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Abstract

Background: A key challenge in understanding the molecular mechanisms that control gene regulation is the
characterization of the specificity with which transcription factor proteins bind to specific DNA sequences. A number
of computational approaches have been developed to examine these interactions, including simple mononucleotide
and dinucleotide position weight matrix models.

Results: Here we develop a novel, unbiased computational algorithm, MARZ, that systematically analyzes all possible
gapped matrices across a fixed number of nucleotides. In addition, to evaluate the ability of these matrix models to
predict in vivo binding sites, we utilize a new scoring system and, in combination with established scoring methods
and statistical analysis, test the performance of 32 different gapped matrices on the well characterized HUNCHBACK
transcription factor in Drosophila.

Conclusions: Our results indicate that in many cases gapped matrix models can outperform traditional models, but
that the relative strength of the binding sites considered in the analysis can profoundly influence the predictive ability
of specific models.
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Background
To understand the biological process of gene expression
at the molecular level we must comprehend the nature of
the chemical binding events that occur between proteins
and DNA. More specifically, in the field of transcrip-
tional regulation, the identification of transcription factor
(TF) binding sites is crucial to our understanding of cis-
regulatory modules and their function in the control of
gene regulation.
For over three decades, computational biologists have

been working to develop better approaches to predict the
binding events that take place between TF proteins and
DNA. One of the most widely used approaches, the Posi-
tion Weight Matrix (PWM) model was introduced in the
1980’s [1-3]. This approach relies on two key assump-
tions [3]. The first is that DNA sequences that share the
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same physical binding affinity for a specific TF are equally
likely to be present in the genome. The second is that
the binding energies for TF contacts with each individual
nucleotide in a binding site are additive (i.e., nucleotide
positions within the TF binding site are independent of
each other).
The approximation of the binding energy of a nucleotide

at a particular position within a sequence depends on
both the frequency at which that nucleotide is observed
in the experimentally determined protein binding sites
(recorded in the PWM), and the background frequency
corresponding to that nucleotide (i.e., the genome-wide
nucleotide distribution) [4]. In many cases, the binding
affinity of any particular sequence is calculated relative to
the consensus sequence, the sequence constructed from
the most commonly found nucleotide at each position
in the binding site. These simple PWM models have
been effectively implemented and shown to provide reli-
able approximations for binding of a range of different
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prokaryotic and eukaryotic TFs [5-8]. However, in more
recent biochemical studies, dependencies between neigh-
boring nucleotides in binding sites have been observed
and many groups have begun to take such dependen-
cies into account by building more complex models
of protein-DNA binding [9-18]. Current experimental
methodologies do not allow for the single base-pair or
strand-specific resolution of binding sites, emphasizing
the need to employ a systematic and non-bias
approach to investigate the composition of TF binding
sites.
Two general extensions to traditional PWM models

are dinucleotide and n-mer models. These approaches
are implemented in a similar way to the traditional
mononucleotide PWM, but weaken the assumption of
independence of contiguous nucleotides in the binding
site. Dinucleotide models consider dependence between
adjacent nucleotides, while n-mer models consider a con-
tiguous group of n nucleotides, instead of the traditional
single nucleotide [13,15,19].
There are now many publicly available algorithms for

determining TF-DNA binding specificity. Weirauch et al,
in their 2013 publication, systematically compare 26 dif-
ferent algorithms on protein binding microarray (PBM)
data from 66 differentmouse TFs [20]. The 26models they
analyze include traditional PWM-based models, dinu-
cleotide models, and n-mer models. Their results support
the idea that, for some TFs, n-mer models may perform
better overall than simpler models. However, their study
also highlights the important roles that the specific exper-
imental data used, as well as the evaluation criteria, play
in such a comparison. They state that, although surpris-
ing, “the appearance and information content of a motif
has little bearing on its accuracy” [20].
Even more recent approaches addressing nucleotide

dependence have used a variety of different techniques
[16-18]. In these studies, results are shown to illustrate
the improvement these different approaches give over tra-
ditional PWMs and/or other standard approaches. One
may note that each of these recent studies still consid-
ers contiguous nucleotide dependence, with some flex-
ibility for gaps between half sites, but none of these
studies has systematically looked at different combi-
nations of non-adjacent nucleotide dependence. These
conclusions have led us to investigate the role of
nucleotide dependence in binding sites and develop a
novel and intuitive scoring method for comparing all pos-
sible models of nucleotide dependence with no inherent
biases.
To better understand nucleotide dependencies in TF

binding sites, we begin with a systematic approach aimed
at comparing weight matrices produced by each possi-
ble gapped n-mer across a fixed number of nucleotides.
This approach allows for any specific number and

arrangement of nucleotides within a sequence to be
ignored when considering dependent/independent bind-
ing. We have developed a new algorithm, MARZ (com-
binatorial Matrix Analysis and Ranking inspired by
Zero-knowledge proofs), which allows us to investigate
all possible gapped n-mers of a particular length, test
them on in vivo TF binding data, and statistically compare
their performances with standard mononucleotide-based
(PWM) and dinucleotide-based models [1-3,13,17,21].

Methods
The complete MARZ algorithm is illustrated in the
flow chart shown in Figure 1. What follows is a
detailed description of each individual component of the
algorithm.

