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Abstract

Background: Cancer progression is caused by the sequential accumulation of mutations, but not all orders of
accumulation are equally likely. When the fixation of some mutations depends on the presence of previous ones,
identifying restrictions in the order of accumulation of mutations can lead to the discovery of therapeutic targets and
diagnostic markers. The purpose of this study is to conduct a comprehensive comparison of the performance of all
available methods to identify these restrictions from cross-sectional data. I used simulated data sets (where the true
restrictions are known) but, in contrast to previous work, I embedded restrictions within evolutionary models of tumor
progression that included passengers (mutations not responsible for the development of cancer, known to be very
common). This allowed me to assess, for the first time, the effects of having to filter out passengers, of sampling
schemes (when, how, and how many samples), and of deviations from order restrictions.

Results: Poor choices of method, filtering, and sampling lead to large errors in all performance measures. Having to
filter passengers lead to decreased performance, especially because true restrictions were missed. Overall, the best
method for identifying order restrictions were Oncogenetic Trees, a fast and easy to use method that, although
unable to recover dependencies of mutations on more than one mutation, showed good performance in most
scenarios, superior to Conjunctive Bayesian Networks and Progression Networks. Single cell sampling provided no
advantage, but sampling in the final stages of the disease vs. sampling at different stages had severe effects.
Evolutionary model and deviations from order restrictions had major, and sometimes counterintuitive, interactions
with other factors that affected performance.

Conclusions: This paper provides practical recommendations for using these methods with experimental data. It
also identifies key areas of future methodological work and, in particular, it shows that it is both possible and
necessary to embed assumptions about order restrictions and the nature of driver status within evolutionary models
of cancer progression to evaluate the performance of inferential approaches.
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Background
Cancer progression is caused by the sequential accumu-
lation of somatic mutations, including changes in copy
number (structural variants), single nucleotides (SNP
variants) and DNA methylation patterns during the life
of an individual [1-3]. Among the mutations causally
responsible for the development of cancer (drivers) not
all possible orders of accumulation seem equally likely,
and the fixation of some mutations can depend on the
presence of other mutations. For example, in colorectal
cancer APC mutations are an early event that precedes
mutations in KRAS [4-6]. Understanding the restrictions
in the temporal order of accumulation of driver muta-
tions not only provides insights into cancer biology, but
can help identify early markers of disease as well as ther-
apeutic targets [5-9], and can be an instrumental tool in
the search for the “Achilles’ Heel” of oncogene addiction
[3,10,11]. In addition, understanding the correct order of
events is necessary for the assessment of the validity of the
genetic context of cell lines and animal models of human
cancer [7,8].
In this context, a variety of methods have been devel-

oped to try to infer the possible restrictions in the order
of accumulation of driver mutations from cross-sectional
data. Longitudinal data would be better suited for this
problem but it is much harder to obtain and cross-
sectional data is (and will remain) the main source of data
(e.g., the growing number of genomes available through
international sequencing projects) for addressing these
and similar problems [5,12]. I provide next a brief review
of the main methods, including recent developments, but
see more extensive reviews in [13,14]. The oncogenetic
tree (OT) model [15] was introduced as an extension
of the linear path model [16]: in OTs progression starts
from a common (non-altered) root, and branches out, so
that there are several mutational pathways that can be
observed simultaneously. OTs, by virtue of being trees,
can only model order restrictions where an event depends
on its single parent. Another early model are distance-
based trees [17,18], but their meaning is rather different,
since the observed mutations are only placed in the leaves
or terminal nodes of the tree, and the internal nodes
are unobserved and unknown events, which precludes an
interpretation in terms of order restrictions like “mutation
A is required for mutation B”. Distance-based trees and
othermodels [19] that do not try to infer order restrictions
will not be considered further in this paper.
Conjunctive Bayesian Networks (CBNs) [20] were

developed as a generalization of OTs: these are graphs
where the occurrence of a mutation can depend on the
occurrence of two or more parents (i.e., a conjunction).
The disease progression models of OTs and CBNs assume
that a mutation can only occur with non-negligible prob-
ability if the preceding parent mutation(s) in the graph

have occurred, which has been called monotonicity [12].
Thus, for driver genes, under strict OT and CBN models
it would be impossible to observe a genotype that is not
compatible with the relations specified in the graph. Less
restrictive models for tumor progression were suggested
early on, including general Markov models and Bayesian
Networks which allow for mutations to occur even if no
other aberrations have occurred [14,21-23]. Progression
Networks [12] have been proposed for learning models
that include OTs, CBNs, as well as several other special
types of BayesianNetworks, and can explicitly incorporate
deviations from monotonicity. Retracing the Evolutionary
Steps in Cancer (RESIC) [7,8] differs from other meth-
ods because it attempts to find the order of events taking
into account the evolutionary dynamics of mutation accu-
mulation. CBNs, OTs, and Progression Networks can be
directly applied to module/pathway data, provided those
data are partitioned into predefined pathways before the
analysis (e.g., [6,7]), although some recent work [5,22],
not the focus of this paper, simultaneously tries to find
modules or pathways and their order restrictions.
Having a single graph means having a single set of

restrictions that is common to all individuals, but that
does not mean that all cells follow the same path (so
the actual genotypes and their paths can be quite diverse
under one graph). Mixtures of OTs [24] and mixtures of
Hidden-variable OTs [25] are a further generalization of
OTs where disease progression is modeled allowing for
different order restrictions in different subsets of individu-
als, each one modeled as a (Hidden-variable) OT. By using
a star as one of the trees in the mixture, these models can
also account for any mutation occurring without its par-
ent(s) having occurred. In this paper I restrict attention to
finding a single graph, the approach most widely used in
the literature (but see Discussion).
Most of the above are general methods, and can be

applied to different kinds of data including cytogenetic,
gene mutation, and pathway alteration data [6,15]. This
versatility, coupled with the increasing wealth of cross-
sectional data available, provides an excellent opportunity
to try to understand the still largely unknown details of the
order of mutations. However, in spite of the relevance of
the problem for both diagnostic and therapeutic purposes,
there are very few systematic comparisons of method per-
formance, and they do not provide a clear and robust
answer to the question of method choice.
Applied usage of the above methods faces at least three

additional major problems. First, most of the mutations
present in cancer cells are not driver mutations, but pas-
senger mutations not responsible for the development of
cancer [26-29]. Passenger mutations can show a non-
negligible frequency because they “hitchhike” on drivers
[1,30]. Unless we know what mutations are drivers, the
presence of passengers in our data sets forces us to use
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some filtering procedure to select which mutations (or,
generally, alterations) to use with (or to pass on to) the
methods to infer order restrictions. However, the simu-
lations in the only comparison of methods available [13],
as well as in the original descriptions of new methods
[12,31,32], have all been conducted assuming that the
identity of the driver mutations is known.
Virtually all papers that try to infer order restric-

tions, including methodological papers, rely on simple
frequency-based selection or filtering procedures to select
which genes to use [6,15,18,22,32-36], but the effects
of these filtering approaches on the performance of
the methods to infer order restrictions are completely
unknown.
Second, attention to sampling decisions is largely miss-

ing from the literature. OTs, CBNs, and Progression Net-
works are generative models, and simulations that exam-
ine method performance [12,13,31,32] obtain genotypes
directly from these generative models. But, except when
we use single cell sampling, our experimental data are
from samples that aggregate over many cells and the joint
andmarginal frequencies of mutations of those aggregates
can depend not only on the aggregation per se but also on
when we sample (due, for example, to the clonal expansion
episodes), and differ greatly from distributions obtained
from the generative models.
Finally, development and evaluation of methods of

