table 2 (the best and compara-
ble results are in bold font, with statistical significance

Table 1 Dataset statistics

Dataset #Proteins #FunCat labels #GO labels Avg±Std(FunCat) Avg±Std(GO)

CollinsPPI 1620 176 (13320) 168 (22023) 8.22±5.60 13.59±8.28

KroganPPI 2670 228 (20384) 241 (32639) 7.63±5.81 12.22±8.83

ScPPI 5700 305 (36909) 372 (61048) 6.48±5.71 10.71±8.83

‘#Proteins’ represents the number of proteins in a dataset, ‘#FunCat Labels’ describes the number of distinct FunCat labels of these proteins and the number in the
bracket represents the total number of FunCat labels on all these proteins, ‘#GO Labels’ represents the number of distinct GO labels of these proteins and the number
in the bracket represents the total number of GO labels on all these proteins, ‘Avg±Std(FunCat)’ represents the average number of FunCat labels for a protein in a
dataset and the standard deviation, ‘Avg±Std(GO)’ represents the average number of GO labels for a protein in a dataset and the standard deviation.
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Table 2 Results of replenishingmissing labels on CollinsPPI wrt

Metric m(Nm) PILL ProDM ProWL LkNN TPRw Naive

MicroF1

1(1526) 93.91±0.11 83.30±0.30 90.31±0.08 44.07±0.14 50.00±0.12 29.00±0.01

3(4330) 81.70±0.29 72.16±0.77 78.38±0.23 41.61±0.16 43.60±0.18 29.77±0.13

5(6580) 70.53±0.31 60.10±1.01 66.61±0.16 37.54±0.21 36.79±0.13 30.09±0.06

MacroF1

1(1526) 89.29±0.25 69.53±0.40 85.75±0.34 34.23±0.21 43.33±0.15 4.70±0.01

3(4330) 70.19±0.63 60.78±1.73 69.03±0.46 29.23±0.48 35.45±0.39 5.06±0.04

5(6580) 55.32±0.94 45.37±1.90 52.95±0.59 24.12±0.62 27.06±0.75 5.13±0.05

AvgROC

1(1526) 99.47±0.01 97.44±0.06 98.27±0.09 66.14±0.05 69.67±0.18 49.44±0.00

3(4330) 97.77±0.16 93.86±0.44 93.35±0.18 64.86±0.11 64.93±0.21 49.44±0.00

5(6580) 94.64±0.33 87.03±1.04 86.24±0.49 63.25±0.34 60.41±0.36 49.44±0.00

1-RankLoss

1(1526) 99.43±0.03 96.80±0.04 98.55±0.05 69.38±0.04 55.75±0.14 79.33±0.04

3(4330) 97.58±0.11 92.15±0.26 94.62±0.17 66.09±0.27 46.90±0.47 76.72±0.22

5(6580) 94.55±0.27 86.63±0.67 89.30±0.25 59.65±0.65 36.88±0.41 74.52±0.41

Fmax

1(1526) 90.88±0.07 76.28±0.31 80.49±0.34 42.74±0.09 58.43±0.36 28.32±0.00

3(4330) 76.82±0.10 67.39±0.84 66.14±0.29 42.16±0.25 51.12±0.50 27.93±0.01

5(6580) 66.11±0.50 56.26±4.01 57.76±0.52 40.39±0.37 44.01±0.53 27.04±0.00

FunCat labels.m is the number of missing labels for a protein and Nm in the bracket is the total number of missing labels for all the proteins. The numbers in boldface
denote the best performance.

examined by a pairwise t-test at 95% significance level).
Other results on CollingsPPI, KroganPPI and ScPPI are
reported in Tables S1-5 of the Additional file 1. For each
setting of m, the experiments are repeated 20 times. In
each run, themasked labels of a protein are randomly cho-
sen from the leaf function labels of the same protein, and
these masked labels are considered as missing for testing.
If s is a non-leaf function label of a protein, whenever its
descendant function labels are all missing (or masked), s
turns to be a leaf function label and can be masked for this
protein.
From the results reported in these Tables, we can