Gapped n-mers
We begin by defining a gapped n-mer. Let k represent a
nucleotide we ignore, and m represent a nucleotide we
consider. One should first note that we only consider
gapped n-mers that begin and end with anm, thus assum-
ing that the gapped n-mer represents a minimal length
string of dependent nucleotides that contribute to bind-
ing. Allowing a k on either end would allow for leading
or terminal nucleotides that do not contribute to binding
events.
To create a simple numbering scheme for each matrix

type and illustrate the non-bias nature of the matrix types
included, each gapped n-mer has a unique ‘Type ID’ cor-
responding to the binary encoding of k’s and m’s. The list
of type IDs considered contains every integer from 0 to 31,
with the one-to-one correspondence between the type ID
and gapped n-mer defined as follows:
First, convert the type ID to binary. Then convert the

binary representation to a string of k’s and m’s rep-
resenting the nucleotides considered in that particular
model by replacing each zero with a k and each one
with an m. Any leading k’s are omitted, as the leading
nucleotide must be included, and an m is inserted on
the right hand side, as the terminal nucleotide is always
included. Table 1 lists all of the type IDs and Figure 2
gives a graphical illustration of the matrix construc-
tion and sequence interpretation for the mononucleotide
model m and the more complex gapped n-mer model
mkkkkm.
From this definition, one can easily see that the

mononucleotide model m has an ID of 0. Likewise, the
dinucleotide model mm has an ID of 1. For a more com-
plex example, consider the gapped n-mer illustrated in
Figure 2B. This gapped n-mer has ID 16 (Table 1), which
can be converted to the binary number 10000. Following
the above description, we replace each zero with a k, each
one with an m, and insert an m on the right hand side.
This results in the gapped n-mer represented in Figure 2D,
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Figure 1 Complete Flowchart of the MARZ algorithm. The flowchart illustrates the MARZ algorithm during implementation. The figure should
be read from top to bottom, as the three boxes at the top (orange) illustrate the three inputs to the MARZ algorithm and the large box at the
bottom (green) illustrates the values the MARZ algorithm outputs.

mkkkkm. This conversion from a type ID to a gapped n-
mer, including the intermediate steps, is shown in Table 1
for all 32 matrix types.

Data required
For each TF, the MARZ algorithm takes as input:

1. A file of aligned sequences (from footprint and/or
protein binding microarray experiments),
representing known binding sites. Each sequence
must be of the same length.

2. A collection of Chromatin Immunoprecipitation
(ChIP) peaks.

3. A sequence of DNA that is representative of the
background nucleotide composition.

For this study, in an effort to avoid introducing any
inherent bias which may be included in short stretches
of DNA sequence, we use the sequence from the entire
Drosophila genome for the background [22]. However,

the choice of which DNA sequence is utilized for the
background in the MARZ algorithm is at the discretion of
the user.

Constructing a Weight Matrix and Scoring a Sequence
All parameters defined in this section are listed in Table 2,
with the value(s) used for each parameter during imple-
mentation in the case of the HUNCHBACK TF.

Creating aweightmatrix from binding site data
For construction of weight matrices, we generalize tra-
ditional scoring formulas given by Bucher, Hertz and
Stormo, and Gershenzon et al. [6,21,23]. Amotif is a string
of nucleotides with a length l corresponding to the length
of each aligned sequence. First, define κ to be the num-
ber of gapped nucleotides, k, and μ to be the number of
nucleotides we consider, m, in the gapped n-mer. Let ln
be the total number of nucleotides in the scoring frame,
meaning ln = κ + μ. Then, the gapped n-mer matrix con-
tains 4μ rows (one for each combination of nucleotides
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Table 1 The first column lists the Type ID for each gapped
n-mer, the second column lists the binary representation of
the Type ID, the third column lists the k/m representation
for each binary representation, obtained by replacing
each 0 with a k and each 1 with anm, and the fourth
column lists the final corresponding k/m representation of
each gapped n-mer, obtained by removing all leading k’s
and adding anm to the end of each entry in column three

Type ID Binary representation k/m Representation Gapped n -mer

0 00000 kkkkk m

1 00001 kkkkm mm

2 00010 kkkmk mkm

3 00011 kkkmm mmm

4 00100 kkmkk mkkm

5 00101 kkmkm mkmm

6 00110 kkmmk mmkm

7 00111 kkmmm mmmm

8 01000 kmkkk mkkkm

9 01001 kmkkm mkkmm

10 01010 kmkmk mkmkm

11 01011 kmkmm mkmmm

12 01100 kmmkk mmkkm

13 01101 kmmkm mmkmm

14 01110 kmmmk mmmkm

15 01111 kmmmm mmmmm

16 10000 mkkkk mkkkkm

17 10001 mkkkm mkkkmm

18 10010 mkkmk mkkmkm

19 10011 mkkmm mkkmmm

20 10100 mkmkk mkmkkm

21 10101 mkmkm mkmkmm

22 10110 mkmmk mkmmkm

23 10111 mkmmm mkmmmm

24 11000 mmkkk mmkkkm

25 11001 mmkkm mmkkmm

26 11010 mmkmk mmkmkm

27 11011 mmkmm mmkmmm

28 11100 mmmkk mmmkkm

29 11101 mmmkm mmmkmm

30 11110 mmmmk mmmmkm

31 11111 mmmmm mmmmmm

The fourth column illustrates which nucleotides are considered (m) and which
are ignored (k) when scoring a potential binding site.

