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Abstract

proteins is 43.8%.
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Background: Two-dimensional differential gel electrophoresis (2D-DIGE) provides a powerful technique to separate
proteins on their isoelectric point and apparent molecular mass and quantify changes in protein expression.
Abundantly available proteins in spots can be identified using mass spectrometry-based approaches. However,
identification is often not possible for low-abundant proteins.

Results: We present a novel computational approach to prioritize candidate proteins for unidentified spots. Our
approach exploits noisy information on the isoelectric point and apparent molecular mass of a protein spot in
combination with functional similarities of candidate proteins to already identified proteins to select and rank
candidates. We evaluated our method on a 2D-DIGE dataset comparing protein expression in uninfected and HIV-1
infected T-cells. Using leave-one-out cross-validation, we show that the true-positive rate for the top-5 ranked

Conclusions: Our approach shows good performance on a 2D-DIGE dataset comparing protein expression in
uninfected and HIV-1 infected T-cells. We expect our method to be highly useful in (re-)mining other 2D-DIGE
experiments in which especially the low-abundant protein spots remain to be identified.

Background

Identification of proteins, their posttranslational modifi-
cations, and quantification of their abundance is essential
for understanding cellular processes, such as the cellu-
lar response to virus infection [1-3]. A frequently used
technique for measuring protein abundance is 2D gel elec-
trophoresis (2DE). In 2DE a complex protein mixture is
separated both on isoelectric point (pI), using isoelectric
focusing, and apparent molecular mass (Mw). Based on
these two properties, proteins migrate to different loca-
tions on a gel and their abundance can be estimated
from staining or, upon prior labeling, from the amount of
fluorescence. 2DE is very often combined with mass spec-
trometry (MS) to identify proteins excised from spots on
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the gel. To decrease gel-to-gel variation and increase sen-
sitivity, two-dimensional differential gel electrophoresis
(2D-DIGE) was developed. 2D-DIGE enables quantifi-
cation of changes in protein abundance by fluorescent
labelling of samples with Cy3 or Cy5 and running these
on the same gel. Quantification is improved even fur-
ther by repeating experiments (using biological replicates)
and using a Cy2-labeled internal standard consisting of
a pool of equal amounts from all samples investigated
in the experiment [4]. However, reliable identification of
low-abundant proteins after 2D-DIGE is still challeng-
ing. Crucial in this respect is that fluorescent labeling by
Cy3 or Cy5 is over 40-fold more sensitive than the most
sensitive silver stain [5]. As a consequence low-abundant
differentially expressed proteins do not become available
for follow-up mass-spectrometric analysis upon colloidal
Coomassie restaining of the gel. Indeed, often more than
half of the differentially expressed protein spots cannot
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be identified using peptide mass fingerprinting, in com-
bination with either matrix assisted laser-desorption time
of flight (MALDI-TOF) or liquid chromatography (LC)-
MS/MS analysis, due to the scarcity of the protein they
contain [6,7].

Recently, several computational approaches have been
proposed that enhance protein identification by exploiting
information about the biological context relevant to the
performed experiment [8]. Gwinner et al. [9] developed a
method to generate a list of candidate proteins that might
have remained undetected in a 2D-DIGE experiment.
Their approach involves the construction of a Steiner tree
on a protein-protein interaction network, which connects
already identified, differentially expressed proteins. The
nodes of the Steiner tree form a set of suitable candidate
proteins that can be validated using Western blotting, for
example. Protein differences in the low-abundant range
are also difficult to detect using the newest (gel-free)
shotgun LC-MS/MS techniques. All proteomic MS anal-
yses are hampered by well known dynamic range prob-
lems, in which the most abundant protein around ‘sets’
the limit of detection for the experiment. Network-based
approaches have therefore also been proposed to (re-)
mine MS/MS experiments in order to increase protein
identification. Ramakrishnan et al. [10] used a diffusion
algorithm to propagate the evidence from an MS experi-
ment along the edges of a yeast gene functional network.
Proteins that did not pass the confidence threshold for
identification can be rescued if proteins in their network
neighbourhood were reliably identified. Li and colleagues
[11] used protein interaction networks to search for
cliques, that is, completely connected subnetworks. A
low-confidence protein is rescued if it is a member of
a clique that is enriched for reliably identified proteins.
Whereas these two approaches do not use quantitative
information for protein identification, such information
can also be exploited. SNIPE [12] uses a network-based
approach in which the spectral counts of a protein and its
direct neighbours in a functional network are combined.
In a case-control experiment the resulting counts can then
be used to highlight proteins that are likely to be active but
not detectable in a shotgun proteomic experiment.