reconstruction of order restrictions are conducted with-
out consideration for the evolutionary model of tumor
progression (but see [7,8] and Discussion). This prob-
lem is highlighted by Sprouffske et al. [37]: referring to
oncogenetic tree models they say (p. 1136) “This is not
an evolutionary model because the oncogenetic tree does
not represent ancestral relationships within a neoplasm
but rather a summary of the observed co-occurrences of
mutations across independent neoplasms”. This lack of
consideration for the evolutionary model is also unfortu-
nate since it does not provide a clear mechanistic interpre-
tation of (nor a simple mechanistically-based procedure
for generating) deviations from the restrictions encoded
in the graph. Of particular interest is monotonicity (a
mutation in a driver gene can only be observed if the
preceding parent mutations in the graph have occurred),
because deviations from it can easily arise when a muta-
tion behaves as a driver or as a passenger depending on
the genetic context —i.e., depending on which other genes
are mutated [30,38].
As we have seen, data simulated from the generative

models of OTs, CBNs and Progression Networks cannot
be used to address any of those three problems (pas-
sengers, sampling, deviations from monotonicity). How-
ever, it is possible to incorporate the order restrictions
encoded in CBNs, OTs, and Progression Networks into
plausible evolutionary models of tumor progression (in

fact, recently a simulation tool that incorporates simple
order restrictions among four drivers has been published
[39] —see Discussion). If we model together drivers (with
possible restrictions) and passengers we can address the
consequences of having to filter drivers from passen-
gers. Incorporating order restrictions within evolutionary
models would also allow us to address two questions
of immediate practical relevance related to data col-
lection: should we try to use single cell sampling now
that it is becoming a realistic possibility [40] instead of
whole tumor sampling? and would it be better to try to
use samples collected in the final stages of the disease
vs. using samples collected also at intermediate stages?
Finally, using explicit evolutionary tumor growth models
also allows us to examine the consequences of deviations
from monotonicity and the genetic context dependence
of driver status. In fact, we can generate data using sim-
ulations in a way that closely mimics the process of data
generation and order restriction inference from patient
data, as illustrated in Figure 1.
In this paper I incorporate the order restrictions into

evolutionary models to address how the performance of
all available methods for inferring order restrictions is
affected by: a) passenger mutations that lead to uncer-
tainty about the identity of the true drivers and the need
to use filtering approaches; b) sampling choices (when
and how and how many to sample); c) type of underlying
true graph, including presence/absence of conjunctions;
d) deviations from the order restrictions encoded in the
graphs (deviations from monotonicity); e) evolutionary
models of tumor progression.

Methods
Table 1 provides an overview of the main factors consid-
ered in this study, and Figure 1 a schema of all the steps.
We will deal separately with two different scenarios: one
where we know the true identity of the drivers, which
we will call “Drivers Known”, and another scenario that
replicates the common situation where the data includes
both passengers and drivers and we do not know with
certainty which is which, a scenario we will refer to as
“Drivers Unknown”. The “Filtering” factor is only relevant
for the “Drivers Unknown” scenario (as shown in Figure 1
by the “No” path from the decision diamond “Drivers
known?”).
Details about the experimental design are provided in

Additional file 1. Briefly (see also Figure 1) each simulation
run produces the observed genotype for a subject, and a
data set is made from the genotypes of multiple subjects.
We can analyze the same data set with different Methods
(or different Filtering by Method combinations) but for
other factors (e.g., Model) different settings of the factor
produce different data sets. I have used use an experi-
mental design with among- and within-data set factors
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Figure 1 Inferring order restrictions. (a)Main steps in the analysis of patient data. (b)Main steps used in this paper for the generation
(simulation) of data and its analysis. Terms in monospaced blue font are those in Table 1, and terms in italics, as in Table 1, correspond to within-data
set factors. Numbers indicate the chronological order of the steps. In step 1, cancer development is simulated for the specified values of Model, sh,
and True Graph. This simulation generates tumor cell data for the equivalent of a single patient in panel (a). In step 2, data for S.Size patients are
sampled (cross-sectional sampling) according to the settings of S.Time and S.Type, producing a data set (a collection of genotypes: a matrix of
subjects by genes). If the identity of the true drivers is not known, Filtering in step 3 removes from the data set the genes that do not meet certain
frequency criteria. The data set is then passed on, in step 4, to one of the specified methods to infer the graph that encodes the order restrictions.
This inferred graph is compared, in step 5, with the true graph (which was used in step 1 to generate the cancer cell data) yielding the four
performance measures Diff, PFD, PND and FPF. The process illustrated here was repeated 20 times for all possible combinations of Model, sh, True
Graph, S.Time, S.Type, S.Size. Every data set was subject to all Filtering procedures and analyzed with all six Methods.
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Table 1 Factors considered and their levels or possible values, together with acronyms used through the text

Factor Description Values

Model Evolutionary model of cancer progression exp, Bozic, McF_4, McF_6

sh Penalization of deviations from monotonicity 0, Inf (for ∞)

True graph The true graph: the structure that encodes the order
restrictions. All possible combinations of Number of
nodes and Conjunction

11-A, 11-B, 9-A, 9-B, 7-A, 7-B

Number of nodes (NumNodes) Number of genes or alterations 11, 9, 7

Conjunction Whether or not the graph has conjunctions Yes, No

Sample size (S.Size) Number of samples used for reconstructing the graph 100, 200, 1000

Sampling time (S.Time) When the sample is taken Last, unif (for uniform)

Sampling type (S.Type) How tissue is collected singleC (for single cell), wholeT_0.5 (whole tumor,
detection threshold=0.5), wholeT_0.01 (whole tumor,
detection threshold=0.1)

Filtering Method for selecting drivers, or filtering passengers,
when the true drivers are not known

S1, S5, J1, J5 (for frequency of Single event and Joint
frequency of events, with thresholds 1% and 5%
respectively)

Method Method for inferring the order restrictions CBN, CBN-A, DiP, DiP-A, OT, OT-A

The within-data set factors, Filtering and Method (see text), are shown in italics. All other factors are among-data set factors. Sampling scheme, used through the text,
refers to when (S.Time) and how (S.Type) we sample.

(see Table 1) so as to examine the effect ofMethod and Fil-
tering, controlling for possible among-data set variation.
For factors Model, sh (see details below in section

“Deviations from monotonicity and genetic context
dependence of driver status: sh”), True Graph (= Number
of Nodes * Conjunction), S.Size, S.Type, and S.Time, the
among-data set factors, I used a full factorial design (thus,
4 ∗ 2 ∗ 3 ∗ 2 ∗ 3 ∗ 3 ∗ 2 = 864 among-data set factor
combinations). For every combination of the among-data
set factors I used twenty independent replicate data sets.
Each of the twenty replicate data sets was analyzed with
every Method or every Filtering by Method combina-
tion (the within-data set factors) to infer a graph from
the data (i.e., to try to infer the order restrictions among
events). Therefore, a total of 864 ∗ 6 = 5184 or 864 ∗ 6 ∗
4 = 20736 factor combinations for the Drivers Known
and Drivers Unknown scenarios, respectively, were
examined.

Evolutionary models and simulation
Simulated data were generated using different models of
tumor progression. The purpose of using several mod-
els is not to compare models of tumor development, but
to use a range of plausible ones so that we can examine
how the true underlying model could impact the infer-
ence of restrictions. Two of the models used, called here
“Bozic” (as it is based on [41]) and “exp” have no density
dependence and lead to exponential growth. The second
set of models, called “McF_4” and “McF_6”, are based on
McFarland et al’s work [42] and lead to logistic-like behav-
ior, as death rate depends on total population size. Table 2
summarizes the main parameters used for the models.

Simulations used the Binomial-Negative Binomial (BNB)
algorithm [43].
Details about the models, choice of parameters, simula-

tions, and examples of simulated trajectories are provided
in Additional file 1.