at the μ positions we are considering), and (l − ln + 1)
columns. Let nbi be the number of known binding sites
that have the gapped n-mer b starting at position i of the
motif. Let eb be the expected proportion of gapped n-mers

represented by the sequence b. This value is calculated
from a sequence of DNA that is representative of the back-
ground nucleotide composition. Then, the formula for the
weight of b at position i of the motif is given by:

wbi = ln
(

nbi + eb
eb (L + 1)

)
+ ci

where L is the total number of known binding sites and

ci = −max
b∈B

ln
(

nbi + eb∈B
eb∈B (L + 1)

)
, such that the maximum

weight in each column is 0.
One should note that we must incorporate pseudo-

counts, or Dirichlet smoothing, into our calculations to
avoid taking the natural logarithm of zero or dividing
by zero. We therefore add a pseudocount to eb in the
following way:
Let B be defined as the set of all 4μ gapped n-mers. For

all b ∈ B,

eb =
(
# of subsequences matching b in the background sequence

) + 1
|B|(

total # of subsequences of length ln in the background sequence
) + 1

Note that in the above formula |B| = 4μ.
In the calculation of wbi above, we have introduced an
analogous pseudocount, following the calculation of Hertz
and Stormo [6], by including eb in the numerator and
dividing by L+ 1 instead of L. In practice, the user has the
option of defining their own background probabilities, eb,
but should be careful to avoid setting eb = 0.

Calculating the weight score S for a given sequence
The weight score for a sequence σ of l nucleotides is
calculated using the following formula:

Sσ = 1 −
∑
b∈B

l−ln+1∑
i=1

δ (b, σi)wbi

l−ln+1∑
i=1

min
b∈B

(wbi)

where σi is the subsequence of σ from i to i + ln − 1 and

δ (b, σi) =
{
1 if the nucleotides of σi match b
0 otherwise.

Recall that we use the ci term to set the maximum value
in each matrix column to 0. Therefore, one can note that
Sσ ∈[0, 1].
Scoring thresholds
For each sequence, σ , of adjacent nucleotides in a ChIP
peak, if Sσ is greater than or equal to a fixed ‘scoring
threshold’, then that sequence is referred to as a binding
site.
There are two ways one can set the scoring threshold.

First, the user can manually enter in some threshold to
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Figure 2 Comparison of a traditional frequency matrix and a gapped n-mer matrix for HB. (A) The traditional matrix treats each of the seven
nucleotides (m) in the aligned HB binding site sequences independently and slides across the sequences with a window frame size equal to one
nucleotide. The 4 × 7 matrix represents the frequency at which each of the four nucleotides is found at each of the seven positions in the binding
site and can be used to generate a standard position weight matrix (PWM). (B) The matrix for the gapped n-mermkkkkm considers each of the two
outer nucleotides (m), but ignores the four inner nucleotides (k), with a sliding window frame size equal to six nucleotides. This generates a 16 × 2
matrix that represents the frequency at which the 16 possible nucleotide pairs are found at the two outer positions across the two possible frames
in a seven nucleotide binding site sequence. It should be noted that the complex matrix constructed for each of the 32 different gapped n-mers is
generated using the same principles as themkkkkm example above, but is distinct based on the specific composition of the gapped n-mer. (C-D)
Corresponding visualizations of each matrix at a HB binding site.

be used for each matrix. Second, the user can enter a
percentile, forcing the program to dynamically calculate
a threshold based on the experimentally obtained aligned
sequence data.
We refer to this percentile as a threshold position x ∈

[0, 1]. To understand how this relates to a percentile, note
that the threshold, τ , used when x = 0.25 corresponds
to the highest threshold at which aligned sequences
in the 25th percentile of the experimentally obtained

sequences would be identified as binding sites by the
algorithm.
One may want to compare the performance of a matrix

at a variety of thresholds, interpreting the predictions
as including only strong binding sites vs. predictions
also including weaker binding sites. MARZ thus has
an option for running the algorithm over all thresholds
corresponding to percentiles from a known set of binding
sites.
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Table 2 List of variables, definition of each variable, and
the value(s) used during the implementation of MARZwith
respect to HB

Variable Definition Setting

ln Gapped n-mer length ln ≤ 6

μ Number of nucleotides considered μ ≤ 6

κ Number of nucleotides ignored κ ≤ 4

l Length of each potential HB binding sequence l = 7

L Number of aligned HB binding sequences L = 101

N Number of HB ChIP peaks N = 3142

lc Length of each HB ChIP peak lc = 100

P Number of scrambles per ChIP peak P = 100

Measuring the Effectiveness of MARZ
Sensitivity and Specificity
The effectiveness of a given matrix is measured by com-
paring its false positive and false negative rates with its
true positive and true negative rates. The true positive and
false positive rates are often referred to, respectively, as
the sensitivity and specificity of the algorithm [21]. We
define these rates with respect to each individual matrix’s
performance.
True ChIP peaks are defined for ChIP-chip data as the