observe that PILL outperforms other competitive meth-
ods across all the evaluation metrics in most cases. In
summary, out of 90 configurations (3 datasets× 2 kinds of
labels × 5 evaluation metrics × 3 settings ofm), PILL out-
performs ProDM85.56% of the cases, outperforms ProWL
91.11% of the cases, ties with them 4.44% and 4.44% of the
cases, and loses to them in 5.56% and 4.44% of the cases,
respectively. PILL outperforms LkNN, TPRw and Naive in
all configurations. Taking MacroF1 on CollingsPPI anno-
tated with FunCat labels, for example, PILL on average
is 23.30% better than ProDM, 4.27% better than ProWL,
147.33% better than LkNN, and 106.61% better than
TPRw. These results corroborate the effectiveness of PILL
on replenishing the missing labels.
PILL largely outperforms ProDM and ProWL, even if

the latter two also leverage correlation between function
labels and the interaction between proteins. The reason is
that ProDM and ProWL use the Cosine based similarity

to define the correlation between function labels, and they
do not explicitly make use of the hierarchical relationship
among labels. Since the label vector implicitly encodes the
hierarchical relationship of labels to some extent, ProDM
and ProWL can achieve a result comparable (or a slightly
better) to PILL in few cases.
LkNN and TPRw explicitly utilize the hierarchical rela-

tionship among labels, but they are not able to compete
with PILL, ProDM and ProWL. The cause is two fold: (i)
LkNN and TPRw assume that the labels of the labeled
proteins are complete, and they use partially labeled pro-
teins to predict missing labels without estimating the
missing labels in advance; (ii) they do not utilize the
flat relationships among function labels. Naive ranks the
functional labels according to their frequency and sets
the frequency as the predicted probability for the labels.
Since the missing labels are ‘leaf ’ functional labels, and
their frequencies are smaller than the ‘non-leaf ’ functional
labels, Naive achieves the lowest AvgROC and MacroF1
scores, a medium 1-RankLoss score, and almost the lowest
Fmax and MicroF1 scores among the comparing meth-
ods. Naive performs better than some methods in few
cases, but it is outperformed by PILL by a large margin
across all the evaluation metrics. These results show that
PILL can exploit the hierarchical and flat relationships
among labels to boost the performance of protein function
prediction.
Real Life Examples: Another experiment is performed to

study the ability of PILL on providing hypothetical miss-
ing labels. In particular, we use the GO terms associations
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Table 3 Examples of replenished labels for proteins by PILL and their support references

Protein Original label Replenished label Evidence code PMID Date

YOR206W GO:0042255, GO:0000054 GO:0042273 IMP PMID:23209026 2014-05-02

YGR104C GO:0045944,GO:0051123,GO:0001113 GO:0006353, GO:0006369 IMP PMID:23476016 2014-03-28

YML074C GO:0051598,GO:0018208,GO:0000412 GO:0006334 IDA PMID:24297734 2014-05-23

YBL102W GO:0006895 GO:0042147 IGI PMID:10406798 2014-03-14

YJL102W GO:0006414 GO:0032543 ISS PMID:19716793 2014-04-02

‘Original label’ is the available labels of a protein before 2014-02-01, and ‘Replenished label’ is the replenished label by PILL, ‘Evidence code’ is the type of evidence
that supports the go term annotation (or protein label association), ‘Reference’ is the PMID of the support reference for this go term annotation, and ‘Date’ is the date
this go term annotation was added.

(download date: 2014-02-01) of S. Cerevisiae to anno-
tate the proteins in ScPPI (here we do not apply the
filter process to remove the too specific and too gen-
eral labels as in the previous experiments, and these 5700
proteins were annotated with 2381 distinct biological pro-
cess labels). We use PILL to replenish the missing labels
of these proteins. There are 117 proteins in ScPPI hav-
ing new labels in the updated GO terms annotations
[33](download date: 2014-06-01), and there are 451 newly
appended labels for these proteins. We choose the top 50
function labels (from 2381 distinct labels) as the hypo-
thetical labels for each of these proteins. We observe PILL
can correctly replenish 30.38%(137/451) missing labels,
and if we append the ancestor labels of these 137 labels
to these 117 proteins, 40.80%(184/451) labels are correctly
replenished. These proteins are provided in Additional
file 2, and some examples are reported in Table 3. In the
table, the original (date before 2014-02-01) GO labels and
the replenished ones of a protein, the support reference’s
PMID, the GO term annotation (or protein label associ-
ation) added date and the GO term annotation evidence
code are all listed. Evidence code indicates the type of
evidence that supports the go term annotation, ‘IMP’ is
Inferred from Mutant Phenotype, ‘IDA’ is Inferred from
Direct Assay, ‘IGI’ is Inferred from Genetic Interaction,
and ‘ISS’ is Inferred from Sequence or Structural Sim-
ilarity. These real life examples demonstrate PILL can
confidently provide hypothetical missing labels from a
large number of candidate labels.