Deviations frommonotonicity and genetic context
dependence of driver status: sh
Genetic context dependence of driver/passenger status
[30,38] and deviations from monotonicity (i.e., from the
order of events implied by the graph of the oncogenetic
model) can be closely related, and affect the performance
of methods to infer order restrictions. A mutation in a
driver gene for which all the preceding required muta-
tions have occurred (i.e., a mutation in a gene that has

Table 2 Main parameters for each of the tumor
progressionmodels

Model Birth rate Death rate Mutation Cancer
rate (per reached if
gene per
unit time)

Bozic 1 (1 − s)j(1 + sh)p 10−6 > 109 cells

exp (1 + s)j(1 − sh)p (+) 1 bj ∗ 10−7 > 109 cells

McF_4 (1 + s)j/(1 + sh)p log(1 + N/K) 5 ∗ 10−7 Number of
drivers ≥ 4

McF_6 (1 + s)j/(1 + sh)p log(1 + N/K) 5 ∗ 10−7 Number of
drivers ≥ 6

j is the number of drivers with their dependencies met, and p the number of
drivers with dependencies not met. In all cases s = 0.1. sh is set to either 0 (so it
has no effect) or ∞ (so fitness of that clone is 0). N: population size. K = 2000.
+:Strictly, birth rate = max(0, (1 + s) j (1 − sh)p).
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its dependencies satisfied) will lead to an increase in fit-
ness (through its increase of the value j, for number of
drivers, as shown in Table 2). What about mutations in
driver genes that do not have their dependencies satis-
fied? Enforcing monotonicity is equivalent to considering
such a mutation as a mutation in an essential housekeep-
ing gene, which can be modeled setting sh, in the notation
of [44], to ∞ (so fitness of such clones is zero). Deviations
from monotonicity can arise, however, if such mutation
is similar to a passenger mutation: it confers no fitness
benefits (and if it has no deleterious effect sh = 0, simi-
lar to setting sp = 0 in [42]). Of course, in none of these
two cases (restrictions not satisfied) would the value of j
be increased (because a driver only increases fitness if its
dependencies are satisfied). In the simulations reported
here I considered two extreme scenarios: a) no deviations
from the graph of the oncogenetic model are allowed,
which I will refer to as “sh=Inf” (from ∞) ; b) drivers
without dependencies satisfied are equivalent to passen-
gers with no deleterious effects, which I will refer to as
“sh=0”. Note that the implementations I used to infer CBN
and OT incorporate errors [6,31,32] and the OT model
explicitly allows for errors due to the occurrence of genetic
events outside themodel implied by the graph of the onco-
genetic model [45]. DiProg (DiP), the method to infer
Progression Networks models [12], explicitly incorporates
deviations from monotonicity with the parameter ε.

True graphs, number of drivers, and number of passengers
Six different true graphs have been used, three of them
with conjunctions (i.e., graphs that could only be perfectly
inferred with either CBN or Progression Networks) and
three of them without conjunctions (i.e., trees that could
be perfectly reconstructed by all methods compared). The
trees (the graphs without conjunctions) are derived from
the graphs with conjunctions by removing conjunctions.
The graphs have 7, 9, and 11 nodes. The number of nodes
of the graphs targets the range of nodes commonly con-
sidered in studies that try to reconstruct graphs from real
cancer data: 10, 11, and 12 in [31], 7 to 11 (including gene
and core pathways) in [6], 7 in [15], 11 and 12 in [33], 8
in [46], 7 (modules) in [22], 9 in [47], 17 in [9] and [23],
12 in [48], 6 and 13 in [21], 12 in [14]. The size of graphs
was limited to 11 because CBN cannot deal with more
than 14 nodes and we need to allow for the possible selec-
tion of more than 11 nodes when Drivers are Unknown.
The graphs are shown in Additional file 1, and we will
refer to them by the number of events, using post-fix A for
conjunction and B for no conjunction.
Simulations that used graphs with 11, 9, and 7 seven

drivers generated clones with between two and six drivers
(see also Additional file 1), a range which is well within
the range of drivers considered in the literature: although
some authors [44,49] examine scenarios with 20 drivers,

most studies deal with much smaller numbers of drivers
[37,41,42] and recent reviews suggest that the number of
drivers in the cells of most tumors lies between two and six
[26,42]. Regarding number of passengers, it is now widely
accepted that most mutations in cancer cells are passen-
gers [26-29,41,50]. In the Drivers Unknown scenario I set
the proportion of passengers to drivers constant, so that
there are four passengers for every driver, a range within
that seen in the literature. Our scenario is also relevant if
the actual number or fraction of passengers is much larger,
but many of those passengers can be excluded a priori
based on other information, so that they are never con-
sidered as candidates for the process of filtering data and
inferring graphs (i.e., they are never passed on to step 3 in
Figure 1).

Sample size and sampling type and time
Sample size (S.Size) was set to three possible values: 100,
200, 1000. The values considered in other studies vary
widely (100, 400, and 800 in [33]; 83 to 95, plus a pool
of 268 in [6]; 50, 100, 200, 500, and 1000 in [13]; 971 in
[46]; 887 in [9]). The set of 100, 200, and 1000 covers a
realistic range of sample sizes and will allow us to com-
pare the effects of sample size with those of other factors.
Sampling time (S.Time) refers to when sampling occurs.
S.Time = last means that samples were collected at the
end of the simulation (at the end of cancer progression).
S.Time=unif (for uniform) means that sampling time was
uniformly distributed between the time of appearance of
the first mutated driver and the end of the simulation.
Uniform sampling is a very simple model for obtain-
ing cross-sectional samples of patients at different stages
of the disease. Sampling uniformly between the time of
appearance of the first mutated driver and the final stages
of the disease is, of course, unrealistic, but I used this
type of sampling because it provides a stark contrast
with sampling at the end of the disease: S.Time=unif and
S.Time=last can be regarded as two extremes of sampling
tissue that harbors at least one mutated driver (i.e., can-
cerous or pre-cancerous tissue). Sampling type (S.Type)
refers to whether single cell or whole tumor sampling
was used, and three values have been used for this factor.
When S.Type = singleC (single cell), a simulation provided
the genotype of one single cell (or, equivalently, one sin-
gle clone), where the probability of selecting a clone was
proportional to its abundance. When using whole tumor
sampling, and as in [37], a biopsy was the entire tumor, but
whether a gene was considered mutated or not depended
on the detection threshold, and here I used two levels: 0.5
(like [37]) and 0.01, meaning that a gene was considered
mutated if it was mutated in 50% or 1%, respectively, of
the cells. Of course, it is unlikely that a study using sin-
gle cell would take a single sample from a patient but we
focus on cross-sectional data, and single cell sampling is



Diaz-Uriarte BMC Bioinformatics  (2015) 16:41 Page 7 of 26

the type of sampling that leads to data most similar to the
type of data obtained when we simulate using the gener-
ative model of the underlying graph. Moreover, single cell
sampling and whole tumor sampling, as used here, can be
considered two extremes in the range of sampling pos-
sibilities. Likewise, a detection threshold of 0.01 is prob-
ably unrealistically low but that setting is used because
it combines the capacity of detecting very low frequency
co-occurring events (as in single cell sampling) with sum-
ming over distinct cells (which could lead to problems
similar to the ecological fallacy). The sampling schemes
used here ignore any possible spatial structure and tis-
sue architecture [51,52], not because they are considered
irrelevant, but because none of the evolutionary models
considered here incorporate them (but note that the uni-
form sampling scheme can sometimes be equivalent to
incorporating spatial structure, if that spatial structure is
correlated with time).

