
Wu et al. BMC Bioinformatics  (2015) 16:11 
DOI 10.1186/s12859-014-0439-2

METHODOLOGY ARTICLE Open Access

Nonparametric Bayesian clustering to detect
bipolar methylated genomic loci
Xiaowei Wu1, Ming-an Sun2, Hongxiao Zhu1 and Hehuang Xie2,3*

Abstract

Background: With recent development in sequencing technology, a large number of genome-wide DNA
methylation studies have generated massive amounts of bisulfite sequencing data. The analysis of DNA methylation
patterns helps researchers understand epigenetic regulatory mechanisms. Highly variable methylation patterns reflect
stochastic fluctuations in DNA methylation, whereas well-structured methylation patterns imply deterministic
methylation events. Among these methylation patterns, bipolar patterns are important as they may originate from
allele-specific methylation (ASM) or cell-specific methylation (CSM).

Results: Utilizing nonparametric Bayesian clustering followed by hypothesis testing, we have developed a novel
statistical approach to identify bipolar methylated genomic regions in bisulfite sequencing data. Simulation studies
demonstrate that the proposed method achieves good performance in terms of specificity and sensitivity. We used
the method to analyze data from mouse brain and human blood methylomes. The bipolar methylated segments
detected are found highly consistent with the differentially methylated regions identified by using purified cell subsets.

Conclusions: Bipolar DNA methylation often indicates epigenetic heterogeneity caused by ASM or CSM. With
allele-specific events filtered out or appropriately taken into account, our proposed approach sheds light on the
identification of cell-specific genes/pathways under strong epigenetic control in a heterogeneous cell population.
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Background
DNA methylation is a crucial epigenetic modification
involved in many biological processes, from normal cel-
lular differentiation to disease genesis and progression.
It is part of the epigenetic code recognized as an essen-
tial mechanism to stably silence gene transcription and
inactivate transposable elements [1]. The gold standard
for methylation detection is bisulfite sequencing [2,3].
After the treatment with sodium bisulfite, unmethylated
cytosines are converted to uracils and further replaced
by thymidines in PCR amplification, while methylated
cytosines remain unchanged. The presence of cytosines or
thymidines thus indicates the methylation state of a bisul-
fite treated DNA sequence at the single-base resolution.
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Since 2008 when the first methylome was determined
for Arabidopsis thaliana, massive amounts of bisulfite
sequencing data have been generated with the rapidly
developing high-throughput sequencing technologies.
This promotes the advancement of various analytic tools
which aremostly devoted to bisulfite sequence processing,
mapping [4-7] and methylation profile comparison [8-11].
Most current methylation data sets were derived from

tissue samples with heterogeneous cell population. To
gain an effective representation, it is usually required to
generate multiple sequence reads for each genomic locus.
An important feature of bisulfite sequencing data is that
each sequence read takes on a methylation pattern, herein
defined as the combination of methylation states of neigh-
boring CpG dinucleotides in a DNA strand. A genomic
locus can thus be characterized by the methylation pat-
terns presented in multiple sequence reads, which reflect
distinct epigenetic control mechanisms. Homogeneous
methylation patterns with all sequence reads sharing
the same methylation state indicate strong constraints
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in methylation control for the entire cell population.
In contrast, heterogeneous methylation patterns with a
high degree of methylation variation suggest stochastic
methylation events in the cell population. Recently, we
introduced “methylation entropy” [12] as a measurement
to assess methylation variation in bisulfite sequencing
data. For genomic loci at the same methylation level,
the ones with homogenous methylation patterns show
lower methylation entropy than those with heterogeneous
patterns. We collected data from eight Alu methylomes
and used the data to analyze human cerebellum and
ependymomas [13,14]. Interestingly, we found that some
genomic loci with intermediate methylation level (30%–
70% methylated) exhibited significantly low methylation
entropy as compared with random simulation [12]. These
sequence reads frequently demonstrate bipolar methyla-
tion patterns, that is, sequence reads mapped to the same
locus exhibiting two distinct methylation patterns: some
reads are with heavily methylated CpG sites while other
reads are with hypo-methylated CpG sites.
Bipolar methylation patterns are of particular inter-

est as they may originate from allele-specific methyla-
tion (ASM) or cell-specific methylation (CSM). ASM has
been well recognized in X chromosome inactivation to
achieve dosage balance and genomic imprinting, and it
may arise during gametogenesis for gametic imprints or in
post-implantation embryos for somatic imprints [15,16].
SNPs are the most powerful markers for ASM identifica-
tion. Recently, a mouse ASM map was generated for the
prefrontal cortex tissues derived from reciprocal crosses
between two distantly related inbred mouse strains [17].
Over 20 million SNPs present in the genomes of these
two strains provide a high density SNP map (one SNP
in every 133 bp). A total of 1,952 CG dinucleotides in
55 discrete genomic loci were identified as imprinted. As
for the human genome, it was found that the number
of imprinted regions are very limited as well [16]. These
regions have been well documented in imprinted gene
databases such as the catalogue of Imprinted Genes and
Parent of Origin Effects [18]. Using the mouse ASM map
and the known imprinted gene list as a guide, it is possi-
ble to distinguish different sources of partial methylation.
Besides the advancement in ASM study, CSM events have
also been explored in breadth and depth in many methy-
lation studies to pinpoint the methylation controls under-
lying cell-fate decisions. Genomic regions associated with
CSM have been found in the promoters of lineage-specific
genes [19,20], intragenic CpG islands [21], CpG island
shores [22] and transcription factor binding sites [23].
Current methods for CSM identification relys on calculat-
ing average methylation levels on one or more contiguous
CpG sites from purified cell subsets and making inference
by pairwise comparison. Despite the effectiveness of these
methods, tissues in higher organisms, for instance the