middle 100 base pairs of each peak (similar to the defi-
nition used in [20]) and referred to as ‘real’ ChIP peaks.
Any ChIP peaks that are less than 100 bp in length are
excluded from the analysis. False ChIP peaks are defined
by ‘scrambled’ ChIP peaks, consisting of those obtained
by randomly shuffling each true ChIP peak. P scram-
bled ChIP peaks are generated for each true ChIP peak
by applying the C++ function std::random_shuffle

to each ChIP peak. This function permutes each of the
nucleotides on the ChIP peak, such that each scram-
bled ChIP peak has the same number of A, C, G, and T
nucleotides as the true ChIP peak, but in a random order.
For this approach, the random seed is set using the system
time [24].
We consider binding sites predicted on a true ChIP

peak to be true positives, and those found on a scrambled
ChIP peak to be false positives. A matrix identifies a DNA
sequence (either a real or scrambled ChIP peak) as a pos-
itive if it finds any binding sites within that sequence. It
identifies it as a negative if it finds no binding sites.
Recall that for each of theN real ChIP peaks we consider

P scrambled representations of the same nucleotides. We
thus define the true positive rate, TPR, and false positive
rate, FPR, as follows:

TPR = TP
TP + FN

= TP
N

FPR = FP
FP + TN

= FP
P · N

where TP, FP, TN, and FN correspond to the number
of true positives, false positives, true negatives, and false
negatives, respectively.

AUROC - Area under receiver operating characteristic
The Area under a Receiver Operating Characteristic curve
(AUROC) for each matrix type represents the probability
that a binding site is found in a randomly chosen true ChIP
peak and not found in a randomly chosen scrambled ChIP
peak at any given threshold. A Receiver Operator Charac-
teristic (ROC) curve is a plot of the true positive rate vs.
the false positive rate of a test over all possible threshold
levels.
To compute the area under the curve, we use the

trapezoidal rule of numerical integration. Additionally,
for plotting the ROC of a given matrix and computing
the AUROC, we add the points (0, 0) and (1, 1) for TFs
for which they are not obtained computationally at any
threshold, since, in theory, all ROC curve graphs should
contain those endpoints [25].

An Alternative to AUROC: RZ score
The AUROC method works well for many problems, but
has considerable limitations with respect to its application
to the MARZ algorithm. These include:

• First, several of the points in the range [0, 1] × [0, 1]
are biologically irrelevant. For example, having
FPR > TPR or TPR ≈ 0 are both unacceptable for
practical applications. Using the MARZ algorithm,
each matrix type can predict binding sites for scoring
thresholds greater than 0. However, thresholds in the
range [0, 1]may not produce the points (0, 0) or
(1, 1), or many points in the neighborhoods of these
points. In fact, since the highest threshold position
used, x = 1, still considers the strongest binding sites
to be true binding sites, to produce the point (0, 0) on
a ROC curve it may require that we go beyond this
maximum threshold, which was determined from the
experimentally obtained binding sequences.

• Second, merely computing the overall AUROC score
loses information about the predictive power of the
matrix type at a given threshold. The AUROC gives
us no information about which matrix would
perform best at a given threshold (i.e., one
corresponding to only strong binding sites), since it is
a statistic derived from the performance of the matrix
over all thresholds, not at a specific threshold.

To address the limitations stated above, MARZ uses
an alternative scoring method in addition to the AUROC
approach. This method is somewhat analogous to the
cryptography concept of the zero-knowledge proof. In its
simplest form, a zero knowledge proof is one in which
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one party can verify that another party has access to
some piece of information, without learning anything
about the content of that piece of information [26].
The main goal of the MARZ algorithm is to determine
whether a given matrix can reliably tell apart real ChIP
peaks from scrambled ChIP peaks at a given scoring
threshold.
Let P be the number of scrambled ChIP peaks

corresponding to each true ChIP peak. The scoring algo-
rithm considers each true ChIP peak, Ci, and its corre-
sponding set Ĉi =

{
Ĉi,1, . . . Ĉi,P

}
of scrambled peaks.

First, for each ChIP peak, we consider the number of
predicted binding sites in Ci and the average number
of predicted binding sites over the set Ĉi. For a given
threshold, τ , we define

rCi = ∣∣{σ ∣∣σ is a contiguous substring
of Ci of length l and Sσ ≥ τ

}∣∣

aĈi
=

P∑
j=1

rĈi,j

P

For any matrix type, given a true ChIP peak and a set of
scrambled ChIP peaks, there are three possibilities:

1. MARZ is able to correctly identify the true and
scrambled ChIP peaks as such.

2. MARZ incorrectly identifies the true and scrambled
ChIP peaks as such.

3. MARZ is unable to identify which ChIP peaks are
true and which are scrambled.

The RZ scoring system seeks to reflect which of these
possibilities each matrix type most often results in. If the
number of predicted binding sites on a true ChIP peak
is greater than the average number of predicted binding
sites on the corresponding scrambled ChIP peaks, a point
is added to the score. If the average number of predicted
binding sites on the scrambled ChIP peaks is greater than
the number of predicted binding sites on the correspond-
ing true ChIP peak, 0 is added to the score. Otherwise,
0.5 is added to the score. Hence, for each ChIP peak the
individual peak’s RZ score is given by:

z
(
Ci, Ĉi

)
=

⎧⎪⎨
⎪⎩
1 if rCi − aĈi

> 0.5
0.5 if − 0.5 < rCi − aĈi

≤ 0.5
0 if rCi − aĈi

≤ −0.5

Note that 0.5 was chosen in the above formula since
rCi ∈ Z and aĈi

∈ Q.