In this paper, we present a novel computational app-
roach to prioritize candidate proteins for unidentified
low-abundant (non-stainable) spots in 2D-DIGE exper-
iments. A limitation of the Steiner tree approach of
Gwinner et al. [9] mentioned above is that additional
information available for each unidentified spot, namely
the pI and Mw of the protein(s) that migrated there, is
completely ignored. Our prioritization approach specifi-
cally exploits this information in order to propose a list
of candidate proteins for each unidentified spot. Func-
tional similarities of candidate proteins to already identi-
fied proteins are then used to rank candidates. We applied
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our prioritization approach to protein spots differentially
expressed at the peak of HIV-1 infection of CD4* T-cells
[6]. The procedure developed here shows promise for
(re-)mining 2D-DIGE datasets and for obtaining insights
regarding expression differences of low-abundant proteins
that cannot (yet) be found using alternative methods.

Methods

2D-DIGE data

The dataset used in this study was generated in a 2D-DIGE
proteomic experiment comparing uninfected and HIV-
1 infected PM1 T-cells [6]. First-dimension isoelectric
focusing (IEF) of the samples was performed using 24-cm
precast immobilized pH gradient (IPG) strips (pH 3 to 11,
nonlinear [NL]; GE Healthcare). Next, second dimension
sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE) was performed. After image acquisition
and analysis, 296 significantly differentially expressed pro-
tein spots were detected at 7-10 days post infection.
Performing peptide mass fingerprinting (PMF) with a
MALDI-TOF mass spectrometer, 93 unique proteins were
identified from 108 spots. UniProt IDs of the identified
proteins were updated and three spots corresponding to
protein fragments were left out, leading to 105 spots cor-
responding to 92 unique proteins. See Additional file 1
for the complete list of PMF-identified proteins and their
characteristics. The remaining 188 spots did not contain
enough protein to allow identification by PMF.

Candidate protein prioritization

The objective of our method is to identify the most
likely protein candidates for low-abundant differentially
expressed spots. Our method uses proteins identified by
PMF and their (x,y) coordinates on the gel to prior-
itize candidate proteins for unidentified spots. In this
section we present the different steps of our prioritization
approach (Figure 1).

1. Calculation of pI and Mw. In most cases the specific
isoform detected on a gel represents the most abundant,
mature protein form. We compute theoretical pI and
average Mw for the mature form of the PMF-identified
proteins using “Compute pI/Mw” [16] given their UniProt
protein accession numbers. We added 42 Da to the Mw
of those proteins for which N-terminal acetylation was
detected by mass-spectrometric analysis of the digested
protein spot.

2. Fit calibration curves. Both for first dimension IEF
using IPG strips and SDS-PAGE, standard protocols gen-
erate gels with well-characterized profiles. IPG strips are
available that show either linear or smooth non-linear pro-
files across a specified pH range. SDS-PAGE separation
is characterized by an approximately linear relationship
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Step 1: Calculation of pl and Mw

Step 2: Fit calibration curves
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Figure 1 Prioritization of candidate proteins based on pl and Mw. Step 1: pl and Mw (Da) of the mature forms of the proteins identified by PMF
are determined using the EXPASy tool “Compute pl/Mw" [13]. Step 2: The (x, y) coordinates of the identified spots and their corresponding pl and Mw
(on log10-scale) are used as training data for fitting two cubic smoothing splines. Step 3: For an unidentified test spot u, a candidate list of proteins is
generated using the ExPASy tool Tagldent [14] by specifying ranges A and §(%) around the pl and Mw predicted by the smoothing splines,
respectively. Step 4: Proteins in the candidate list are ranked by calculating their similarities with the PMF-identified ‘seed’ proteins using STRING
association scores. Step 5 (optional): The ranked candidate list can be further filtered using presence (black) and absence (white) calls from the Gene
Expression Barcode 3.0 [15]. A protein is excluded from the ranked list if the corresponding gene is expressed on none of the selected microarrays.

between the logarithm of Mw and the migration distance.
In most cases the extremes of the pl and Mw ranges
are less well-defined and show smooth non-linear gra-
dients. We therefore fitted two cubic smoothing splines
for pI and Mw (on logl0-scale), respectively, using the R
function smooth.spline. The pl fit is estimated from the x-
coordinates of the identified spots and the corresponding
theoretical pI as determined in the previous step. The Mw
fit is estimated from the y-coordinates of the identified
spots and the corresponding average Mw (on log10-scale).
Optimal values for the smoothing parameter are deter-
mined using generalized leave-one-out cross-validation.