brain, often consist of many different types of cells that are
difficult to be dissociated. The detection of CSM regions
in a heterogeneous cell population still remains a major
challenge.
To fill in the research gap, we develop a two-step statis-

tical approach to detect bipolar methylated genomic loci,
through nonparametric Bayesian clustering and hypothe-
sis testing. In the clustering step, we adopt a fast Dirichlet-
process-mixture (DPM) search method [24] to assign
reads to potential hyper/hypo-methylated groups. The
subsequent testing step then calibrates the separation
of the two groups. Simulation studies demonstrate that
our approach achieves good performance in terms of
specificity and sensitivity. In addition, the DPM search
method is shown to be more accurate in reads assignment
than the traditional k-means clustering and finite mixture
clustering. With ASM loci known and filtered out, our
approach can be used to find cell-specific genes/pathways
under epigenetic control. Through analyzing recently
published data sets on mouse brain and human blood
methylomes, we demonstrate that the proposed approach
can effectively detect CSM regions. These regions are
found highly consistent with the differentially methylated
regions (DMRs) identified by using purified neuron-glia
cells and neutrophil-B cells.

Methods
In bisulfite sequencing, the methylation state of each CpG
site on every mapped read is determined by the pres-
ence of cytosines or thymidines. For a particular sequence
read, the combination of methylation states on neigh-
boring CpG sites defines a certain methylation pattern,
which, for a better understanding, can be thought of as
methylcytosine “haplotype” (see Figure 1 for an example).
Our purpose is to identify genomic regions with bipolar
methylation patterns. To fulfill the purpose, two critical
questions need to be answered: 1) How to build a fea-
sible model for bipolar methylation? 2) How to detect
bipolar methylation with sufficient statistical power? In
what follows, we first introduce a hierarchical model mod-
ified from Peng and Ecker (2012) [25] and from Fang
et al. (2012) [26], then describe an effective statistical
method for the detection of bipolar methylated genomic
loci.

Modeling bipolar methylation
We consider a genomic segment with n CpG sites covered
fully by m sequence reads. Cytosines on each sequence
read are labeled as either methylated or unmethylated.
Therefore, the methylation data on this segment can be
written as a matrix X = (X1, · · · ,Xm)T , where X i =
(Xi1, · · · ,Xin)T is a vector of binary values denoting the
methylation states (1 methylated, 0 otherwise) of read i,
i = 1, · · · ,m. We further assume that the sequence reads
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Figure 1 Promoter methylation pattern of prodynorphin gene in
human brain [27]. This figure shows a genomic region of 95 bp with
9 CpG dinucleotides. Most reads are completely unmethylated (open
circles) or methylated (filled circles), but only a few reads are with
both unmethylated and methylated cytosines.

are derived from k genomic origins, and reads from origin
l share a methylation probability vector pl, l = 1, · · · , k.
Similar to the mixture models [25,26] proposed for mod-
eling ASM, we write the likelihood of observing such
methylation data as

m∏
i=1

L(X i|θ i) =
m∏
i=1

⎡
⎣

n∏
j=1

θ
Xij
ij (1 − θij)

1−Xij

⎤
⎦ , (1)

and represent the methylation probability vector as θ i =
Pγi where P = (p1, · · · ,pk) is a n × k matrix, and γ i is
a binary vector of length k indicating the origin of read i.
For example, if X i comes from origin j, then the jth entry
of γ i is labeled by “1” and elsewhere is labeled by “0”. We
further assume

γ i ∼ multinomial (1, q), i = 1, · · · ,m (2)

where the vector q determines the frequencies that each
read comes from the k origins (or the proportions of the
k origins). Based on this model, whether the methyla-
tion data show a particular pattern (homogeneous, het-
erogeneous or bipolar) depends not only on the origin
of the reads (parameter γ i, i = 1, · · · ,m), but also on
the differentiation of the methylation probability vectors
(parameter pl, l = 1, · · · , k) among different origins.

As a special case, for bipolar methylation, the sequence
reads are assumed to come from two genomic origins
(hyper-methylation or hypo-methylation) with distinct
methylation probabilities. In general, the underlying
epigenetic mechanisms may exhibit more complicated
methylation patterns along the genome. However, due
to the constraints of short read sequencing on read
length and sequencing depth, we may simply concentrate
on bipolar methylation for each segment and interpret
more complicated epigenetic phenomena by the com-
bination of bipolar segments. For this reason, we limit
the scope of this paper to bipolar methylation (i.e. k =
2) for each segment, although the model itself can be
straightforwardly extended to the scenario of k > 2.
Another critical parameter of the model is the choice
of segment length n. Clearly, including more CpG sites
in each segment captures more salient methylation pat-
terns, yet under a given depth of coverage, the avail-
able data contain smaller number of sequencing reads,
which introduces more difficulty on discrimination. In
practice, we consider n = 4, that is, treat every four
CpG sites as a segment. Nevertheless, the segment length
may be adjusted to accommodate special needs in real
data.
Equations (1) and (2) model the methylation data with

different genomic origins (for example, different alleles
or cell types) for a given locus or segment. To ultimately
detect genome-wide bipolar methylated regions, a gen-
eral approach is to first decide whether each segment is
bipolar methylated based on the above model, then merge
the identified, consecutive bipolar segments to bipolar
methylated regions.