The overall RZ score for a specific matrix type, TF, and
scoring threshold, is then defined as:

RZ =

N∑
i=1

z
(
Ci, Ĉi

)
N

The RZ score of a randomguesser
One key advantage of the AUROC method is that there is
a natural baseline score to compare results to. An AUROC
of less than or equal to 0.5 implies that the matrix type
in question has no more predictive power than guessing
randomly whether a given sequence represents a binding
site or not. The RZ scoring method functions similarly.
For clarity, we define a random guesser as a ‘matrix type’

that predicts a binding site with probability 0.5 at each
possible position (using a sliding window of length l) along
a ChIP peak. This probability is referred to as the discov-
ery rate. One can easily show that the expected RZ score
for such a random guesser is 0.5.

Comparison to Transcription Factor Flexible Models
To compare the gapped n-mer models to previously pub-
lished models that address nucleotide dependencies, we
create both First-order and Detailed Transcription Fac-
tor Flexible Models (TFFMs) using the Hidden Markov
Model-based algorithm developed by and available from
theWasserman Lab [18]. These are created using the same
known binding sites used to construct the gapped n-mer
models. RZ scores are computed from the predictions
found using these TFFMmodels at 100 different TFFMhit
probability/score thresholds (chosen uniformly from 0.01
to 1.0) on the same set of ChIP peaks used to compute
the RZ score for the gapped n-mer models. The results
for HB, using the known binding sites from Ho et al. and
the HB ChIP data fromMacArthur et al., are shown in the
(Additional file 1: Figure S1) [27,28].

Statistical significance using the RZ scoring system
For a given TF, we use the Chi-square goodness of fit test
to compare the results of a matrix corresponding to a spe-
cific gapped n-mer to that of the commonly implemented
mononucleotide matrix,m.
For each matrix type and threshold, we perform a Chi-

square goodness of fit test using the number of ‘hits’ (ChIP
peaks resulting in z

(
Ci, Ĉi

)
= 1), ‘misses’ (ChIP peaks

resulting in z
(
Ci, Ĉi

)
= 0), and ‘borderlines’ (ChIP peaks

resulting in z
(
Ci, Ĉi

)
= 0.5) obtained by the MARZ

algorithm.
For each Chi-square test, the null hypothesis is that the

matrix type being analyzed gives the same results as the
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mononucleotide matrix, m. We compute the Chi-square
value as follows:

χ2 =
n∑

i=1

(Oi − Ei)
Ei

2

where n = 3, Ei represents the total number of hits, bor-
derlines, and misses in the case of the mononucleotide
matrix,m, andOi represents the total number of hits, bor-
derlines, and misses in the case of the matrix type being
analyzed.

Pearson correlation coefficient
One additional feature of the MARZ algorithm is its abil-
ity to compute how related any two matrix types are in
terms of their predictions for a given transcription factor
and threshold value (or position), overN ChIP peaks, with
a given ChIP peak having length lc.
We create a vector of predictions for eachmatrix by con-

sidering each binding nucleotide separately. A vector of
length lc is created for each ChIP peak. Each element in
the vector vi is set equal to the number of distinct binding
sites containing the nucleotide located at position i. We
then concatenate the vectors for each ChIP peak, creating
one vector of length N · lc.
After these vectors are constructed for each matrix,

the correlation between matrices x and y is computed
using their corresponding vectors, X and Y . This is done
using a slightly modified Pearson correlation coefficient,
as described in Section one of the Additional file 1.

Hierarchical clustering
We use the Pearson correlation coefficient and agglom-
erative hierarchical clustering to build a tree represent-
ing how related the predictions obtained from different
matrix types are. The details and results are included in
Section two of the Additional file 1.

Cross-validation
We perform cross-validation with respect to the RZ score,
using 50% of the ChIP peaks. The details and results are
included in Section three of the Additional file 1.

Software
Additional file 2, marzscaled.zip, contains a scaled ver-
sion of the MARZ program. Instructions are in the file
‘runningmarz.pdf ’. For a complete version of the MARZ
program, contact Jacqueline Dresch.

Results and discussion
Application: HUNCHBACK
In order to directly test the performance of the new
MARZ algorithm we analyze binding site predictions
for the extensively characterized HUNCHBACK (HB)
TF. hunchback (hb) is the primary gap gene of the

segmentation regulatory cascade inDrosophila [29] and is
responsible for establishing the patterning of the anterio-
posterior axis in the early embryo [30]. It encodes for
a C2H2 zinc finger TF that directly regulates expres-
sion of other functionally important gap genes, including
giant (gt), knirps (kni) and Kruppel (Kr) [31,32], and
pair-rule genes, including even-skipped (eve) [33]. The rel-
atively simple consensus binding site sequence for HB
(TTTTTTG) [27] would seem to present a stringent test
of the predictive ability of the different MARZ matri-
ces. To address both the sensitivity and specificity of the
MARZ algorithm, we compare the ability of the differ-
ent matrices to predict binding sites in regions of the
Drosophila genome shown to recruit HB in vivo in ChIP
experiments [28].