3. Generation of candidate list. We use the two cali-
bration curves to predict the pI and Mw for unidentified
protein spots from the corresponding (x,y) coordinates.
From the estimated pI and Mw a list of candidate pro-
teins is then generated using Tagldent [16] by specifying
the pI range (A) and Mw range (8) in which the search
has to take place. Candidate proteins are retrieved from all
human proteins contained in UniProtKB/Swiss-Prot.

4. Prioritization of candidate proteins. Candidate lists
generated in the previous step often contain hundreds

of proteins. We prioritize candidate proteins based on
their similarity to the set of PMF-identified ‘seed’ pro-
teins P using the principle of guilt by association [17].
In our prioritization approach we use functional protein-
protein associatons provided by the Search Tool for the
Retrieval of Interacting Genes (STRING) database (ver-
sion 9.1) [18]. For a given pair of proteins (p, q), STRING
integrates evidence from multiple sources such as co-
occurrence in pathways, physical protein-protein interac-
tion, co-occurrence in the abstracts of scientific reports
etc., and provides a probabilistic score 0 < S, , < 1 for
the strength of association. For each candidate protein, we
determine an overall score by combining the association
scores Sy, 4 of a candidate protein g and the PMF-identified
proteins p € P as follows:

Ry=—Y log(1—Sp,) 1)

peP

and then rank the candidate proteins according to their
scores. This corresponds to a scoring model in which the
contribution of individual proteins is assumed to be inde-
pendent, implying that the probability of association of
protein g with all proteins in P can be written as 1 —
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[1pep(1 — Spq). The STRING protein alias file was used
to map UniProt accession numbers to Ensembl protein
IDs. Results were compared with those obtained using the
Endeavour prioritization software [19,20]. Endeavour also
ranks a given candidate based on its similarity to a training
set. However, in this case ranks are determined for each
data source separately and then fused into a global ranking
using order statistics. Since Endeavour is gene-based, we
first mapped UniProt accession numbers to Ensembl gene
IDs using the Bioconductor package biomaRt. Endeavour
was used in batch mode.

5. Gene expression-based filtering. As an optional step
we filter ranked candidates lists via the Gene Expres-
sion Barcode 3.0 [15], which dichotomizes gene expres-
sion data in expressed and unexpressed genes on a per
sample basis. For this purpose we selected a microar-
ray experiment with a setup similar to the 2D-DIGE
experiment, comparing CD4* T-cells of 11 HIV* indi-
viduals and 9 HIV" control individuals (GEO accession
number: GSE9927, platform: Affymetrix Human Genome
U133 Plus 2.0). We used functions frma and barcode
from the Bioconductor package frma to determine the
gene expression barcode for this dataset. Probeset iden-
tifiers were mapped to UniProt accession numbers using
Bioconductor packages biomaRt and hgul33plus2.db. A
protein was excluded from the candidate list if and only
if all corresponding probesets were expressed on none of
the selected microarrays. Proteins without corresponding
probeset identifier were not excluded.

Evaluation

We evaluated the performance of our prioritization
method by leave-one-out cross-validation (LOOCYV). This
involves repeatedly leaving out a single spot from the
seed list of 105 PMF-identified spots and considering it
as unidentified in order to evaluate performance of our
prioritization method. From the in-gel (x,y) coordinates
of the excluded spot a list of candidate proteins was pri-
oritized using the approach described above. This means
in particular that the smoothing splines were refit for
each cross-validation fold. We then determined the rank
of the protein corresponding to each excluded spot and
report the true-positive rate (TPR), that is the fraction
of spots for which the correct protein appeared among
the top # candidates for n € {5, 10, 15,25}. True-positive
rates were determined for all combinations of values A €
{0.04,0.08,0.12,...,1} for the absolute difference from
the estimated pl and § € {1,2,3,...,30%} for the range
around the estimated Mw.