Detecting bipolar methylated segments
From a statistical perspective, the determination of a
bipolar methylated segment can be viewed as a two-
sample hypothesis testing problem with group assign-
ment unknown. Therefore, the group assignment (origin)
of each read needs to be inferred first. Some litera-
ture on detecting ASM use the expectation-maximization
(EM) algorithm for reads assignment and then implement
model selection [26] or supervised learning from syn-
thetic methylome [25] to identify differentially methylated
segments between alleles. We note that in general, the
proportion of heterogeneous epigenomes from different
origins is also a unknown parameter (unlike in the ASM
model where the alleles are present in equal proportions),
which makes this model more complicated and often
less identifiable. That is, assigning reads to hyper/hypo-
methylated origins under different proportions may lead
to identical likelihood. Moreover, the follow-up infer-
ence techniques in the literature, model selection or
supervised learning, are not well suited for our hypoth-
esis testing problem. A more effective statistical method



Wu et al. BMC Bioinformatics  (2015) 16:11 Page 4 of 12

is therefore desirable for detecting bipolar methylated
segments.
Our strategy for deciding whether a segment is bipolar

methylated is through a two-step approach: first cluster-
ing the reads into two groups, then testing whether the
two groups share the same mean. In particular, suppose
the m reads are clustered into a hyper-methylation group
G1 and a hypo-methylation group G2, with mean p(1) and
p(2), respectively. We would like to test H0 : p(1) = p(2)

versus Ha : p(1) > p(2). To further take into account the
bipolar behavior, we may modify the null and alternative
hypotheses as: H0 : 0 ≤ p(1)

i − p(2)
i ≤ τ ,∀i versus Ha :

p(1)
i − p(2)

i > τ ,∀i. The parameter τ plays a role in con-
trolling the separation of bipolar groups: the larger it is,
the more conservative the test is on determining whether
the segment is bipolar methylated. The detailed detection
procedure is described as following.
Step 1: Allocate the sequence reads into hyper/hypo-

methylated groups using nonparametric Bayesian cluster-
ing.

(a) Allocatem reads to different clusters using the DPM
search method [24]. This method adopts a fast search
algorithm to find the maximum a posteriori (MAP)
solution (the most likely cluster assignments) to a
DPMmodel for the methylation data. We provide
details for the DPMmodel in Additional file 1 of
Supplementary Material.

(b) We define a bipolar threshold parameter δ for the
methylation probabilities on the CpG sites. For
clusters satisfying the bipolar criterion below,
allocate their reads to two candidate groups.
Mathematically, suppose k clusters C1, · · · , Ck are
generated in the previous step, and
Ci = {ri1, · · · , rimi}, 1 ≤ i ≤ k where rij is the jth read
in the ith cluster. Denote the mean of cluster i by
ci = 1

mi

∑mi
j=1 rij = (ci1, · · · , cin)T . Then candidate

group 1 is defined asH1 = {rij : cil ≤ δ, 1 ≤ l ≤ n}
where δ is a pre-specified parameter. Similarly, the
other candidate group is defined as
H2 = {rij : cil ≥ 1 − δ, 1 ≤ l ≤ n}. Clearly,H1 and
H2 are separated by at least 1 − 2δ at each CpG site.

(c) For clusters which do not satisfy the bipolar criterion,
allocate their reads to the candidate groups based on
their distances (e.g., Euclidean) to the candidate
group means (i.e., equivalent to using the maximum
likelihood discriminant rule). The procedure in Steps
1(b) and 1(c) reduces the clusters into two bipolar
groups. Using mathematical notation, suppose the
means ofH1 andH2 are denoted by h1 and h2,
respectively, then bipolar group 1 is defined as
G1 = H1∪{rij : rij /∈ H1 ∪H2, d(rij,h1) < d(rij,h2)},
and similarly, bipolar group 2 is defined as
G2 = H2∪{rij : rij /∈ H1 ∪H2, d(rij,h1) > d(rij,h2)}.

Step 2: Calibrate the separation of hyper/hypo-
methylated groups by hypothesis testing. Depending on
the depth of coverage, nonparametric (e.g., permutation)
or parametric (e.g., Wald or likelihood ratio) test may be
employed. For example, if using permutation test, we need
to first define an inter/intra-group-distance test statistic
(e.g., inverse of the Davies-Bouldin index), and randomly
permute group identity for the reads to obtain its null dis-
tribution. Then we calculate p-value using the observed
statistic and the null distribution.
We add three important remarks below to further elu-

cidate the proposed method. 1) The clustering step is
essentially equivalent to the E-step in the EM algorithm
[25,26] which estimates membership for each read. How-
ever, because of the less restricted model assumption on
the proportion of epigenomic origins, we do not intend
to maximize the likelihood iteratively but rather adopt a
direct, heuristic clustering for reads assignment. The clus-
tering, as well as the whole bipolar detection performance
will be illustrated by simulation study (see Simulation III).
2) We note that the parameter δ should not be confused
with τ . Although they both help control the separation of
bipolar groups, δ acts as a threshold for choosing candi-
date groups whereas the boundary between final bipolar
groups can be blurred by reads not belonging to candi-
date groups. In practice, when the number of reads m
is small, it may be difficult to set appropriate δ value
to find candidate groups in Step 1(b). As an alternative,
we can adopt k-means (k = 2) clustering to the cluster
means obtained in step 1(a) to form the bipolar groups.
3) In the testing step, due to limited sequencing depth,
most bisulfite sequencing data do not satisfy the conven-
tional “large sample” assumption for parametric testing.
For this reason, permutation test may be more prefer-
able in the second step. The test statistic is chosen to best
characterize the separation of bipolar groups.