Predicting functions for unlabeled proteins
We performed another set of experiments to test the
performance of PILL on predicting functions for com-
pletely unlabeled proteins using partially labeled proteins.
In these experiments, l < n proteins are partially labeled,
and the remaining n− l proteins are completely unlabeled.
PILL cannot estimate the likelihood of missing labels for
these proteins, since no labels are available. PILL makes
use of Cm and the PPI information to replenish the miss-
ing labels for the partially labeled proteins, and then the
initially available labels together with the replenished ones
can be transferred to these completely unlabeled proteins.
We randomly select 70% of the proteins as the training set
and the remaining ones as testing set. For each protein in
the training set, we simulate the setting (m = 3) of incom-
plete labels as in the previous experiments. The experi-
mental results with respect to CollingsPPI are reported
in Table 4 (other results on CollingsPPI, KroganPPI and
ScPPI are reported in Tables S6-10 of the Additional
file 1). All the results in these tables are the average of
20 independent runs; in each run, the training and testing
sets are randomly partitioned, and the masked leaf func-
tion labels in the training set are randomly selected as in
the previous experiments.
From these tables, we can observe that PILL achieves

the best results among all the comparing methods. PILL,
ProDM and ProWL take into consideration the incom-
plete annotation in the training set, and they often out-
perform LkNN, TPRw, and CIA. MLR-GL considers the

Table 4 Prediction results on complete unlabeled proteins of CollinsPPI wrt

Metric PILL ProDM ProWL LkNN TPRw MLR-GL CIA Naive

MicroF1 47.05±1.24 34.44±2.11 37.58±1.24 32.06±1.21 33.79±1.62 28.53±0.87 33.59±2.19 25.47±0.46

MacroF1 29.29±3.02 16.60±4.67 26.11±0.90 20.30±1.51 22.74±1.96 20.58±1.14 23.43±1.94 1.97±0.04

AvgROC 77.48±2.25 64.37±1.27 56.97±1.08 64.45±1.82 61.54±1.67 64.29±1.08 57.18±1.24 49.74±1.26

1-RankLoss 82.64±0.41 77.90±3.66 64.57±1.82 50.10±2.37 42.49±2.02 39.36±1.08 64.07±3.23 76.60±0.67

Fmax 56.57±1.12 26.05±7.42 16.22±1.00 41.60±0.67 47.42±2.45 40.32±0.74 32.19±1.96 27.52±0.35

FunCat labels.
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Figure 3 The benefit of using function correlation defined by ComSim,HSim, LinSim and Jaccard coefficients on the proteins in CollingsPPI
annotated with FunCat labels. PILL uses ComSim, PILL-HSim utilizes Hsim, PILL-Lin uses LinSim and PILL-Jcd is based on Jaccard coefficients.

incomplete annotation in the training set, but it does not
explicitly use the hierarchical relationship between labels.
Thus, it loses to the competing algorithms. TPRw post-
processes the predictions of binary classifiers according
to the true path rule, and sometimes it achieves com-
parable results to PILL. For a fair comparison with the
other algorithms, we do not apply the true path rule to
refine the predictions made by PILL in Eq. (8). Naive,
a baseline and yet competitive approach in community
based critical assessment of function annotation [9], per-
forms above the comparing methods with respect to some
metrics (i.e., 1-RankLoss and Fmax, which are more favor-
able to the frequency based ranking than other metrics).
However, Naive is outperformed by PILL by a large mar-
gin. Given the superior performance of PILL to Naive,
PILL can serve as a valuable method for protein function
annotation.
From these results, we can draw the conclusion that

it is important to utilize the relationships (including
hierarchical and flat ones) among labels, and to explic-
itly consider the incomplete label problem in protein

function prediction. These results also corroborate the
effectiveness of PILL on predicting protein functions on
unlabeled proteins using hierarchical incomplete labeled
proteins.