Filtering
When the identity of the driver genes is not known, it is
often necessary to select genes before trying to infer the
order restrictions. Some studies that deal with chromoso-
mal abnormalities have used the methods of Brodeur and
collaborators or Taetle and collaborators, to try to locate
non-random breakpoints (see discussion and references
in [14,21]) but these methods are not directly applicable
to other types of data. Other authors that deal with chro-
mosomal abnormalities, or that use mutation data, have
used one of the following general approaches to decide
which alterations to analyze: a) selecting the most fre-
quent mutations, either by setting a minimal number as in
[32,34], and [22], where the seven, 13, or 25, respectively,
most frequent alterations are used, or setting a minimal
frequency such as in [6,18,35,36] where the threshold is set
at 5%, 5%, 10%, 10%, respectively; b) selecting the largest
set of events so that every pair of events is observed at
least k times, as in [45] and [15] where the threshold is
five times, out of 124 and 117 cases, respectively. The key
difference between these two filtering procedures is that
the second uses the joint occurrences of pairs. To compre-
hensively incorporate common uses, I used four filtering
procedures: two of them only consider the marginal fre-
quency of each single event, and I use an “S” to denote
“frequency of Single event”, and the other two take into
account joint occurrences, and a I use “J” to denote “Joint
frequency of pairs of events”. The procedures are S1, that
selects any mutation with a frequency larger than 1%,
S5 where the threshold is 5%, J1 that selects the largest
set of events so that every pair of events is observed at
least in 1% of the cases and J5, where the threshold is
5%. In the rare case where a filtering procedure returned
more than 12 mutations, the 12 most common were
selected.

Our focus here is in the effect that a filtering proce-
dure has on the reconstruction of the order restrictions.
Filtering, by itself, can introduce errors (true drivers can
be missed or passengers can be considered drivers) but
these errors can have different impact on the reconstruc-
tions of the order restrictions depending on the methods;
colloquially, different methods are not necessarily equal
when trying to make the best of a bad situation. An exam-
ple and further details are provided in Additional file 2,
“Commented example of filtering + method effects”.

Inferring order restrictions: CBN, DiP, OT
I have used three types of methods to infer order restric-
tions from data: methods that infer OTs, methods that
infer CBNs (which should also be able to reconstruct
OTs), and methods that infer Progression Networks (and,
thus, should be able to reconstruct both OTs and CBNs).
Each method, when applied to a data set, returns what
we will refer to as an “inferred graph” (see Figure 1).
For OTs I used the R package Oncotree [53] with its
default settings. Some of the analysis were rerun (see
Discussion and Additional file 3) with the implementation
available in the BioConductor package Rtreemix [54,55].
For CBNs as detailed in [31] I used the software from [6].
I used the same default settings for temp (1) and steps
(number of nodes2) and started the simulated annealing
search for the best poset from an initial linear poset as
in [6]. For Progression Networks I used the DiProg pro-
gram (the method we call DiP) from [12] to fit monotone
networks (option “MPN”), choosing the best k from 1 to
3 (and the results reported here have ε = 0.05). Further
details about software versions and parameters used for
all methods are provided in Additional file 1.
Other methods have been described in the literature,

but I have not been able to use them here. The method in
[33] is too slow (analysis of data sets of 200 cases exceed-
ing 4 hours; see further details in Additional file 2) if we
need to do more than 100,000 analysis, as in this paper.
The methods in [7,25] have no software available. There-
fore, this paper includes all currently existing approaches
for which software is available. It is worth emphasiz-
ing the crucial role of the availability of free and open
source software both in the growth and development of
bioinformatics and computational biology [56-58] and for
implementing reproducible research [59]. Moreover, the
lack of public implementations precludes comparison of
otherwise promising approaches, which ultimately hurts
practitioners [60].
Finally, it is important tomention that themethods used

differed greatly in speed: the median and mean execu-
tion times, over all 172800 analysis performed by each
family of methods, were 0.045 and 0.07 seconds for OT,
3.89 and 12.60 seconds for DiP, but 31 and 1127 seconds
for CBN. In addition, DiProg (DiP) currently depends
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on IBM’s CPLEX ILOG library, which not only is not
open source but has a severely restrictive license. Fur-
ther details of execution times are provided in Additional
file 2.

CBN-A, OT-A, DiP-A
In some cases one or more mutations were present in all
or almost all of the subjects. Even if these are driver muta-
tions on which all other events depend, events with a fre-
quency of 1 are often removed from the graph (e.g., by the
OTmethod) or placed as nodes that descend directly from
Root and that have no descendants. To try to minimize
this problem, we can augment the data by adding “pseu-
dosamples” that have no mutations in any gene. Adding
“pseudosamples” does not amount to knowing anything
about the order of events, nor the truth about which genes
are drivers or not (and in the Drivers Unknown scenario I
always augmented after the filtering step). Data augmen-
tation only requires being able to differentiate between
presence and absence of a genetic alteration, mutation, or
aberration, which is always assumed in these analyses. In
this paper, “CBN-A”, “DiP-A”, and “OT-A”, refer to using
CBN, DiP, or OT on data that has been augmented by
adding to it another 10% of samples filled with zeroes (0 is
the code that denotes no alteration).

Analysis
We want to address two questions: a) what procedures
(choice of Method, Filtering, S.Time, and S.Type) are
“best” (for reconstructing the underlying true graph from
the data), so that we can choose a course of action when
faced with new data; b) what factors have an impor-
tant effect on performance, including interactions with
other factors, even if they are not under user control, so
that future research can focus on them. The first ques-
tion (what method is best?) is most straightforwardly
addressed by ranking Method(s) and Method by Fil-
ter combinations and by finding the best Method(s) (or
Method by Filtering combination(s)) using the Multiple
Comparisons with the Best procedure.
The second question (what factors affect performance?

are there interactions among them?), is best addressed
with statistical modeling that focuses on identifying fac-
tors with relevant effects; for instance, here the question
would not be whether the Bozic model or the McF_4
model lead to better performance, but rather whether
Evolutionary Model affects performance and shows inter-
actions with other factors. The approaches used reflect
these two questions and are based on very different pro-
cedures and assumptions. Of course, results from the
different approaches complement each other (see further
comments in section “Why GLMs, MCB, and ranking?”
in Additional file 1). Below I detail the different analyses,
after explaining how performance was measured.

Performancemeasures
I consider here that the main goal of most studies is the
reconstruction of the topology of the graph, which is what
captures the order restrictions [12,15,32]. There is no sin-
gle performance measure that can fully characterize the
performance in this task, and therefore I have used four
performance measures that capture performance along
different dimensions. One is a global score of the dif-
ference between the inferred graph and the true graph.
The other three are measures of classification or diagnos-
tic performance common in medical testing and machine
learning [61,62] that focus on the fractions or propor-
tions across specific rows or columns of the confusion
matrix (where entries in that matrix are commonly called
“true positives”, “false positives”, “false negatives”, and
“true negatives”). Thus, the dimensions measured by each
of these four performance measures relate to concepts
already familiar to researchers, and arguably capture the
key features of the methods’ behavior. As we will see
below, using these four different performance measures is
also key to understanding some of the major differences
between methods.
Diff is the sum of the absolute value of the entries in the

matrix of the Difference between the adjacency matrices
of the true (T) and inferred (F) graphs; this is the square
of the “usual” Frobenius norm [63] of that matrix differ-
ence, and is the same as the “graph edit distance” of [13].
The Proportion of False Discoveries (PFD) is defined as
# of relations in F but not inT

# of relations in F . Following [6,31], we define
“relations” as the transitive closure of “cover relations”.
For instance, suppose a graph with A → B → C (where
A → B means that A needs to occur for B to occur);
the cover relations are A → B and B → C, but we
also include A → C in the relation. As in [6,31],
we do not include the root node when finding cover
relations and their transitive closure (in contrast
to what is done in the computation of Diff ). The
numerator is, therefore, the number of false positives
(FP). The Proportion of Negative Discoveries (PND)
is defined as # of relations in T but not in F

# of relations in T and the
numerator is, therefore, the number of false negatives
(FN). The False Positive Fraction (FPF) is defined as
# of relations in F but not in T

# of relations not in T and its numerator is the
number of FP; it should be noted, however, that the FPF is
of minor value compared to PFD and PND. Further details
for all performance measures are provided in Additional
file 1.