Simulation study
We perform three simulation studies. Simulation I is to
assess the type-I error and power of the proposed method
under different settings of parameters. First, we gener-
ate methylation states on a segment of 4-CpG sites using
the hierarchical model introduced in Methods. Guided
by prior knowledge obtained from a recent comprehen-
sive genome-wide study with methylomes derived from
17 mouse tissues [28] (see Additional file 2 in Supplemen-
tary Material for details), we set the following methyla-
tion probabilities in the simulation study. Under the null
hypothesis (non-bipolar, i.e., one cell-type), all the methy-
lation probabilities are sampled from beta(8, 8), withmean
0.5 and standard deviation 0.12. Under the alternative
hypothesis (bipolar, i.e., two cell-types), the methylation
probabilities of the hyper-methylated group and the hypo-
methylated group are sampled from beta(5.96, 0.89) and
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beta(0.72, 4.42), respectively. The methylation probabili-
ties of these two groups vary around means 0.87 (hyper-
methylated) and 0.14 (hypo-methylated) with standard
deviations 0.12 and 0.14, respectively. We then apply the
proposed method to test whether the segment is bipolar
methylated or not, for a pre-specified δ and τ . Repeat-
ing this procedure, we calculate the type-I error rate (false
positive rate) and power (true positive rate). To get a com-
plete evaluation of the detection method under different
settings, these simulations are performed using different
number of reads (small, moderate and large) and differ-
ent cell-type proportions (from low to high). In Simulation
II, we further examine the p-values from bipolar testing
on a 4-CpG segment with 16 reads. This simulation study
provides us an impression about how the bipolar decision
varies with the number of reads taking on methylation
patterns (0, 0, 0, 0) and (1, 1, 1, 1), for different thresholds
δ. In Simulation III, we compare the DPM clustering
method with two other clustering methods: k-means and
Bayesian mixture clustering, in terms of mis-classification
rate of reads assignment and power of bipolar detec-
tion under the alternative hypothesis. The purpose is to
illustrate that the DPM method, as a likelihood-based
clustering method, is more suitable than conventional
distance-based clustering methods in handling methyla-
tion data (i.e., binary vector) clustering.

Real data sets
To further evaluate the performance of our method on
real data, we mix sorted cells to generate heterogeneous
cell populations for two previously published data sets
(the mouse brain data and the human blood data) [19,29]
separately and re-analyze them. The human blood data
sets consist of methylomes from human B cells and
neutrophils, and the mouse brain data sets consist of
methylomes from mouse neuron and glia cells. Two arti-
ficial datasets, human blood mixed dataset and mouse
brain mixed dataset, are created by pooling all reads
for human B cells and neutrophils together and pool-
ing all reads for mouse neuron and glia cells together,
respectively. We then perform sequence read processing
as previously described [29]. In short, low quality bases
are trimmed and adapter sequences are removed. The
processed reads are aligned to the corresponding refer-
ence genomes (mm10 or hg19) using Bismark [6] with
parameters “-n 2 -l 50”. For each data set, the methy-
lation patterns of segments containing four neighboring
CpG dinucleotides are extracted. Our choice of four-CpG
segments for pattern analysis is based on the practical
concern on the read length and coverage of the current
methylome data. As mentioned before, using a length
threshold with less CpG sites will result in more segments
but reduce the capacity to capture the complexity of the
pattern variations. On the other hand, the more CpG sites

are encompassed in a segment, the higher complexity of
pattern variations will be shown in the segment, but at the
same time, the fewer segments in the genome can be ana-
lyzed. For comparison purpose, we first identify two sets
of DMRs for neuron-glia cell pair and neutrophil-B cell
pair, using the segments with at least 10Xs read coverage
from original sorted cells. We then generate two artifi-
cially pooled data sets for blood and brain, and predict
CSM regions from the pooled data sets using the proposed
method. The predicted CSMs using pooled samples are
compared with DMRs identified using paired samples.

Results
Simulation study
Simulation I: Type-I error and power of the proposedmethod
As described inMethods, we generatedmethylation states
on a segment of 4-CpG sites under the null and alterna-
tive hypotheses, for different number of reads and dif-
ferent cell-type proportions. The number of reads are
set to be m = 10, 20, and 100, corresponding to low,
moderate, and high sequencing depth, respectively. The
cell-type proportions w = 10%, 20%, 30%, 40%, 50%, vary-
ing from unbalanced to balanced. Applying the proposed
bipolar detection method with pre-specified δ and τ , we
calculated p-values for the simulated data and obtained
empirical type-I error rate and power based on 5,000 sim-
ulations. Table 1 lists the results when setting δ = 0.35,
τ = 0 and 0.32. From the table, it can be seen that