The benefit of using hierarchical and flat relationships
between labels
We did another kind of experiments to investigate the
benefit of using the proposed ComSim in Eq. (4). ComSim
not only takes into account the hierarchical relationship,
but also the flat relationship between function labels. For
comparison, we introduce three variants of PILL: (i) PILL-
Jcd is PILL with the function correlation defined by the
Jaccard coefficient; (ii) PILL-Hsim is PILL with the func-
tion correlation defined by HSim using the shared ances-
tors in Eq. (3). (iii) PILL-Lin is PILL with the function
correlation defined by LinSim using the common ancestors
in Eq. (2); From these variants, it is easy to find that PILL-
Jcd does not explicitly use the hierarchical relationship
between labels, and PILL-Hsim and PILL-Lin do not use
the flat relationship between labels. We use the task of

Figure 4 The benefit of using function correlation and Guilt by Association rule on the proteins in CollingsPPI annotated with FunCat
labels. PILL-FC only uses the function correlation between function labels, PILL-GbA only uses the guilty by association rule, and PILL uses both the
function correlation and the guilt by association rule.
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replenishing missing labels to study the difference among
PILL, PILL-Hsim, PILL-Lin, and PILL-Jcd. The experi-
mental results (AvgROC and 1-RankLoss) on CollingsPPI
annotated with FunCat labels are reported in Figure 3.
The results on CollingsPPI and KroganPPI with respect to
other evaluation metrics are reported in Figures S3-5 of
the Additional file 1.
From these figures, we can observe that using LinSim,

HSim (a variant of LinSim) or the Jaccard coefficient
separately often cannot achieve results comparable to
PILL. PILL-Hsim based onHSim uses the shared ancestor
labels, and performs better than PILL-Lin based on Lin-
Sim, which utilizes the common ancestor labels. This fact
supports our motivation to define the HSim using the
shared ancestor labels instead of the common ones. The
superiority of PILL over PILL-Jcd indicates that hier-
archical relationships between function labels are more
important than flat relationships. The larger the num-
ber of missing labels, the larger the performance margin
between PILL and PILL-Jcd is. These observations sup-
port our motivation to use ComSim to exploit both the
hierarchical and flat relationships between labels to boost
the performance.

The benefit of using function correlation and guilt by
association rule
We conducted experiments to study the benefit of using
function correlations and the guilt by association rule. We
define two variants of PILL: (i) PILL-FC just utilizes the
estimated Ỹ , without using the second term (‘Guilt by
Association’ rule) in Eq. (8), and (ii) PILL-GbA just uses
the second term in Eq. (8) and does not use function corre-
lations to estimate themissing labels. The recorded results
(AvgROC and 1-RankLoss) on CollingsPPI with respect
to FunCat labels are given in Figure 4. The results on
CollingsPPI and KroganPPI with respect to other evalua-
tion metrics are reported in Figure S6-8 of the Additional
file 1.
From these results, we can say that using the function

correlation or the guilt by association rule separately can-
not replenish the missing labels as well as PILL. PILL-FC
often achieves better results than PILL-GbA. This fact
shows that using function correlation alone can replen-
ish the missing labels to some extent. From these results,
we can draw the conclusion that both the function cor-
relations and the guilt by association rule are beneficial
to replenish the missing labels of proteins, and PILL can
jointly utilize these two components to boost the perfor-
mance of protein function prediction.

Conclusions and future work
In this article, we investigated the seldom studied (but yet
important and practical) problem of protein function pre-
diction with partial and hierarchical labels. We proposed

an approach, PILL, to replenish the missing labels of par-
tially labeled proteins and to predict functions for com-
pletely unlabeled proteins. Our empirical study shows that
PILL outperforms a range of related methods and PILL
can confidently provide hypothetical missing labels from
a large number of candidate labels.
Some methods have been proposed to explore node-

based (or edge-based) similarities tomeasure the semantic
similarity of functional labels [4,43]. These methods cap-
ture different characteristics of the ontology structure and
correlate with protein sequence similarity, PPI networks,
and other types of genomic data to some extent. As part
of our future work, we are interested in integrating these
characteristics of the functional label structure to accu-
rately estimate themissing labels and predict functions for
unlabeled proteins.

Additional files

Additional file 1: Supplementary file of ‘Predicting protein function
using incomplete hierarchical labels’. This pdf file includes the example
of incomplete hierarchical label problem in the GO hierarchy, the function
label relationship statistics and similarity comparison on GO, the definition
of evaluation metrics, parameters setting and additional experimental
results. This file can be accessed by the link in the reference [44].