Implementation
The prioritization approach has been implemented in the
statistical software package R (v3.0.2). STRING version

Page 4 of 11

9.1 protein links and protein aliases files were downloaded
from the STRING website [21]. Files were loaded into
an in-house PostgreSQL database. The STRING payload
mechanism was accessed using the Bioconductor pack-
age STRINGdb. R scripts and data files are available as
Additional file 2.

Results

Influence of pl and Mw range

An important ingredient of our prioritization approach is
the information provided by the (x,y) coordinates of an
unidentified spot on the pI and Mw of the protein(s) that
migrated there. However, this information is noisy and
can lead to considerable differences between observed and
predicted pI and Mw values (Figure 1, Step 2). Such dif-
ferences can, for example, be caused by undetected post-
translational modifications (PTMs) leading to changes in
migration behaviour in both dimensions, as PTMs can
alter both overall apparent molecular mass and charge. All
SDS-PAGE separation techniques also have hydrophobic
proteins showing anomalous migration due to extra SDS
binding [22]. These factors and others can lead to errors of
more than 10% when using SDS-PAGE to determine the
Mw of a protein [23]. Our method takes the uncertainty
of the predicted pI and Mw values into account and gen-
erates a list of candidate proteins for an unidentified spot
using Tagldent by specifying the pI and Mw range around
the estimated pl and Mw values (Figure 1, Step 3). The
size of the chosen pI and Mw range is has a large influence
on the performance of the prioritization method. When
choosing ranges too narrow, candidate lists become short
and the probability of the correct protein being included is
small (Figure 2). For the smallest pI range (A = 0.04) and
Mw range (§ = 1%), the average number of proteins in a
candidate list was 6 with a recall of 6%. When choosing
ranges too large, candidate lists in general contain the cor-
rect protein but become very long. For the largest pl range
(A = 1) and Mw range (§ = 30%), the average number of
proteins in a candidate list was 2,626 and 96.2% of the seed
proteins appeared in their own candidate list. However,
long candidate lists will likely lead to the correct protein
being lowly ranked after prioritization. With a more mod-
erate choice of pI and Mw range, for example A = 0.2
and § = 8%, 60.9% of the seed proteins were contained
in their own candidate list with an average candidate list
length of 199.

Prioritization performance

To prioritize candidate lists that can contain hundreds
of proteins, we assumed that the proteins differentially
expressed in the 2D-DIGE dataset were functionally
related and thus not distributed randomly on a protein
association network. The list of 92 PMF-identified pro-
teins was indeed enriched in STRING interactions, with
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Figure 2 Influence of pl range (A) and Mw range (§) specified for Tagldent. (A) Influence on the average number of proteins in the candidate
list. (B) Influence on recall, that is the fraction of seed proteins included in their own candidate list as returned by Tagldent. For each identified spot
in the 2D-DIGE dataset and all combinations of predefined values for the pl and Mw range, a candidate list was generated following Steps 1-3 of

377 observed interactions as compared to 66.2 expected
interactions (P < 0.0001, [18]). We, therefore, prioritized
candidate proteins based on their similarity to the set of
PMF-identified proteins (Figure 1, Step 4).

We applied our prioritization method to the seed pro-
teins using LOOCYV. For each combination of predefined
values for the pl and Mw range, the true-positive rate
was calculated as a measure of performance. The TPR,
for the top n = 5,10, 15,25 ranked proteins of the can-
didate list is shown in Figure 3A. The maximal value