Table 1 Empirical type-I error rate and power for bipolar
methylation detection

τ = 0
Type-I error∗ Power

m = 10 m = 20 m = 100 m = 10 m = 20 m = 100

w = 10% .079 .075 .087 .279 .580 .983

w = 20% .090 .077 .082 .590 .875 .997

w = 30% .082 .080 .094 .875 .976 .998

w = 40% .084 .083 .088 .887 .986 .997

w = 50% .085 .088 .088 .931 .995 .998

τ = 0.32
Type-I error∗ Power

m = 10 m = 20 m = 100 m = 10 m = 20 m = 100

w = 10% .032 .015 .006 .275 .556 .871

w = 20% .034 .015 .004 .528 .771 .984

w = 30% .031 .017 .008 .770 .937 .996

w = 40% .027 .020 .008 .778 .946 .996

w = 50% .025 .016 .006 .782 .951 .997

The empirical type-I error rate and power are calculated from 5,000 simulations
under significance level 0.05, for different number of readsm and for different
cell-type proportionw. In all simulations, we set the threshold parameter
δ = 0.35. The type-I error rates∗ for the samem but differentw are not the same
because we set different methylation probability vectors for differentw when
generating data under H0, although these probabilities are all sampled from
beta(8, 8).
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in general, for each cell-type proportion, the proposed
method achieves more power as the number of reads
increases. On the other hand, for each number of reads,
the bipolar pattern becomes more distinguishable as the
cell-type proportion changes from unbalanced (10%) to
balanced (50%). Comparing the results for τ = 0 and
τ = 0.32, we see that, when τ is set to a larger value
(i.e., test whether the bipolar groups are separated by a
higher threshold), the method may lose power slightly but
the type-I error can be better controlled. In other words,
the method becomes more conservative for larger τ . More
sensitivity analysis on setting δ and τ for this simulation
study can be found in Additional file 3 of Supplementary
Material. In real data analysis, parameter τ can be chosen
using prior knowledge obtained from DMR analysis (see
for example Additional file 2 in Supplementary Material).

Simulation II: Testing of bipolarmethylation on various
patterns
In order to better illustrate how the threshold δ con-
trols the decision of bipolar methylation, we conducted
another simulation study. In this simulation, we consid-
ered all possiblemethylation patterns on a 4-CpG segment
with 16 reads. Denote the number of reads with methy-
lation pattern (0, 0, 0, 0) by i, and the number of reads
with methylation pattern (1, 1, 1, 1) by j. We randomly
generated (16 − i − j) reads with other methylation pat-
terns (there are 14 patterns left). For methylation patterns
generated under different (i, j) settings, we applied the
proposed method using τ = 0.32 and different δ values to
decide whether the segment is bipolar methylated or not
and reported the corresponding p-values. For each (i, j)
setting, we repeated the simulation 100 times, and listed in
Table 2 the average p-values based on the 100 repetitions.
We see a clear trend from the table that as the bipolar pat-
terns vary from weak (i = 1, j = 1) to strong (i = 8, j = 8)
in a 4-CpG segment with 16 reads, the p-values decreases
gradually, which indicates an increasing amount of evi-
dence on rejecting the null (non-bipolar) hypothesis. On
the other hand, the bipolar detection results are quite sta-
ble over different δ settings. In particular, the “boundary”
patterns (i, j) for calling this 4-CpG segment with 16 reads
as bipolarmethylated appear to be: (1, 12), (2, 8) and (3, 5).

Simulation III: Comparing DPMwith k-means and Bayesian
mixture clustering
We performed a comparison study between DPM,
k-means and Bayesian mixture clustering to illustrate
the advantage of likelihood-based method as com-
pared to distance-based method for clustering data of
binary vectors. In this simulation study, methylation
data were generated under the alternative hypothesis
for different number of reads and different cell-type
proportions, using the same settings as in Simulation

I. We applied three clustering methods to the simu-
lated data: DPM search, k-means and finite mixture
clustering via Bayesian inference, and calculated their
corresponding mis-classification rates and power. The
average mis-classification rates based on 1,000 simula-
tions are shown in Figure 2A. Clearly, as the cell-type
proportion w changes from unbalanced (10%) to bal-
anced (50%), all three methods show decreasing aver-
age mis-classification rates. As the number of reads m
increases, the average mis-classification rate decreases.
Comparing the three clustering methods, we see that for
almost all settings of m and w, DPM is able to achieve
more accurate clustering results than the other two. The
empirical power results for detecting bipolar loci using
“DPM+hypothesis testing”, “k-means+hypothesis testing”
and “Bayesian mixture clustering+hypothesis testing” are
shown in Figure 2B, from which we see that larger
number of reads or more balanced cell-type proportion
results in higher power. Again, “DPM+hypothesis testing”
outperforms the other two for almost all settings of m
and w.