Additional file 2: Real life examples. This txt file includes the real life
examples of correctly replenished labels for proteins by PILL. This file can
be accessed by the link in the reference [44].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
GY designed the algorithm, performed the experiments and drafted the
manuscript, HZ conceived the program and finalized the manuscript, CD
participated in revising and finalizing the manuscript. All the authors read and
approved the final manuscript.

Acknowledgments
The authors thank anonymous reviewers and editors for their value comments
on improving this paper. We are also grateful to the authors of the competitive
algorithms for providing their codes for the experimental study. This work is
partially supported by the Research Grants Council of Hong Kong (No. 212111
and 212613), Natural Science Foundation of China (No. 61101234 and
61402378), Natural Science Foundation of CQ CSTC (No. cstc2014jcyjA40031),
Fundamental Research Funds for the Central Universities of China (No.
XDJK2014C044) and Doctoral Fund of Southwest University (No. SWU113034).

Author details
1Department of Computer Science, Hong Kong Baptist University, Kowloon
Tong, Hong Kong, China. 2College of Computer and Information Sciences,
Southwest University, Chongqing, China. 3Department of Computer Science,
George Mason University, Fairfax, VA, USA.

Received: 24 July 2014 Accepted: 11 December 2014

References
1. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene

function analysis with the PANTHER classification system. Nat Protoc.
2013;8(8):1551–1566.

2. Zhou H, Jin J, Zhang H, Yi B, Wozniak M, Wong L. IntPath–an integrated
pathway gene relationship database for model organisms and important
pathogens. BMC Syst Biol. 2012;6(S2):S2.

http://www.biomedcentral.com/content/supplementary/s12859-014-0430-y-s1.pdf
http://www.biomedcentral.com/content/supplementary/s12859-014-0430-y-s2.pdf


Yu et al. BMC Bioinformatics  (2015) 16:1 Page 12 of 12

3. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al.
InterProScan 5 genome-scale protein function classification.
Bioinformatics. 2014;30(9):1236–1240.

4. Pesquita C, Faria D, Falcao AO, Lord P, Couto FM. Semantic similarity in
biomedical ontologies. PLoS Comput Biol. 2009;5(7):e1000443.

5. Zhou H, Gao S, Nguyen NN, Fan M, Jin J, Liu B, et al. Stringent
homology-based prediction of H. sapiens-M tuberculosis H37Rv
protein-protein interactions. Biol Direct. 2014;9:1–30.

6. Pandey G, Kumar V, Steinbach M, Meyers CL. Computational
Approaches to Protein Function Prediction. New York, NY, USA:
Wiley-Interscience; 2012.

7. Valentini G. True Path Rule hierarchical ensembles for genome-wide gene
function prediction. IEEE/ACM Trans Comput Bi. 2011;8(3):832–847.

8. Cesa-Bianchi N, Re M, Valentini G. Synergy of multi-label hierarchical
ensembles, data fusion, and cost-sensitive methods for gene functional
inference. Mach Learn. 2012;88:209–241.

9. Radivojac P, Wyatt TC, Oron TR, Tal RO, Alexandra MS, Tobias W,
Artem S, et al. A large-scale evaluation of computational protein function
prediction. Nat Methods. 2013;10(3):221–227.

10. Valentini G. Hierarchical ensemble methods for protein function
prediction. ISRN Bioinformatics. 2014;2014(Article ID 901419):34.
doi:10.1155/2014/901419.

11. Barutcuoglu Z, Schapire RE, Troyanskaya OG. Hierarchical multi-label
prediction of gene function. Bioinformatics. 2006;22(7):830–836.

12. Yu G, Rangwala H, Domeniconi C, Zhang G, Yu Z. Protein function
prediction using multi-label ensemble classification. IEEE/ACM Trans
Comput Bi. 2013;10(4):1045–1057.

13. Wu J, Huang S, Zhou Z. Genome-Wide Protein Function Prediction
through Multi-instance Multi-label Learning. IEEE/ACM Trans Comput Bi.
2014;99(99):1–10.

14. Yu G, Rangwala H, Domeniconi C, Zhang G, Zhang Z. Protein function
prediction by integrating multiple kernels. In: Proc of Int Joint Conf on
Artificial Intelligence (IJCAI). Beijing, China: AAAI Press; 2013. p.
1869–1875.