Inputs to MARZ
When implementing the MARZ algorithm on HB, we use
the following inputs:

1. A file of aligned HB binding sequences [27].
2. A collection of HB ChIP peaks, each of length greater

than or equal to 100 bp [28].
3. The entire Drosophila melanogaster genome for the

background nucleotide composition [22].

The parameters used for the implementation described in
this section are listed in Table 2.

Gapped n-mers
The MARZ algorithm utilizes an unbiased, systematically
constructed set of 32 matrices (Table 1) to analyze TF
binding sequences. The simplest matrix, m, is gener-
ated from a traditional mononucleotide model in which
each nucleotide is considered independently (Figure 2A).
When applied to the HB binding sequence, which is seven
nucleotides long, this creates seven frames (Figure 2C).
A dinucleotide model, mm, considers two adjacent
nucleotides and an n-mer model considers n contiguous
nucleotides in each frame. In addition to implementing
these simple models, our approach examines all possible
gapped n-mers with up to a six nucleotide frame size. A
maximum nucleotide frame size of six was chosen simply
to allow for easy visualization of all gapped n-mers (Note:
a maximum size of seven would result in 64 gapped n-
mers). When scoring a potential binding site, the gapped
n-mer matrices only consider a subset of nucleotides (m)
across any given frame and ignore the other nucleotides
(k). For example, the mkkkkm matrix considers only the
two outer nucleotides in each frame. Since the HB bind-
ing sequence is seven nucleotides long, using this matrix
results in exactly two frames of six nucleotides each
(Figure 2B and D).
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Figure 3 AUROC score evaluation for HB. AUROC scores for all 32 gapped n-mer matrices for HB. The x-axis corresponds to the gapped n-mer
used in the MARZ algorithm. The y-axis corresponds to the AUROC score obtained from each gapped n-mer’s ROC curve. The dashed line at 0.5
represents the score obtained in the case of no-discrimination. All values fall in the range [0.55, 0.59].

AUROC
We measure the performance of the 32 matrices in pre-
dicting HB binding sites by calculating AUROC scores.
This analysis consistently produces values in the range
[0.55, 0.59] (Figure 3). Unfortunately, because of the low
sensitivity of AUROC with respect to scoring different
matrix types, it is difficult to use this measure to compare
the performance of the different matrices.

RZ Score
The relatively uninformative scores obtained using
AUROC led us to investigate alternative scoring meth-
ods to assess the performance of the 32 matrices. The
RZ score effectively measures the predictive ability of a
particular matrix to discriminate between in vivo con-
firmed ‘real’ binding sites contained in ChIP peaks from
the genome and sequences from ‘scrambled’ ChIP peaks.
In the case of HB (Figure 4), some general trends are
observed: i) All 32 matrices outperform a random guesser
at all thresholds (all RZ scores above 0.52 are signifi-
cantly greater, at a significance level of 0.01, than those
obtained using the random shuffle). ii) The matrix scores
tend to show a monotonic decrease in average score as
the threshold position is increased. iii) Performance at any
given threshold varies with matrix type. iv) Performance
of each matrix changes in response to the threshold used.

v) Variation in the performance of different matrix types is
greater at extreme thresholds (i.e., those close to 0 and 1).
If we consider only the top five ranked matrices by

highest peak RZ score (obtained at any threshold value),
then it becomes clear that the threshold position is criti-
cally important to performance (Figure 5). Each of these
top five matrices performs variably across the range of
thresholds. For example, the top ranked mkkkkm matrix
outperforms all other matrices at the 0.01 threshold posi-
tion, but underperforms almost all other matrices, includ-
ing the 26th-ranked m and 19th-ranked mm, at the 0.25
threshold (Figure 5).
A summary of the AUROC and RZ scores are shown

in Figure 6. This figure again emphasizes the fact that
many of the different gapped n-mers are outperforming
the traditional mono- and dinucleotide matrices, and that
this performance is highly dependent on the threshold
position used.
When compared to the RZ scores obtained fromTFFMs

using the Hidden Markov Model-based algorithm devel-
oped by the Wasserman Lab at 100 different TFFM hit
probability/score thresholds, the RZ scores obtained from
the gapped n-mer models perform similarly at many
thresholds (Figure 4 vs. Additional file 1: Figure S1) [18].
However, the highest scores obtained from the best per-
forming gapped n-mers are higher than those obtained
from the TFFMs (Figure 5 vs. Additional file 1: Figure S1).
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Figure 4 RZ score evaluation for all 32 gapped n-mer matrices for HB. The x-axis corresponds to the threshold position used for each run of the
MARZ algorithm. The y-axis corresponds to the RZ score obtained from each run. At a given threshold, the central mark represents the median RZ
score of all gapped n-mer matrices, the boxes enclose the 25th to 75th percentiles of the data set, whiskers extend to all other points not
considered outliers, and outliers are plotted separately (red crosses).

One should note that the best performing gapped n-mer
results in an RZ score of 0.71, while the TFFMs result in
RZ scores below 0.66 at all hit probability/score thresh-
olds.