Application on public data sets
Identified CSMs inmouse neuron and glia cells
The methylomes for the frontal cortex of 12-month
mice [29] were downloaded from NCBI Gene Expres-
sion Ominibus (GSE47966). The bisulfite sequencing data
sets were generated from populations of nuclei obtained
by fluorescence-activated cell sorting to enrich neurons
(NeuN+) or glia (NeuN-). We started with 636.3 M reads
for neuron and 420.5 M reads for glia. There were 182,046
and 93,715 4-CG segments covered with at least 10 reads
identified for neuron and glia, respectively. After filter-
ing the segments with a recently reported mouse allelic-
specific methylation map [17], we obtained a common set
of 42,087 segments with at least 10Xs read coverage in
both neuron and glia. Interestingly, we found that 84.0%
of the imprinted CpGs (605 out of 720 with at least 10Xs
coverage) exist in bipolar methylated segments.
We next focused on the common segments in the fol-

lowing analysis. Using the proposed method, 6,935 and
4,686 segments were identified as bipolar methylated in
neuron and glia data sets, respectively. Meanwhile, 9,236
segments from the pooled data set were identified to
be bipolar methylated. On the other hand, differentially
methylated CpGs (DM-CpGs) between neuron and glia
cells were identified by using Fisher’s Exact Test (5%
FDR). A four-CG segment was considered as differen-
tially methylated if all the four CpG sites are signif-
icantly differentially methylated in the same direction.
Based on this criterion, a total of 389 segments from
the common segments were identified as differentially
methylated between neuron and glia. Out of these differ-
entially methylated segments, 387 (99.5%) were predicted
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Table 2 Average p-values for bipolar methylation detection

(i, j)
δ

(i, j)
δ

0.2 0.25 0.3 0.35 0.4 0.2 0.25 0.3 0.35 0.4

(1, 1) 1 1 1 1 1 (3, 7) 0.03 0.02 0.02 0.01 0.02

(1, 2) 1 1 1 1 1 (3, 8) 0.02 0.01 0.01 0.01 0.02

(1, 3) 0.95 0.90 0.95 0.99 0.97 (3, 9) 0.01 0.01 0.01 0.01 0.01

(1, 4) 0.82 0.71 0.76 0.76 0.81 (3, 10) 0 0 0 0.01 0

(1, 5) 0.58 0.69 0.73 0.70 0.64 (3, 11) 0 0 0 0 0

(1, 6) 0.51 0.47 0.58 0.50 0.57 (3, 12) 0 0 0 0 0

(1, 7) 0.46 0.34 0.29 0.42 0.36 (3, 13) 0 0 0 0 0

(1, 8) 0.23 0.29 0.25 0.27 0.35 (4, 4) 0.05 0.04 0.03 0.03 0.04

(1, 9) 0.14 0.14 0.15 0.15 0.16 (4, 5) 0.02 0.02 0.01 0.02 0.01

(1, 10) 0.09 0.09 0.11 0.08 0.09 (4, 6) 0.01 0.01 0.01 0.01 0.01

(1, 11) 0.07 0.07 0.06 0.06 0.07 (4, 7) 0 0 0 0 0

(1, 12) 0.05 0.04 0.05 0.05 0.05 (4, 8) 0 0 0 0 0

(1, 13) 0.02 0.02 0.03 0.03 0.04 (4, 9) 0 0 0 0 0

(1, 14) 0 0 0 0 0 (4, 10) 0 0 0 0 0

(1, 15) 0 0 0 0 0 (4, 11) 0 0 0 0 0

(2, 2) 0.72 0.79 0.81 0.60 0.61 (4, 12) 0 0 0 0 0

(2, 3) 0.56 0.59 0.48 0.41 0.44 (5, 5) 0 0 0 0 0

(2, 4) 0.38 0.41 0.45 0.28 0.28 (5, 6) 0 0 0 0 0

(2, 5) 0.23 0.20 0.24 0.16 0.15 (5, 7) 0 0 0 0 0

(2, 6) 0.14 0.13 0.10 0.11 0.07 (5, 8) 0 0 0 0 0

(2, 7) 0.06 0.08 0.07 0.05 0.06 (5, 9) 0 0 0 0 0

(2, 8) 0.05 0.05 0.05 0.04 0.04 (5, 10) 0 0 0 0 0

(2, 9) 0.03 0.03 0.03 0.04 0.03 (5, 11) 0 0 0 0 0

(2, 10) 0.03 0.03 0.03 0.02 0.02 (6, 6) 0 0 0 0 0

(2, 11) 0.02 0.01 0.02 0.01 0.02 (6, 7) 0 0 0 0 0

(2, 12) 0 0.01 0.01 0.01 0.01 (6, 8) 0 0 0 0 0

(2, 13) 0 0 0 0 0 (6, 9) 0 0 0 0 0

(2, 14) 0 0 0 0 0 (6, 10) 0 0 0 0 0

(3, 3) 0.23 0.31 0.11 0.16 0.15 (7, 7) 0 0 0 0 0

(3, 4) 0.16 0.12 0.08 0.08 0.10 (7, 8) 0 0 0 0 0

(3, 5) 0.06 0.04 0.05 0.05 0.04 (7, 9) 0 0 0 0 0

(3, 6) 0.04 0.03 0.03 0.03 0.04 (8, 8) 0 0 0 0 0

The average p-values are calculated from 100 simulations for a 4-CpG segment with 16 reads, using τ = 0.32 and different δ values. Significant p-values (under
significance level 0.05) are marked with boldfaced font. Zero-valued p-values are actually <5 × 10-3. In each simulation, we generate i reads with methylation pattern
(0,0,0,0), j reads with methylation pattern (1,1,1,1), and randomly generate (16-i-j) reads with other methylation patterns.