15. Cozzetto D, Buchan DW, Bryson K, Jones DT. Protein function prediction
by massive integration of evolutionary analyses and multiple data
sources. BMC Bioinformatics. 2013;14(S3):S1.

16. Cao M, Pietras CM, Feng X, Doroschak KJ, Schaffner T, Park J, Zhang H,
Cowen LJ, Hescott BJ. New directions for diffusion-based network
prediction of protein function: incorporating pathways with confidence.
Bioinformatics. 2014;30(12):i219–i227.

17. Rentzsch R, Orengo CA. Protein function prediction using domain
families. BMC Bioinformatics. 2013;14(S3):S5.

18. Youngs N, Penfold-Brown D, Bonneau R, Shasha D. Negative Example
Selection for Protein Function Prediction: The NoGO Database. PLoS
Comput Biol. 2014;10(6):e1003644.

19. Wass MN, Mooney SD, Linial M, Radivojac P, Friedberg I. The automated
function prediction SIG looks back at 2013 and prepares for 2014.
Bioinformatics. 2014;14(30):2091–2092.

20. Jiang JQ, McQuay LJ. Predicting protein function by multi-label
correlated semi-supervised learning. IEEE/ACM Trans Comput Bi.
2012;9(4):1059–1069.

21. Zhang ML, Zhou ZH. A Review On Multi-Label Learning Algorithms. IEEE
Trans Knowl Data En. 2014;26(8):1819–1837.

22. Pandey G, Myers CL, Kumar V. Incorporating functional
inter-relationships into protein function prediction algorithms. BMC
Bioinformatics. 2009;10:142.

23. Lin D. An Information-Theoretic Definition of Similarity. In: Proc of Int Conf
on Machine Learning (ICML). Madison, Wisconsin, USA: Morgan
Kaufmann; 1998. p. 296–304.

24. Zhang XF, Dai DQ. A framework for incorporating functional
interrelationships into protein function prediction algorithms. IEEE/ACM
Trans Comput Bi. 2012;9(3):740–753.

25. Wang H, Huang H, Ding C. Function–function correlated multi-label
protein function prediction over interaction networks. J Comput Biol.
2013;20(4):322–343.

26. Chi X, Hou J. An iterative approach of protein function prediction. BMC
Bioinformatics. 2011;12:437.

27. Sun YY, Zhang Y, Zhou ZH. Multi-label learning with weak label. In:
Procof AAAI Conf on Artificial Intelligence (AAAI). Atlanta, Georgia, USA:
AAAI Press; 2010. p. 293–598.

28. Yang SJ, Jiang Y, Zhou ZH. Multi-instance multi-label learning with weak
label. In: Proc of Int Joint Conf on Artificial Intelligence (IJCAI). Beijing,
China: AAAI Press; 2013.
p. 1862–1868.

29. Yu G, Rangwala H, Domeniconi C, Zhang G, Yu Z. Protein Function
Prediction with Incomplete Annotations. IEEE/ACM Trans Comput Bi.
2014;11(3):579–591.

30. Bucak SS, Jin R, Jain AK. Multi-label learning with incomplete class
assignments. In: Proc of IEEE Conf on Computer Vision and Pattern
Recognition (CVPR). Colorado Springs, Colorado, USA: IEEE; 2011. p.
2801–2808.

31. Yu G, Domeniconi C, Rangwala H, Zhang G. Protein Function Prediction
Using Dependence Maximization. In: Proc of European Conf on Machine
Learning and Knowledge Discovery in Databases (ECML/PKDD). Prague,
Czech Republic: Springer; 2013. p. 574–589.

32. Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I,
et al. The FunCat, a functional annotation scheme for systematic
classification of proteins from whole genomes. Nucleic Acids Res.
2004;32(18):5539–5545.

33. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al.
Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:
25–29.

34. Tao Y, Sam L, Li J, Friedman C, Lussier YA. Information theory applied to
the sparse gene ontology annotation network to predict novel gene
function. Bioinformatics. 2007;23(13):i529–i538.

35. Jiang X, Nariai N, Steffen M, Kolaczyk ED. Integration of relational and
hierarchical network information for protein function prediction. BMC
Bioinformatics. 2008;9:350.

36. Schietgat L, Vens C, Struyf J, Blockeel H, Kocev D, Dẑeroski S. Predicting
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