Statistical comparison of matrix types
To quantify the significance of the performance difference
between each matrix and the traditional mononucleotide
matrix m, we analyze Chi-square and Pearson correla-
tion coefficient values (Figure 7 and Additional file 1:
Figure S2). For the Chi-square analysis, we consider how
frequently a particular matrix can identify a predicted
HB binding site in a ‘real’ ChIP peak relative to ‘scram-
bled’ ChIP peaks (see Materials and Methods for details).
This analysis does not account for whether the results are
obtained on the same individual ChIP peaks. To address
this issue, we also calculate the Pearson correlation coef-
ficient to investigate at single nucleotide resolution the
correlation of the predicted binding sites within each
ChIP peak relative to binding sites predicted using the
mononucleotide matrixm.
For both statistical comparisons, a number of key gen-

eral trends are observed: i) At the 0 threshold position,
all 31 multinucleotide matrices are significantly differ-
ent from the m matrix (Figure 7A), with correlation

coefficients less than 0.9 (distance > 0.1, Figure 7B).
ii) As the threshold position is incrementally increased,
fewer matrices remain significantly different fromm, cor-
responding to an observed decrease in the correlation
coefficients for these matrices (Figure 7B and D, and
Additional file 1: Figure S2). iii) A cluster of matrices,
including mkkkkm, mkkkmm, mkkmkm, mkkmmm and
mkmkkm (Figure 7C and D, boxed), remain significantly
different from m with low correlation coefficients (high
distances) across the entire range of thresholds. iv) A sub-
set of individual matrices, including mkkkm, mmkkkm,
mmkkmm and mmmkkm (Figure 7C and D, arrows), are
also significantly different from m with low correlation
coefficients (high distances) across the entire range of
thresholds. It should be noted that three of these matri-
ces (mkkkkm,mmkkkm andmkmkkm) are the top three as
measured by the highest peak RZ score (Figure 5).

Conclusions
There are several key conclusions drawn from our imple-
mentation of the MARZ algorithm. First, we see that an
unbiased and systematic analysis of the predictions from
all 32 matrices in the algorithm, including the traditional
mononucleotide, dinucleotide and n-mer models, and the
novel gapped n-mer models we developed in this study,
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mkkkkm (1)
mmkkkm (2)
mkmkkm (3)
mmkm (4)
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m (26)
mm (19)
Random

Figure 5 Performance of top five gapped n-mer matrices for HB across all threshold values. The x-axis corresponds to the threshold position
used for each run of the MARZ algorithm. The y-axis corresponds to the RZ score obtained from each run. Of the 32 matrices, the five with the
highest RZ score, along with the mononucleotide (m) and dinucleotide (mm) matrices for comparison, are shown. The ranking of each matrix is
indicated in parentheses. All of these matrices consistently outperform the 0.5 RZ score for a matrix that fails to discriminate between true and false
positive binding sites (random, dotted line), but do not perform evenly across the different threshold values.

is critical to identifying the most robust matrix models.
In the case of the HB TF, the performance of many of
the gapped n-mer models differs significantly from their
n-mer counterparts. Second, we see that the threshold
position at which the analysis is conducted (i.e., the rel-
ative strength of the in vivo binding sites included in
the algorithm, see Figure 1) can profoundly impact the
performance of the different matrix models (Figure 4).
For example, the gapped mkkkkm matrix outperforms all
non-gapped n-mer models at the 0.01 threshold posi-
tion (which considers 99% of the known HB binding
sites), but does not perform as well at higher thresholds
(Figure 5). This observation emphasizes the need for care-
ful consideration of the threshold position in experimental
design when investigating TF-DNA binding interactions.
A strength of the MARZ algorithm is that it integrates
analysis of the predictions of all 32 matrix models across
all thresholds for any given TF.
The significant variation in the performance of the

32 matrix models across different threshold positions
(Figure 7) highlights the need for rigorous performance
assessment methods. In this study, we develop the RZ
score to address this goal, in addition to applying exist-
ing scoring mechanisms such as AUROC. The RZ scoring

method allows for the simple analysis of each of thematrix
models at each threshold independently. This approach
facilitates the rapid identification of the best performing
matrix model(s) and threshold(s) in any given experimen-
tal application.
Previous studies on the binding sites for Drosophila TFs

have indicated that the flanking sequences around iden-
tified binding sites may also be important for TF-DNA
interactions [34,35]. Using flanking genomic sequences
to extend experimentally identified footprints that do
not appear to contain a hit to the existing PWM can
reveal an extended binding site motif [34]. For many
Drosophila TFs, including HB, the number of such
cases is small (5-10%). In the case of HB, the exten-
sion of the consensus motif does not alter the core
7bp binding site, but is achieved through the addi-
tion of two neighboring nucleotides (TG), resulting in
an extended 9bp motif (TTTTTT(A/G)TG) [34] (http://
autosome.ru/DMMPMM/). Application of this extended
HB PWM provides increased predictive ability for in
vivo binding sites when compared to the core 7bp
PWM [34,35].
Given the intrinsic difficulty in reliably identifying HB