Overall ranking of filtering, method, and sampling scheme
To understand what combinations of Method, Filtering,
and Sampling scheme are best, I ranked them, averag-
ing the ranks over (subsets of ) the other factors (i.e.,
marginalizing over other factors). As “best” can depend
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on performance measure, each performance measure was
dealt with separately. For each performance measure sep-
arately, I ranked the 36 combinations ofMethod by S.Time
by S.Type (for the Drivers Known scenario) or the 144
combinations of Filtering by Method by S.Time by S.Type
(for the Drivers Unknown scenario) in each of the 144 fac-
tor combinations defined by True Graph by Model by sh
(see section “Deviations from monotonicity and genetic
context dependence of driver status: sh”), by S.Size. Then,
for each performance measure, I obtained the average
rank over subsets of the 144 combinations and the aver-
aged ranks were then ranked to obtain the final rankings
for each performance measure (e.g., Table 3 shows, on
the left four columns, the ranked average ranks over the
72 combinations of Number of Nodes by Model by sh
by S.Size when there are conjunctions and, on the right,
the ranks over those 72 combinations when there are no
conjunctions). Further details are provided in Additional
file 1.
This procedure does not take into account the repeated

usage of the same data set for each of the four/sixteen
methods, but we are using it simply to rank alternatives.
The advantage of this procedure is that it provides an
overall view of the results that is equivalent to examining
all possible interactions of Filtering by Method by Sam-
pling scheme, marginalizing over all other terms, and this
is done with a simple procedure that does not depend
on additional modeling assumptions. The disadvantage
is that it does not allow us to judge the relative size of
different effects.

Best method and filtering: multiple comparisons with the
best (MCB)
To identify the best Method (or Method by Filtering com-
bination), I have used the procedure of “multiple compar-
isons with the best” (MCB) [64] where, in our case, best is
“smaller” for all four performance measures. Briefly, MCB
procedures compare eachMethod (or Filtering byMethod
combination) against the best of the other methods and
can return a confidence set, such that methods that are not
contained in the confidence set can be rejected as methods
that are not the best method [65,66]. An MCB procedure
for block designs that uses Wilcoxon signed ranks has
been described in [65]. In our case, for each combination
of True Graph, Model, sh, S.Size, S.Time and S.Type, each
data set constitutes a block. Thus, separately for eachmea-
sure and for each of the 864 among-data set combinations
I have used a method based in [65]. All results reported
have a minimal coverage of 0.90. Full details are provided
in Additional file 1 section “Multiple comparisons with
the best (MCB)”. The best methods (or method by fil-
tering combinations) for each of the 864 among-data set
combinations are shown in Additional file 4. From these,
we can then find the frequency of the different confidence

Table 3 Ranking of all 36 combinations of Method and
Sampling scheme (time, type) when drivers are known
with respect to each performancemeasure

Method and
sampling

Conjunction No conjunction

Diff PFD PND FPF Diff PFD PND FPF

OT-A, last,
singleC

1 2 14 10 1 3 2 15

OT-A, last,
wholeT_0.5

2 1 15 12 2 4 3 14

OT-A, last,
wholeT_0.01

3 3 7 22 3 6 1 22

OT-A, unif,
singleC

4 6 19 13 4 9 12.5 9.5

OT, unif,
singleC

5 5 20 11 5 7 12.5 9.5

OT-A, unif,
wholeT_0.01

8 11 16 24 8 11 5 24

OT, last,
singleC

10 9 23 1 10 1 17 2

OT, last,
wholeT_0.01

11 4 18 18 12 5 14 18

OT, last,
wholeT_0.5

12 7 24 2 11 2 23 1

CBN-A, unif,
wholeT_0.01

13 13 1 26 13 13 4 26

CBN-A, unif,
singleC

14 16 2 28 15 15 9 29

CBN-A, unif,
wholeT_0.5

15 18 3 34 14 16 8 31

CBN, unif,
singleC

16 17 5 29 17 19 10 34

CBN, unif,
wholeT_0.01

17 14 4 27 18 14 6 27

DiP-A, unif,
singleC

31 28 31 4 31 30 31 6

DiP, last,
wholeT_0.5

33 35 34 5 34 34 36 5

DiP, unif,
singleC

35 31 33 3 35 32 33 3

DiP, unif,
wholeT_0.5

36 36 36 6 36 36 35 4

Methods have been ordered by their performance in the first performance
measure. Best five methods are shown in bold. Only methods that are within the
best five in at least one performance measure are shown (full table as well as
tables split by S.Size are available from Additional file 2).

sets (or best subsets), for selected combinations of factors
as shown, for example, in Table 4.

Generalized linearmodeling of performancemeasures
The procedures above do not provide a simple and direct
way to compare the relative magnitude of the effects of
different factors. We can approach this problem using a
statistical model for each of the performance measures.
I used generalized linear mixed models (GLMM), where
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Table 4 Frequencies of most common confidence sets
usingmultiple comparisons with the best with a coverage
of 0.90, when drivers are known

Confidence
sets

Conjunction No conjunction

Diff PFD PND FPF Diff PFD PND FPF

OT, OT-A 0.60 0.47 0.03 0.05 0.65 0.53 0.23 0.05

DiP, DiP-A,
OT, OT-A

0.02 0.08 - 0.57 0.03 0.16 0.05 0.59

CBN, CBN-A 0.02 0.09 0.61 - - 0.04 0.32 0.01

DiP, DiP-A - 0.04 0.01 0.17 0.01 0.02 - 0.16

CBN, CBN-A,
OT, OT-A

0.02 0.02 0.07 - 0.02 0.03 0.12 0.01

DiP-A, OT,
OT-A

- 0.06 - 0.02 0.02 0.05 0.02 0.03

OT-A 0.16 0.09 0.06 - 0.15 0.04 0.13 -

OT 0.07 0.05 - 0.01 0.03 0.03 - -

DiP, OT - 0.04 - 0.08 0.01 0.05 - 0.08

CBN-A 0.03 - 0.06 - - - 0.01 -

Combinations not shown have a frequency less than 0.05 for all columns.
Frequencies normalized by column total (N = 432).

data set was a random effect and the rest of the factors in
the design were regarded as fixed effects.
Data for the Drivers Known and Drivers Unknown sce-

narios were modeled separately. All models were fitted
using INLA [67,68] (and, to compare results, a subset
also with R package MCMCglmm [69] — there were
no relevant differences in results). Models were fitted
using sum-to-zero contrasts: each main effect parameter
is to be interpreted as the (marginal) deviation of that
level from the overall mean, and the interaction param-
eter as the deviation of the linear predictor of the cell
mean (for that combination of levels) from the addition of
the corresponding main effect parameters. As explained
in Additional file 1, we will focus on models with two-
way interactions. We will refer to these analyses as the
GLMM fits. Further details of the statistical modeling and
interpretation of coefficients are provided in Additional
file 1.

Results
We first examine the results when Drivers are Known.
When the identity of drivers is not known (Drivers
Unknown), we need to add the step of filtering or selecting
mutations before inferring the restrictions.