as bipolar methylated from the pooled data set, indicat-
ing that our model can recover nearly all of the real CSMs
between the major cell types in brain (Figure 3A). Not sur-
prisingly, most of the bipolar methylated segments in glia
(96.2%) and neuron (96.4%) were also predicted as bipolar
methylated in pooled data set.
The identification of bipolar methylated regions pro-

vides a novel and efficient approach to annotate genomic
regions under differential methylation regulation within

a cell population. To examine the functional relevance,
we performed GO analysis using DAVID bioinformatics
resources [30] for genes containing bipolar methylated
segments. Gene structure annotations were retrieved
from UCSC genome browser [31], and gene region was
defined to be from transcription start site to transcrip-
tion end site. The aforementioned common segments
from the above analysis were mapped to 5,858 genes,
among which 1,548 and 1,008 genes contain bipolar
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Figure 2 Comparison between DPM search, k-means and Bayesian mixture clustering in Simulation III. A. Average mis-classification rates.
B. Average power. These results are obtained from 1,000 simulations under the alternative hypothesis, for different number of reads and for different
cell-type proportions, using DPM search, k-means and Bayesian mixture clustering.

methylated segments in neuron and glia cells, respec-
tively. GO enrichment analysis shows that neuron and
glia share some cell-specific methylated genes, which in
particular, may control activities executed at plasmamem-
brane fraction and cell junction (Figure 3B). Interestingly,
genes involved in locomotory behavior and synapse func-
tions are enriched in the gene list of the predicted CSMs
within neuron subpopulation. It has been reported that
locomotory nervous system consists of several classes
of interneurons and motor neurons, and these neurons
communicate with each other via synapses [32,33]. Fur-
ther studies would be highly desirable to validate whether
the CSM loci we predicted are differentially methylated
between these neuron subsets.

Identified CSMs in human neutrophil and B cells
The methylomes for neutrophil and B cells of human [19]
were downloaded from NCBI Gene Expression Ominibus
(GSE31971). For this data set, 712,214 and 654,506 4-
CG segments covered by at least 10 reads were identified
in B cell and neutrophils, respectively. Segments over-
lapped with imprinted CpGs predicted in previous study
[26] were discarded, and finally we got 183,966 segments
which are covered by at least 10 reads in both data
sets. Out of these 183,966 common segments, 13,088 and
11,248 segments were identified as bipolar methylated in
B cell and neutrophil data sets, respectively. Meanwhile,
20,890 segments were identified to be bipolar methylated
from the pooled data set. A total of 1,407 differentially

Figure 3 Analysis of mouse brain methylomes. A. Venn diagram shows the relationships between (a) bipolar segments identified from pooled
dataset, (b) DMR identified between neuron and glia, (c) bipolar segments identified from glia, and (d) bipolar segments identified from neuron.
B. Gene ontology analysis of genes associated with bipolar methylated segments in neuron and glia datasets, respectively. P-values for GO
enrichment were adjusted with Bonferroni correction.
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methylated segments between B cell and neutrophils were
identified using the same procedure as described in the
previous section. Among these 1,407 differentially methy-
lated segments, 1,297 (92.2%) were covered in the pre-
dicted bipolar methylated segments from pooled human
blood data set (Figure 4A). Similarly, most of the bipo-
lar segments identified from B cell (93.9%, 12,294 from
13,088) and from neutrophils (93.8%, 10,547 from 11,248)
were included in the sets of bipolar methylated segments
identified from pooled data.
The aforementioned common segments were mapped

to 13,065 genes, among which, the promoter regions of
2,607 and 2,017 genes are associated with bipolar methy-
lated segments in B cells and neutrophils, respectively. GO
functional analysis indicated that these genes are enriched
for functions including cell adhesion, cell-cell signaling,
etc (Figure 4B). For multicellular organisms, cell adhe-
sion is critical for tissue formation during morphogenesis.
For both neutrophils and B cells, we found that the most
significantly enriched GO category of “molecular func-
tion” is calcium ion binding. The regulation of cytosolic
concentration of calcium ions (Ca2+) is of vital impor-
tance for the development and function of B cells [34]
and for the activation of neutrophils [35,36]. It has been
suggested that many neuron development genes are prob-
ably silenced by DNA methylation in B cells [37]. Some
of these neuron development genes are important for
blood development as well. For examples, B cells express
receptors for brain-derived neurotrophic factor (BDNF),
which is critical for normal B lymphocyte development
through paracrine effects in the bone marrow [38]. Neu-
ropilin 2 (NRP2), a receptor for the vascular endothelial
growth factor (VEGF), is also found to be important for

the growth of midbrain dopaminergic axons [39]. In sum-
mary, the real data analyses indicate that the method we
developed can not only reveal the differentially methy-
lated regions identified with traditional approach but also
uncover genomic regions under epigenetic regulation in
subpopulations.

Discussion and conclusions
We developed a statistical approach to detect bipolar
DNA methylation in bisulfite sequencing data, through
nonparametric Bayesian clustering and hypothesis test-
ing. Simulation studies demonstrated that our method
achieves high specificity under all settings. The sensi-
tivity increases as cell-type mixture proportion becomes
more balanced and as depth of coverage increases.
With allele-specific events filtered out, this approach can
be used to identify cell-specific genes/pathways under
epigenetic control within a heterogeneous cell popu-
lation. We applied the method to analyze data from
mouse brain and human blood methylomes. Results
on real data analysis demonstrated that the predicted
CSMs are highly consistent with the DMRs identified
by using purified neuron-glia cells and neutrophil-B
cells.
Methylation differences observed among sequence

reads mapped to the same locus may result from: 1)
allele specific DNA methylation; 2) asymmetric DNA
methylation; and 3) cell-subset specific DNA methyla-
tion. ASM may be classified into imprinted (parent-of-
origin dependent ASM) and sequence dependent ASM.
Recent genome analyses revealed 55 discrete genomic loci
imprinted in themouse genome [17] and 51 loci imprinted
in the human genome [40]. Meanwhile, the majority