for TPR5 equaled 0.438 for ranges A = 0.2 and § €
{10, 11}%. This means that 43.8% of the seed proteins were
ranked in the top-5 using our approach. For higher val-
ues of n, the TPR increased with a maximal TPRy; =
0.6. As hypothesized in the previous section, large pl
and Mw ranges led to inferior performance with a low
TPR in the upper right corner of the contour plots
(Figure 3A). Performance increased when reducing either
of the ranges and then decreased again for even narrower
ranges.
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Figure 3 Prioritization performance. (A) True-positive rates TPR, for the top n = 5,10, 15, 25 ranked candidates using Steps 1-4 of our
prioritization method for all combinations of predefined values for the pl range (A) and Mw range (8). (B) Gain (red) or loss (blue) in TPR w.rt. the
TPR reported in panel (A) when also performing gene expression-based filtering (Step 5). Combinations of pl and Mw range for which the TPR
reaches its maximal value are indicated with solid black dots (without filtering) and open magenta dots (with filtering).
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Results presented in Figure 3A were based on the com-
bined STRING association scores computed by integrat-
ing the probabilities from seven different evidence types.
We assessed the contribution of each individual evidence
type by calculating type-specific TPR values when ranking
the candidate proteins. ‘Gene coexpression’ and ‘textmin-
ing’ contributed most to the overall ranking with a maxi-
mal TPRs equal to 0.41 and 0.371, respectively (Table 1).
‘Gene fusion’ only had a very minor contribution with
TPRs5 = 0.076. The superior performance for ‘gene coex-
pression’ and ‘textmining’ is explained by the fact that
these evidence types have a large coverage, whereas events
such as ‘gene fusion’ are relatively rare. Also for higher
values of n, the coexpression-based and the combined
association-based TPR were highly similar (Table 1). We
also assessed the contribution of low-confidence asocia-
tions to the overall ranking by comparing the TPR using
our current strategy, i.e. no cut-off on the STRING associ-
ation score, and using a required score of 0.15, 0.4, and 0.7
respectively. Low-to-medium confidence scores positively
contribute to the overall ranking, with a considerable
decrease in TPR for cut-offs of 0.4 and 0.7.

In human cells, transcription has been reported to
explain only 30% of variation in protein abundance lev-
els, with translation and protein degradation contributing
up to 40%. However, mRNA abundance is often a very
good indicator whether or not the corresponding protein
is detectable [24]. Thus, pruning a candidate list by filter-
ing out proteins for which the corresponding gene is not
expressed in a microarray experiment performed under
similar conditions might eliminate unlikely candidates.
We used the Gene Expression Barcode [15] to determine
presence and absence calls from a microarray experiment

Table 1 Prioritization performance
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comparing gene expression in CD4* T-cells of HIV* indi-
viduals and HIV~ control individuals (Figure 1, Step 5).
Of the 91 PMF-identified proteins that could be mapped
to a probeset identifier, 81 showed evidence of expres-
sion at the mRNA level. Thus, the seed proteins were
indeed strongly enriched for expression at the mRNA
level; of the 23,366 human proteins that could be mapped
to a probeset ID, only 7,335 showed evidence of mRNA
expression (P < 2.2 - 1071, Fisher’s exact test). Using
gene expression-based filtering, we observed no increase
in the maximal TPRs and only a slight improvement in
the maximal TPRy5 with a 5% increase from 0.6 to 0.629
(Table 1 and Additional file 3). Note, however, that for
almost all combinations of predefined values for the pl
and Mw range, the TPR after filtering is at least as high as
before filtering (Figure 3B).

We also compared our results with those obtained using
Endeavour [19] to prioritize candidate proteins (Step 4).
Endeavour is a popular prioritization tool that compared
favorably to most other tools in a recent benchmarking
study [25]. Endeavour uses multiple heterogeneous data
sources to rank the proteins in the candidate list. We
selected GeneOntology, Kegg, IntAct, String, Text and
Blast as data sources. Maximal TPR values using Endeav-
our were considerably lower with TPR; = 0.324 and
TPRy5 = 0.581 (Additional file 4). Possibly, the drop in
performance using Endeavour is related to its use of an
older STRING version.

Prioritization of unidentified spots

We applied our prioritization method to the 188 uniden-
tified, differentially expressed spots from the 2D-DIGE
dataset (Additional file 5). Based on the LOOCYV results

STRING evidence type Cut-off TPRs TPR1o TPR15 TPRys
Neighbourhood 0 0.238 0.276 0.305 0.352
Gene fusion 0 0.076 0.095 0114 0.181
Cooccurrence 0 0.2 0.248 0.257 0.286
Coexpression 0 0.41 0514 0.571 0.61
Experiments 0 0.295 0.343 0.39 0457
Database 0 0.229 0.295 0.343 039
Textmining 0 0.371 0438 0.486 0.533
Combined 0 0438 0.514 0.571 0.6
Combined (gene expression-based filter) 0 0.438 0.514 0.571 0.629
Combined 0.15 0429 0.514 0.571 0.6
Combined 04 0410 0476 0.505 0.543
Combined 0.7 0.305 04 0429 0514