Drivers known
There was wide variation in performance: under some
Models and with some Methods perfect results were
obtained but, for those same Models and S.Sizes, there
were choices of Method and Sampling scheme that led to

many incorrect decisions, with PFD and PND of 0.7 to 0.9
(see examples of inferred graphs in Additional file 5 and
median values for all performance measures for all combi-
nations of factors in Additional file 6): even for the easiest
models and largest sample sizes, careful choice of Method
can be crucial. There was also a large difference in the
number of relations inferred (the transitive closure of the
cover relations), whether correct or incorrect: the mean
values were 19.1, 18.5, 1.7, 2.6, 7.0 and 8.4 for CBN, CBN-
A, DiP, DiP-A, OT, andOT-A, respectively (see Additional
file 6).
Table 3 shows the overall ranking of Method and Sam-

pling scheme. OT and OT-A were the best methods
according to Diff and PFD. CBN and CBN-A were among
the best methods according to PND (in graphs with con-
junctions) and DiP and DiP-A according to FPF. This is
coherent with the patterns of number of edges (number of
dependency relations) inferred: CBN and CBN-A inferred
more edges and thus the number of false negatives (FN)
decreased, so they had larger sensitivity or recall. But this
was done at the cost of increasing the false positives (FP)
and, thus, increasing PFD and FPF: a larger fraction of the
discoveries were false (precision was smaller) and a larger
fraction of the non-existing relationships were regarded
as being present (specificity was smaller). DiP and DiP-A
showed the opposite trend: these were the methods that
inferred the smallest number of relations (in many cases
no edges, beyond those from Root, were inferred), lead-
ing to a smaller number of false positives (FP), so that a
smaller fraction of non-existing relations were regarded
as being present, but this was done at the cost of a very
large number of FN that affected not only PND but also
Diff.
Figures 2 and 3 show the coefficients from the GLMM

fits. From Figure 2 we see that DiP and DiP-A only per-
formed better than the average of methods with respect to
performance measure FPF (which, as mentioned before,
is of minor value compared to PND and PFD), and CBN
and CBN-A only with respect to performance measure
PND. However, for performance measure PND the better
performance of CBN/CBN-A compared to other meth-
ods was concentrated in graphs with conjunctions. The
left column for PND in Table 3 shows that the best
five methods were all CBN/CBN-A, but the right col-
umn for PND shows that OT-A occupies the first three
and fifth positions. The analysis of frequencies of confi-
dence sets, in Table 4, again reveals the same patterns:
OT and OT-A were clearly the best methods for perfor-
mance measures Diff and PFD, and were best methods
with DiP/DiP-A for performance measure FPF (again, FPF
is of minor relevance compared to PND and PFD). CBN
and CBN-A were in confidence sets that did not include
any of the other methods in 67% of the cases for perfor-
mance measure PND in graphs with conjunction. In the
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Figure 2 Drivers known, plot of the coefficients (posterior mean and 0.025 and 0.975 quantiles) for Conjunction, Method, S.Time, S.Type
and S.Size from the GLMMs for each performance measure. X-axis labeled by the exponential of the coefficient (i.e., relative change in the odds
ratio or in the scale of the Poisson parameter for Diff): smaller (or lefter) is better. The vertical dashed line denotes no change relative to the overall
mean (the intercept). The x-axis has been scaled to make it symmetric (e.g., a ratio of 1.25 is the same distance from the vertical line as a ratio of
1/1.25). Coefficients that correspond to a change larger than 25% (i.e., ratio > 1.25 or < 1/1.25) shown in larger red dots. The coefficients shown are
only those that represent a change larger than 25% for at least one performance measure, or coefficients that are marginal to those shown (e.g., any
main effect from an interaction that includes it).
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Figure 3 Drivers known, plot of the coefficients model, sh, Graph,and their interactions with all other terms from the GLMMs for each
performance measure. See legend for Figure 2.
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absence of conjunctions, however, confidence sets that did
not include CBN/CBN-A were more prevalent than those
that included CBN/CBN-A. That the best performance
of OT/OT-A in graphs with conjunctions cannot be per-
fect should be expected, and we should only see perfect
performance in these cases, if at all, with CBN/CBN-A
or DiP/DiP-A. Two extreme cases (which also provide
an internal consistency check) are graphs “7-A” and
“11-A” (both have conjunctions): perfect performance was
achieved for the first with CBN-A and for the second with
DiP (S.Size = 1000, McF_6, sh Inf and 0, S.Time unif and
last, respectively —see Additional file 6).
Figure 4(a) shows a marginal plot of the above results

in a scale that is easier to interpret, and that also illus-
trates the interaction Method by Conjunction that we
see in Figure 2. Conjunctions degraded performance for
Diff for all methods, and were irrelevant for FPF; for the

other performance measures their effect was method-
dependent. OT and OT-A were better for performance
measures Diff and PFD regardless of the presence/absence
of conjunctions, and were essentially as good as DiP/
DiP-A for FPF. For PND, when there were conjunctions,
CBN/CBN-A were the best methods, but when there were
no conjunctions OT-A was the best. Interestingly, for
CBN/CBN-A, PFD was smaller in the presence of con-
junctions (an effect that we can also see in Figure 2),
probably due to the tendency of CBN/CBN-A to infer
an excess of conjunctions (see figures of reconstructed
graphs in Additional file 2).
Figure 2, as well as Table 4 and Table 3 (full tables avail-

able in Additional file 2) show that OT-A was generally
superior to OT, and similar but weaker patterns affected
CBN and DiP. The magnitude of the differences between
augmented and non-augmented alternatives, however,

Figure 4Mean of each performance measure for the different combinations of method and conjunction in (a) the drivers known and
(b) the drivers unknown scenarios. Y-axis is in the scale of the variable (fractions for PFD, PND, FPF and sum of differences for Diff). Each mean
value shown is the mean of 8640 and 34560 values for drivers known and unknown, respectively.
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depended strongly on performance measure and showed
interactions with other effects (e.g., S.Time). If we focus on
Diff, with OT and DiP there was little to loose from always
using the augmented alternative, even if no mutation had
a frequency of one, but this was not the case with CBN
(see Additional file 2).
The effect of S.Time was marginally very small

(Figure 2), and there were also small interactions with
Method, which depended on performance measure (see
Additional file 2). These differences in performance of
each Method with different S.Time in each performance
measure can also be observed in the overall ranking of
methods (Table 3), as well as in the change in the relative
frequencies of OT, OT-A and CBN in confidence sets as
a function of S.Time (see Additional file 2). All of these
interactions, however, were much smaller than the main
effect of Method and should rarely affect whichmethod to
choose.
Although the marginal effects of S.Type were gener-

ally small (and single cell sampling provided no benefit),
overall it seems best to avoid whole tumor sampling with
very small detection thresholds. However, as with many
other effects, this was reverted with PND. This result
is intuitively reasonable: whole tumor sampling at very
low thresholds can lead to obtaining samples where we
observe together two low frequency events that rarely
occur together in the same individual clone (i.e., that do
not correspond to a pattern encoded in the true graph),
leading to the observation of possible artifacts, but also
allowing the detection of co-occurring events of very low
frequency. The effects of S.Type were amplified bymethod
(the interaction of Method by S.Type in Figure 2), and
this effect was strongly performance measure-dependent
(see also Additional file 2). The marginal effect of S.Size
was as expected: larger sample size led to better per-
formance with all performance measures. However, the
effect in performance was small compared to the effects
of choosing a bad method or even the effects of S.Type
and S.Time for some of the performance measures (or the
effects of non user-controllable factors such as Model).
Moreover, the effects of increases in sample size depended
on method and performance measure (see also Additional
file 2): DiP/DiP-A were, comparatively, the methods
that benefited the most from increasing S.Size (except
for FPF).
Regarding variables that are not under user control,

Model and its interactions with other factors had a
strong effect on performance (see Figure 3). Overall,
the McFarland models led to better performance (see
also Figure 5). The differences between evolutionary
models also explained the interaction S.Time by Model.
S.Time=uniform benefited especially McF_6 (whereas the
opposite trend was observed with Bozic and exp; see also
Additional file 2). Due to the strong density dependence

of McF_6, if we sample at the end it will not be easy
to observe intermediate steps that involve only a few
mutations, since the final population will be composed of
clones with five to six driver mutations.
Model also showed interactions with Method, and

Model determined the effects of sh (the strength of
enforcement of monotonicity, see section “Deviations
from monotonicity and genetic context dependence of
driver status: sh” and Table 2) and affected its inter-
action with Method. If we knew that the true model
was McF_6, even when minimizing PND we should then
choose OT-A or OT, not CBN or CBN-A (Figure 5(a) and
Figure 3). At the same time, for PND the performance of
CBN/CBN-A is much less affected by evolutionary model
variation.
Method and sh also showed interactions (Figures 3 and