binding sites it will be critical to also consider parallel

http://autosome.ru/DMMPMM/
http://autosome.ru/DMMPMM/
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Gapped n-mer AUROC RZ Score: x = 0 RZ Score: x = 0.25 RZ Score: x = 0.5 RZ Score: x = 0.75 RZ Score: x = 1
m 0.58 0.59 0.58 0.56 0.53 0.52
mm 0.58 0.60 0.58 0.57 0.55 0.52
mkm 0.59 0.61 0.58 0.56 0.55 0.52
mmm 0.59 0.61 0.57 0.57 0.55 0.52
mkkm 0.58 0.61 0.58 0.56 0.53 0.52
mkmm 0.57 0.61 0.57 0.57 0.53 0.52
mmkm 0.59 0.63 0.58 0.56 0.53 0.52
mmmm 0.59 0.61 0.58 0.57 0.53 0.52
mkkkm 0.57 0.60 0.58 0.59 0.57 0.55
mkkmm 0.57 0.58 0.59 0.57 0.53 0.52
mkmkm 0.58 0.61 0.58 0.56 0.53 0.52
mkmmm 0.58 0.61 0.58 0.57 0.53 0.52
mmkkm 0.58 0.61 0.59 0.56 0.53 0.52
mmkmm 0.58 0.58 0.58 0.57 0.53 0.52
mmmkm 0.59 0.62 0.58 0.56 0.53 0.52
mmmmm 0.59 0.62 0.58 0.57 0.53 0.52
mkkkkm 0.55 0.71 0.53 0.53 0.57 0.57
mkkkmm 0.55 0.61 0.52 0.56 0.58 0.58
mkkmkm 0.56 0.60 0.57 0.58 0.54 0.54
mkkmmm 0.56 0.60 0.57 0.58 0.54 0.54
mkmkkm 0.58 0.61 0.59 0.57 0.55 0.55
mkmkmm 0.57 0.59 0.58 0.57 0.53 0.52
mkmmkm 0.57 0.59 0.58 0.55 0.53 0.51
mkmmmm 0.57 0.59 0.58 0.57 0.53 0.52
mmkkkm 0.58 0.65 0.58 0.60 0.59 0.59
mmkkmm 0.56 0.61 0.57 0.58 0.57 0.55
mmkmkm 0.58 0.58 0.58 0.56 0.53 0.52
mmkmmm 0.57 0.59 0.58 0.57 0.53 0.52
mmmkkm 0.59 0.61 0.59 0.57 0.55 0.55
mmmkmm 0.58 0.58 0.58 0.57 0.53 0.52
mmmmkm 0.59 0.59 0.58 0.55 0.53 0.51
mmmmmm 0.58 0.58 0.58 0.57 0.53 0.51

Figure 6 AUROC and RZ score evaluation for all 32 gapped n-mer matrices for HB. This heatmap summarizes the results shown in Figures 3
and 4. The first column lists each of the 32 gapped n-mers. The second column contains the AUROC score obtained from each gapped n-mer’s ROC
curve. The third through seventh columns contain the RZ scores obtained from each gapped n-mer at the threshold positions 0.0, 0.25, 0.5, 0.75, and
1.0, respectively. For columns two through seven, the scores are color-coded with green, yellow, and red for high, medium, and low values
respectively.

bioinformatic approaches. Of particular interest will be
the clustering of HB sites in the genome [36]. The HB
protein has two groups of C2H2-type zinc finger DNA
binding domains, separated by over 350 amino acids. One
model is that the two groups of zinc-fingers may be capa-
ble of contacting distinct binding sites in a stereotypical
manner [35]. The topology of these TF-DNA interactions
may determine the spatial distribution of the binding sites
and therefore it may be important to search for groups of
properly spaced and oriented binding sites.
Here we have analyzed a single TF protein, HB. An

interesting observation regarding this particular TF is that
sequences found to bind HB experimentally all contain a
string of T’s. Thus, predictive models often find HB bind-
ing to score as well as sites that are offset by a single
basepair. This is highlighted by the fact that the best per-
forming gapped n-mer at low thresholds, mkkkkm, has a
string of gapped nucleotides, thus potentially allowing for
some wiggle room when binding HB. In the future, it will
be very interesting to run a similar analysis on TFs with

more information-rich binding sites with less flexibility in
their recognition sequences.
A potential limitation for the wider application of the

MARZ algorithm to analyze additional TFs is the current
lack of availability of either known defined binding sites or
genome-wide binding locations from ChIP studies. How-
ever, as the cost and technical challenges of such stud-
ies diminish in the genomic-era, the availability of these
datasets will increase in the coming years. In such cases,
the MARZ algorithm will provide a systematic approach
to analyze the performance of different matrix models
on predicting TF-DNA interactions. As such, it will be
critically important to investigate whether the predictive
patterns observed for HB-DNA binding with the MARZ
algorithm are a common biological feature, by expanding
the analysis to include additional TFs in future studies.

Availability of supporting data
The data set supporting the results of this article is
included within the article (and its additional files).
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Figure 7 Comparison of the performance of all gapped n-mer
matrices to the traditionalmmatrix for HB. (A and C) Chi-square
values with significance color-coded: Green (p < 0.01), Aqua
(p < 0.05). See Materials and Methods for a description of the
Chi-square analysis. (B and D) Pearson correlation distance from
mononucleotide matrix. See Materials and Methods for a description
of the calculation. Panels A and B are obtained using a threshold of
0.0, and C and D using a threshold of 1.0.
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