True-positive rates TPR, estimated using LOOCV for the top n = 5, 10, 15, 25 ranked candidates using our prioritization approach with single evidence type
association scores and combined association scores. STRING assocation scores with a value less than the cut-off value were not taken into account. With a cut-off value
of zero all associations contribute to the overall ranking score. Maximal TPR across all combinations of predefined values for the pl and Mw range is reported. For each

value of n the highest TPR is indicated in bold.
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mentioned earlier, A = 0.2 and § = 11% were chosen
as pl and Mw range for Tagldent leading to an average
candidate list length of 242. Using gene expression-based
filtering we obtained a total of 393 unique proteins that
were included in at least one top-5. As an in silico valida-
tion, we examined whether these top-5 candidate proteins
had a documented relationship with HIV-1 infection. For
this purpose we used the NIAID HIV database of (HIV-
1)-human protein interactions [26]. Of the 389 unique
top-5 candidate proteins that could be mapped to an
Entrez Gene ID, 213 had documented evidence for inter-
actions with HIV-1 proteins. Thus, the top-5 candidates
were strongly enriched for such interactions; of the 12,544
proteins found in at least one candidate list, only 1,659
showed evidence of interactions with HIV-1 proteins (P <
2.2 - 10716, Fisher’s exact test). The efficacy of our strat-
egy is also illustrated by a clear decreasing trend in the
occurrence of HIV-1 interacting proteins at lower ranks
(Additional file 6). This provides strong evidence that our
prioritization method provides candidate proteins that are
plausible in terms of their in-gel migration behavior and
functional relevance.

Discussion

Although the human proteome can now be probed at
an unprecedented scale [27], the identification and quan-
tification of low-abundant proteins remains a formidable
challenge. We presented a prioritization method that gen-
erates ranked lists of candidate proteins for unidentified
low-abundant (i.e. only visible using fluorescense) spots
from a 2D-DIGE experiment. Candidate proteins are pro-
posed, based on the in-gel location of a spot, and resulting
candidate lists are ranked, based on the strength of associ-
ation of candidates with the PMF-identified proteins using
STRING functional association scores. We assessed the
performance of our approach on proteins differentially
expressed at the peak of HIV-1 infection of T-cells [6].
Evaluation by LOOCYV showed that our method ranked
43.8% of the proteins in the top-5 of their respective
candidate lists.

Several other approaches have been developed to prior-
itize genes and - to a lesser extent - proteins from a list
of candidates based on text mining, similarity profiling
and network analysis [28]. Existing tools have several lim-
itations for our purpose. First, most tools are web-based
and do not provide a programmatic interface or allow
for batch queries. They are therefore not suited for our
experimental setup, which involves leave-one-out cross-
validation on 92 proteins for 25 - 30 = 750 combinations
of possible values for the pI and Mw range. Second, pri-
oritization methods often integrate multiple data sources
and are therefore difficult to keep up-to-date. Third, sur-
prisingly, most prioritization tools do not provide detailed
information about the evidence on which the candidate
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ranking is based [28]. Such information is invaluable for
making an informed decision on which top candidates to
validate experimentally. We decided to base our prioriti-
zation method on functional protein-protein associations
provided by STRING. Over the past 10 years STRING has
established itself as a high-quality resource of functional
links between proteins. Moreover, the data content of
STRING is frequently updated and all information regard-
ing interactions and the interacting proteins themselves
can be downloaded. This enabled us to develop a compu-
tational pipeline that can be easily updated to a new of ver-
sion of STRING. One of the main strengths of STRING is
its interactive and intuitive user interface, which provides
a detailed overview of the STRING network and the evi-
dence for each protein-protein association. We employed
the payload mechanism that enables projecting external
information onto STRING [18] to visualize networks con-
sisting of seed proteins and top-5 candidate proteins for
unidentified spots (for a typical example, see Figure 4; for
the full list, see Additional file 5). In addition, we inte-
grated information on the rank of a candidate protein
and on evidence of (HIV-1)-~human protein interactions
for each of the top-5 candidates to further enhance inter-
pretation (Additional file 7). We also demonstrated that
our prioritization method clearly outperformed Endeav-
our. However, prioritization could possibly be further
improved by also incorporating association scores of indi-
rect interactions, for example via prioritization based on
random walks or diffusion kernels [29].