6) and the performance of DiP and DiP-A improved with
sh=0, which contrasts with CBN/CBN-A and OT/OT-A
(where sh=Inf led to better performance): all three fam-
ilies of procedures make allowance for deviations from
monotonicity, but the model behind DiP was able to deal
with (or even be favored by) them better. Finally, regard-
ing the interaction Model by sh, from Figures 3 and 7 we
see that with Bozic and exp, sh=0 consistently led to worse
performance over the four performance measures, but it
had the opposite effect on the McF models. This is under-
standable, since the McF models have very strong density
dependence of fitness: if the graph specifies A → B and a
clone has B without A, even if there is no explicit penalty
via the birth rate (i.e., sh = 0), we will be unlikely to observe
it, since it will be under a severe relative disadvantage
compared to clones with A and not B, and under a much
more severe disadvantage compared to clones with both
A and B. Thus, even if sh = 0, the McF models by their
very nature intrinsically incorporate a strong penalty for
any mutation order that does not strictly conform to that
encoded in the true graph. In other words, genes that can
act as drivers or passengers depending on genetic con-
text are much less likely to be observed in their passenger
role in the McF models. As we can see, therefore, differ-
ences in evolutionary model can modify how deviations
from monotonicity affect the performance of different
methods and these results underline the importance of
explicitly considering evolutionary model and deviations
from monotonicity.
Finally, Number of Nodes had an effect, which for some

performance measures was large, and also presented large
interactions with Model, Method and S.Time for some
performance measures; these effects will not be examined
here further (although a specific one will be addressed
in the Discussion), but it is important to notice that the
graphs used in this study differed in many ways that are
not simply summarized by the number of nodes (see
Additional file 1).
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Figure 5Mean of each performance measure for the different combinations of method andmodel in (a) the drivers known and (b) the
drivers unknown scenarios. Each mean value shown is the mean of 4320 and 17280 values for drivers known and unknown, respectively.

Drivers unknown
Many results here were similar to the ones in the previous
section, so we will focus on the main differences as well
as the added factor of filtering. Overall, performance was
worse when Drivers were Unknown.
The main problem was the large increase in PND, or

failing to detect existing edges: see panels a) and b) of
Figure 4 for a graphical comparison.We can see in Figure 8
that filtering almost always resulted in selecting a num-
ber of genes smaller than the true number of nodes in the
true graph. However, there were cases when performance
was perfect or almost perfect for all performance mea-
sures (graphs without conjunctions, with model McF_6,
method OT-A, Dip-A, and occasionally OT, and filtering
S5 and rarely S1 or J1; see Additional file 6).

Figures 9 and 10 show the coefficients from the GLMM
fits. The marginal effect of Filtering (Figure 9) was as
expected: more stringent filtering (J5) decreased FP and
thus led to better performance for both PFD and FPF,
but less stringent filtering (S1) was better for missing
fewer patterns, and thus led to better performance in PND
(where J5 shows terrible performance); this pattern is also
seen in Figure 11. A reasonable overall choice is probably
S5: it was the best filtering for the Diff measure, and did
reasonably well for all the other performance measures.
However, as we have already seen repeatedly, the choice of
the best filtering is measure-dependent, as we can also see
from the overall ranking of methods (Table 5).
One difference with the results when Drivers are Known

was related to Method: here, OT/OT-A were almost
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Figure 6Mean of each performance measure in the drivers known scenario, for the different combinations of method and sh. Each value
shown is the mean of 8640 values.

Figure 7Mean of each performance measure for the different combinations of model and sh in (a) the drivers known and (b) the drivers
unknown scenarios. Each value shown is the mean of 12960 and 51840 values for drivers known and unknown, respectively.
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Figure 8Mean number of genes selected for the different combinations of model and filter by (a) S.Time and (b) sh. Different symbol
shapes identify the number of true nodes (NumNodes) of the true graph. Note that the number of genes selected is a function of Filtering, not
Method. Each value shown is the mean of 720 values.

always better than CBN and CBN-A. This can be seen
in Figure 9 —OT and OT-A had much smaller coeffi-
cients for all performance measures, except for OT under
PND—, and comparing panels a) and b) of Figure 4. The
same pattern was seen in the overall ranking of methods
(Table 5): CBN/CBN-A were rarely among the best per-
formers, not even with conjunctions and with measure
PND. Similar results were observed in the analysis of con-
fidence sets (Table 6): CBN/CBN-A were rarely among
confidence sets, and when they were it was generally in
confidence sets that included also OT and OT-A.
As in the Drivers Known scenario, DiP and DiP-A led

to the smallest FPF (again, FPF is of minor relevance
compared to PND and PFD), but did so at the cost of
the other performance measures. However, when Drivers
were Unknown DiP and DiP-A were better performers
than CBN and CBN-A for Diff.
There were interactions of Filter by Method (see

Figure 9; also figures in Additional file 2), and their direc-
tion and magnitude depended on performance measure,
but these interactions were not large enough to revert
our preferences of methods. S.Type followed similar pat-
terns as seen for the Drivers Known scenario, although
the effects were of larger magnitude, and its interactions
with Method or Filter (Figure 9; see also Additional file 2),
even when present, produced no change in the ordering
of preferences of Filtering, Method, or S.Type. The effects
of S.Size or its interactions with Method were similar
to those in the Drivers Known scenario, although S.Size

seemed to be more important for decreasing PFD when
Drivers are Unknown (Figure 9 and figures in Additional
file 2).
Other effects and interactions were different with

respect to the Drivers Known scenario, illustrating that
the need to filter passengers can lead to counterintu-
itive andmuchmore complicated interpretation of results.
There was an interaction of Filter by Model (Figure 10):
the best choice of S5 vs. J5 for performance measures Diff
and PFD depended on the Model, as shown in Figure 11.
Moreover, we can see that the very poor results inmeasure
FPF of model McF_6 were largely due to its terrible results
with Filter S1 (see also below). There was also an interac-
tion Model by Method, and OT/OT-A were now superior
in all performance measures (except FPF) not only overall,
but also virtually for every one of the four models, as we
can see from panel b) in Figure 5.
The effect of S.Time for all performance measures

except Diff was reverted and had larger magnitude com-
pared to the Drivers Known scenario. The cause is that
S.Time affected the number of genes that were selected
and thus the number of false positives (FP) and false
negatives (FN). As seen in panel (a) of Figure 8, under
S.Time = uniform fewer genes were selected for all fil-
tering methods (the number of genes selected is inde-
pendent of Method but depends on Filtering). Under
uniform sampling many of the samples have few muta-
tions (those corresponding to the early stages of the
disease), and thus fewer genes are above the filtering



Diaz-Uriarte BMC Bioinformatics  (2015) 16:41 Page 18 of 26

Figure 9 Drivers unknown, plot of the coefficients for conjunction, filtering, method, S.Time, S.Type and S.Size from the GLMMs for each
performance measure. See legend for Figure 2.
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Figure 10 Drivers unknown, plot of the coefficients for model, sh, graph, and their interactions with all other terms from the GLMMs for
each performance measure. See legend for Figure 2.
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Figure 11Mean of each performance measure in the drivers unknown scenario, for the different combinations of model and filtering.
Each value shown is the mean of 25920 values.

thresholds. As fewer genes are selected under S.Time =
uniform, the number of FP goes down, and thus both
PFD and FPF showed a decrease (and the opposite pattern
was observed for PND). None of these phenomena were
present whenDrivers are Known, because there was no fil-
tering step there. For Diff, however, the marginal effect of
S.Time=uniform was still slightly better than that of last-
period sampling, as was when Drivers are Known. These
differences of the effect of S.Time between the Drivers
Known and Drivers Unknown scenarios explain also the
differences in the patterns of interactions of Method by
S.Time andModel by S.Time (Figures 9 and 10; also figures
in Additional file 2).
Another difference with the Drivers Known scenario are

some of the interactions between Model and sh in several
performance measures, probably related to the filtering
step. Specially with PFD and FPF, sh = 0 led to a large
decrease in error rates as seen in Figures 7(b) and 10.
Panel (b) of Figure 8 shows that, for all filtering proce-
dures, sh=0 led to smaller number of genes being selected
with models Bozic and Exp (but had no effect on the McF
models), and Bozic and exp were the two models where
sh=0 led to a larger relative improvement in performance
in PFD and FPF (Figure 10 and panel b of Figure 7). Inter-
estingly, the difference between the two levels of sh is
more pronounced in S1, and suggests that sh=Inf allows
the accumulation of larger numbers of mutated genes that
pass the less stringent filters, but that have too little sig-
nal for the inference of the restrictions (in contrast, sh=0
leads to the accumulation of mutations with too low a
frequency to even pass the filters). That sh should have
virtually no effect on number of genes in the McF models
has been explained before. These interactions, therefore,
highlight the complex and counterintuitive relationships
between Model, sh, and Filtering, that then cascade onto

the overall performance differences between Methods or
Sampling schemes.