Figure 4 Analysis of human bloodmethylomes. A. Venn diagram shows the relationships between (a) bipolar segments identified from pooled
dataset, (b) DMR identified between B cell and neutrophil, (c) bipolar segments identified from B cell, and (d) bipolar segments identified from
neutrophil. B. Gene ontology analysis of genes associated with bipolar methylated segments in B cell and neutrophil datasets, respectively. P-values
for GO enrichment were adjusted with Bonferroni correction.
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of sequence dependent ASM CpG sites are scattered
throughout the genome [17]. The asymmetric DNA
methylation can be determined with the genome-wide
hairpin bisulfite sequencing technique recently developed
by our lab [41]. We found that 88.5% and 91.9% CpG
sites sequenced formouse renewing and differentiating ES
cells are symmetrically methylated, respectively. In addi-
tion, the asymmetric methylated CpG sites are frequently
associated with randomDNAmethylation patterns result-
ing from stochastic DNA methylation events [12]. Thus,
after the filtering of imprinted loci, bipolar methylated
regions identified in this study are likely to be cell-subset
specifically methylated.
Our approach provides new insights to the identifica-

tion and interpretation of partially methylated genomic
loci. It is advantageous over currently available methods
for CSM identification in two aspects. 1) The detection of
bipolar DNAmethylation is based on bisulfite sequencing
data from a heterogeneous cell population, while tradi-
tional CSM identification relies on detecting DMRs, i.e.,
testing for differential methylation levels between highly
purified cell subsets. The proposed method thus pro-
vides a feasible solution to the analysis of DNA methy-
lation in higher organisms where cells are difficult to be
dissociated. Apropos, a growing body of evidence from
single cell analysis reveals significant cellular heterogene-
ity even within a cloned population. Therefore, CSM
regions identified by our method generally include not
only DMRs but also partially methylated genomic regions
caused by the same type of cells at different stages, and
the latter are of particular interest as they cannot be
detected by traditional methods. 2) Besides identifying
CSM regions, the proposed method simultaneously esti-
mates the proportions of heterogeneous epigenomes in
bisulfite sequencing data. In recently published literature,
some efforts have been made to estimate the propor-
tions of different cell types in unfractionated samples by
employing the identified DMRs as markers of cell identity.
For example, Guintivano et al. (2013) [42] incorporated
cell epigenotype specific (CETS) markers in a linear slope
model to quantify neuronal and glial proportions. House-
man et al. (2012) [43] and Montaño et al. (2013) [44]
employed DMRs and adopted a regression calibration
model to estimate the proportions of different cell types in
unfractionated blood sample and in brain tissue, respec-
tively. Compared to the prediction by identified DMRs,
our method provides a straightforward solution to this
problem.
Our method for detecting bipolar DNA methylation

is also related to statistical methods recently developed
for ASM prediction. In particular, Fang et al. (2012) [26]
proposed a model selection method to identify ASM by
comparing Bayesian information criterion (BIC) under
non-allele specific and allele-specific models. Peng and

Ecker (2012) [25] adopted supervised learning to clas-
sify candidate regions into ASM or non-ASM by using
features (estimated methylation levels and allele frequen-
cies) extracted from a mixed model. Compared with
these two methods, our bipolar detection framework has
several advantages: 1) Our model makes no restriction
on the ratio between number of hyper-methylated and
hypo-methylated reads, therefore, it is more appropri-
ate for predicting CSM. 2) By treating bipolar detec-
tion as a hypothesis testing problem, our method is
more suitable for sensitivity and specificity evaluation
than the BIC-based model selection method [26] and the
supervised learning method [25]. 3) Because neither EM
algorithm nor Markov chain Monte Carlo (MCMC) is
required, the DPM search algorithm is easy to imple-
ment and requires the least amount of computation
load.
The method developed in this study will greatly extend

our capacity to dissect the epigenetic heterogeneity in a
cell population, in particular for the ones with limited
or no prior knowledge of cell-type composition. Detect-
ing bipolar methylation patterns is an important step for
unlocking the biological meaning of epigenetic hetero-
geneity; however, the methodology development is still in
initial stages. Due to the limitation on depth of coverage
and read length, with current bisulfite sequencing data,
bipolar DNA methylation can only be detected in small
segments (e.g., 4-CpG). In general, more complicated
methylation patterns arising from amixture of various cell
types or cells at various stages may be decomposed into
a combination of bipolar DNA methylation patterns pre-
sented at multiple loci. Our future work will be directed
to investigate the functional relevance of partially methy-
lated genomic loci and incorporate their combinations as
epigenetic signatures for complex phenotypic and func-
tional variability.

Availability of supporting data
The methylomes of 17 adult mouse tissues are publicly
available from NCBI Gene Ominibus (GSE42836). The
mouse brain methylomes of neuron and glia cells are
publicly available from NCBI Gene Expression Ominibus
(GSE47966). The human blood methylomes of neutrophil
and B cells are publicly available from NCBI Gene Expres-
sion Ominibus (GSE31971).
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