Despite the capability of our approach to correctly rank
the correct protein among the top candidates, it has sev-
eral potential limitations. First, we could not take the
extensive diversification of the human proteome due to
different isoforms, posttranslational modifications and
processing (e.g. of signal peptides) into account. In order
to determine the theoretical pl and Mw of the identi-
fied proteins we assumed that their spots corresponded
to the most abundant, mature form. Clearly, the esti-
mated calibration curves are affected by the validity of
this assumption. This problem is illustrated by the fact
that multiple spots corresponding to different forms of
the same protein had to be assigned identical pI and Mw
values; see for example the four spots for heat shock pro-
tein 60 (P10809; Additional file 1). This partly explains
the relative inaccuracy of the predicted pI and Mw values
and the rather wide optimal pI and Mw ranges A = 0.2
and § € {10,11}%. These wide ranges presumably also
lead to several proteins being highly ranked for multiple
unidentified spots (Additional file 5). For example, catenin
beta-1 (P35222; pI = 5.53, Mw = 85365) was ranked first
for 8 spots with predicted plI values in the range 5.34—
5.42 and predicted Mw values in the range 82351-95847.
Whether these spots really represent (modified forms
of) catenin beta-1 awaits further experimental validation.
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Note that even if CTNBLI is not in any of these spots, it
can still be differentially expressed in our experiment, as
it is strongly associated with the already identified differ-
entially expressed proteins [9]. Isoforms are also not taken
into account by STRING, only the mature form being used
in the prioritization step. However, Tagldent contains all
isoforms listed by UniProt even though some of them
must be really rare. This implies that for spots correspond-
ing to non-canonical isoforms, correct proteins can still
end up in the candidate list. For example, cellular tumour

antigen p53 (P04637; pI = 6.33, Mw = 43653), for which
UniProt lists 9 isoforms, was ranked first for 11 unidenti-
fied spots with predicted pI values in the range 5.34—7.91
and predicted Mw values in the range 31284—45252. One
should also remember that the optimal ranges for pI and
Mw are determined by a trade-off between specificity and
sensitivity. With a pl deviation +/-0.2 and an Mw devia-
tion +/-11%, the average number of proteins in a candidate
list is 266 and 67.6% of the seed proteins appear in their
own candidate list. Thus, even with optimal ranges almost



Nandal et al. BMC Bioinformatics XXXXXXXXN

one-third of the seed proteins could not be prioritized
since differences between observed and predicted pI or
Mw values were too large (Additional file 1). Some devi-
ations are probably caused by lacking data for extreme
values of x or y coordinates. For example, pI deviations
are large for such highly basic proteins as 40S ribosomal
protein S5 (P46783) and Histone H2B type 1-L (Q99980).
However, large deviations can also be observed for inter-
mediate values of the x or y coordinates. For example,
triosephosphate isomerase (P60174) displayed both a pl
deviation of -1.113 and an Mw deviation of 22.9%. Differ-
ences such as these occur if the corresponding spot did
not contain the mature form of the protein or, more likely,
was posttranslationally modified.

With 188 unidentified spots a lot of candidate lists are
being generated. Even looking at the top-5 lists only, 940
candidates could in principle come up. The actual num-
ber is much less, 393 unique proteins, as many candidates
come up multiple times (e.g. P53; 11 times or HIF1A
(Q16665); 17 times). Still, it is easy to cherry-pick some
proteins from these lists for discussion of their possible
roles in the context of HIV-T cell interaction. Check-
ing whether a candidate is indeed differentially expressed
should be performed first, e.g. by Western blotting. Work-
ing out whether the expression pattern change is due
to PTMs is harder, and working out the biological rel-
evance of the change is harder still. Keeping in mind
these caveats, the chances that real changes are occur-
ring in the 2D patterns of e.g. the two predicted pro-
teins mentioned, P53 and HIF1A, are rather good. P53
is a protein that strongly reacts to cellular stresses both
at the level of amounts and PTM changes, which, as
a very central player, is involved in regulating choices
between cell growth, cell arrest for repair, or apoptosis.
HIF1A, also a central switch protein, is, amongst others,
involved in the choice between more pronounced gly-
colysis with less oxidative phosphorylation and ‘normal’
glycolysis with more pronounced mitochondrial oxida-
tive processes. This so-called Warburg shift can occur in
T-cells [30], and is heavily influenced by HIF1A. Interest-
ingly, the identified proteins from our dataset (Additional
file 1) showed a clear down regulation of proteins involved
in glycolysis [6]. An overall down regulation of HIF1A,
as it stimulates glycolysis, would thus be expected. How-
ever, the difficulty of making sense of PTM patterns is
nicely illustrated in this case: HIF1A pops up 17 times
in the candidate top-5 lists, 9 times in spots that are up
regulated in response to infection, 8 times in down reg-
ulated ones. How many of these spots really represent
HIF1A and in what forms remains to be investigated, but
HIF1A is clearly one of the candidates that deserve fur-
ther study, nicely illustrating the power of our approach.
The information regarding up and down regulation of
specifically modified forms of such important proteins
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can be obtained much more efficiently from large-scale
2D-DIGE experiments with the aid of our computational
method. Small amounts of protein from both control and
infected T-cells could be run on small IEF strips having
the appropriate (restricted) pI range, followed by standard
SDS-PAGE separation. Upon Western blot analysis, spe-
cific protein patterns will be obtained. Combining these
with the more reliable quantitative information in the
original 2D-DIGE experiments could illuminate how the
protein of interest has been modified in response to the
stimulus under investigation, in this case viral infection.
In conclusion, though using 2D-DIGE datasets in com-
bination with our algorithm to analyse changes in PTMs
upon a biological stimulus is not straightforward, it repre-
sents a promising alternative to study this crucial way of
responding to changes in the environment.

The applicability of our method could be extended
in several ways. First, in 2D-DIGE experiments with
only limited amounts of differentially expressed spots
one could identify additional, non-differentially expressed
spots using mass spectrometry to fit more reliable cal-
ibration curves. Secondly, it is conceivable that certain
affected cellular pathways are not represented in the set of
abundant identified seed proteins used in our prioritiza-
tion approach. Although more difficult, one could look at
pathway clustering in the ranked candidate lists directly.
This might lead to the unbiased identification of inter-
related low-abundant protein changes. Finally, iteratively
improving the analysis should be straightforward: when-
ever further analysis based on the respective candidate
lists gives additional identified proteins, both calibration
curves and the prioritization approach for candidate rank-
ing can be further optimized.

Conclusions

The combination of 2D-DIGE experiments and the pri-
oritization approach proposed in this paper provides a
verstatile technique able to identify differential proteins in
the lower regions of the dynamic range. We expect it to
be useful in (re-)mining other 2D-DIGE experiments in
which especially the low-abundant (not Coomassie stain-
able) protein spots remain to be identified. Candidate
proteins prioritized by our approach are good candidates
for further study and will surely contribute to a better
understanding of the biological mechanisms studied in
2D-DIGE experiments.

Additional files

Additional file 1: List of PMF-identified proteins and their
characteristics. Updated and extended version of Table S1 in Ringrose
et al,, J Virol. 2008 May;82(9):4320-30.

Additional file 2: R scripts and data files used in calculating the
results presented in the manuscript.
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Additional file 3: Prioritization performance using gene
expression-based filtering. True-positive rates TPR, estimated using
LOOCV for the top n = 5,10, 15, 25 ranked candidates using Steps 1-5
(including gene expression-based filtering) of our prioritization method
for all combinations of predefined values for the pl range (A) and Mw
range (8).

Additional file 4: Prioritization performance (Endeavour).
True-positive rates TPR, estimated using LOOCV for the topn = 5,10, 15,25
ranked candidates using Endeavour to prioritize candidate proteins for

all combinations of predefined values for the pl range (A) and Mw

range (8).

Additional file 5: List of top candidate proteins for unidentified
spots. Overview of the top candidate proteins for the 188 unidentified,
differentially expressed spots from the 2D-DIGE dataset. Also provides links
to STRING-based visualizations of the seed proteins and the top-5
candidate proteins generated using STRING's payload mechanism.

Additional file 6: Fraction of HIV-1 interacting proteins. For each rank
in the candidate lists of the 188 unidentified proteins, the average fraction
of proteins with documented evidence for interactions with HIV-1 proteins
in the NIAID HIV database of (HIV-1)-human protein interactions is
displayed.

Additional file 7: STRING-based visualization of candidate proteins.
Visualization of the top-5 candidate proteins for unidentified spot

(x,¥) = (669,201) and the seed proteins directly connected to them in
STRING. Candidates 1-5 are shown with red highlights of decreasing
intensity, highlighted using STRING's payload mechanism. Connections
between proteins indicate the confidence for an association, stronger
associations are represented by thicker lines. Pop-ups show integrated
information on the rank of HIF1A in the candidate list and its reported
interactions with HIV-1 proteins.
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