Discussion
Most of the above results cannot be compared to any
other studies, since these factors have not been considered
before. It has been previously discussed [15,32] that very
good reconstructions of oncogenetic trees are achievable
with realistic sample sizes, and we have seen that, at least
under several scenarios, it is possible to obtain perfect
reconstructions even with sample sizes as small as 100.
The results concerning the superiority of OT with

respect to CBN contrast with those of Hainke et al. [13],
who find that CBN outperforms OT. A more detailed
discussion is provided in Additional file 3, but these dif-
ferences are attributable to [13] basing their conclusion
on a single graph with a small number of nodes for
each scenario. Additional file 3 shows the within-data set
difference in the Diff measure between CBN and OT sep-
arately for the different combinations of Model, sh (see
section “Deviations from monotonicity and genetic con-
text dependence of driver status: sh” and Table 2), True
Graph, and Sampling scheme (under the Drivers Known
scenario only, since [13] do not consider passengers): OT
systematically outperformed CBN except for Graph 7A
when sampling last (under all models except McF_6),
and Graph 7B when sampling last under the Bozic and
exponential models. This pattern was reproduced when
I fitted the OT models with the Rtreemix package [54]
(see Additional file 3). The single graph used by [13] for
the non-conjunction case (their Figure A1) contains five
nodes, and the single graph they used for the case with
conjunctions contains four nodes (their Figure A7), a very
small number of nodes compared to the graphs that are
seen on the literature (see Methods section). Our graphs
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Table 5 Ranking of all 144 combinations of method,
filtering, and sampling scheme (time, type) when drivers
are unknownwith respect to each performancemeasure

Method and
sampling

Conjunction No conjunction

Diff PFD PND FPF Diff PFD PND FPF

S5, OT-A, last,
singleC

1 7 15 60 1 13 13 60

S5, OT-A, last,
wholeT_0.5

2 6 23 59 2 7 23 59

J5, OT-A, last,
wholeT_0.01

3 1 26 71 4 2 29 74

S5, OT-A, last,
wholeT_0.01

4 2 2 94 3 5 4 94

S5, OT-A, unif,
wholeT_0.01

5 17 33 69 10 17 32.5 68.5

S5, OT, unif,
singleC

6 41 61.5 28 9 38 55.5 20.5

S5, OT-A, unif,
singleC

7 50 61.5 31 8 49 55.5 20.5

J1, OT-A, last,
singleC

8 15 38 80 6 12 37 75

J1, OT-A, last,
wholeT_0.5

9 10 39 79 7 6 39 71

S5, OT-A, unif,
wholeT_0.5

10 47 67 29.5 14 45 60.5 27.5

S5, OT, unif,
wholeT_0.01

11 11 34 68 11 10 32.5 68.5

J1, OT-A, last,
wholeT_0.01

13 21 9 109 15 19 8 108

S1, OT-A, last,
wholeT_0.5

18 39 3 117 5 27 3 116

S1, OT-A, last,
singleC

21 38 4 120 12 32 2 120

S5, OT, last,
singleC

23 16 51 21 20 8 42 19

S5, OT, last,
wholeT_0.5

24 3 55 16 23 3 49 17

J1, OT, unif,
wholeT_0.01

29 9 36 91 30 14 36 91

S5, CBN-A, unif,
wholeT_0.01

30 4 37 89 40 20 40 103

J5, OT, last,
wholeT_0.01

31 5 59 32 36 4 62 50

S1, OT-A, last,
wholeT_0.01

36 48 1 134 24 50 1 134

S5, OT, last,
wholeT_0.01

38 8 29 83 34 1 24 82

J1, OT, last,
wholeT_0.5

47 14 89 61 38 9 83 43

J5, OT, last,
singleC

48 35 101 4 58 43 109 4.5

J5, DiP-A, unif,
singleC

49 125 139 10.5 51 128 138 9

J5, OT, last,
wholeT_0.5

57 20 102 4 75 23 112 4.5

Table 5 Ranking of all 144 combinations of method,
filtering, and sampling scheme (time, type) when drivers
are unknownwith respect to each performancemeasure
(Continued)

J5, DiP, unif,
singleC

61 131 143 8 60 132 144 4.5

J5, DiP, unif,
wholeT_0.5

64 144 144 4 64 144 143 4.5

J5, DiP, last,
singleC

79 115 140 4 81 119 140 4.5

J5, DiP, last,
wholeT_0.5

82 137 138 4 83 136 139 4.5

S5, DiP, last,
wholeT_0.5

83 134 120 9 87 130 110 10

J1, DiP, last,
wholeT_0.5

91 132 134 4 89 134 134 4.5

J1, DiP, last,
singleC

92 110 135 4 93 115 132 4.5

S1, OT-A, unif,
wholeT_0.01

102 65 5 136 70 59 5 136

S1, OT, unif,
wholeT_0.01

109 62 6 135 74 55 6 135

S1, CBN-A, unif,
wholeT_0.01

137 82 7 143 140 81 7 143

S1, CBN-A, last,
wholeT_0.01

142 93 10 137 139 94 12 137

S1, CBN, unif,
wholeT_0.01

143 84 8 144 143 90 9 144

Methods have been ordered by their performance in the first performance
measure. Best 10 methods are shown in bold. Only methods that are within the
best 10 in at least one performance measure are shown (full table as well as
tables split by S.Size are available from Additional file 2).

7A and 7B, those where CBN outperformed OT in certain
scenarios, are the closest in number of nodes to the graphs
in [13].
Given that the results of Hainke et al. [13] are, thus,

probably not really contradictory with ours, is the recom-
mendation that practitioners generally use OT instead of
CBN still valid? Yes, since most graphs in the literature
(including studies involving citogenetic bands and genes)
contain manymore than four or five nodes, and we cannot
be sure if the evolutionary model is one that would favor
using CBN. In addition, we have focused only on the com-
parison between CBN and OT, since those are the only
variants used in [13]: if we included OT-A in the compar-
ison, CBN (or CBN-A) would then very rarely be better
alternatives (see, e.g., Additional file 4 or Additional file 3).
However, this apparent difference in results emphasizes
the need for considering at least a few different scenar-
ios with regards to potentially key variables, and suggests
that a through examination of the impact of graph charac-
teristics (and its interaction with evolutionary model and
sampling scheme) on method performance is warranted.
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Table 6 Frequencies of most common confidence sets
usingmultiple comparisons with the best with a coverage
of 0.90, when drivers are unknown

Confidence sets Conjunction No conjunction

Diff PFD PND FPF Diff PFD PND FPF

S1:OT-A, S5:OT-A 0.01 - 0.04 - 0.01 - 0.07 -

S1:OT, S1:OT-A 0.07 0.07 0.11 - 0.08 0.07 0.22 -

S1:OT-A 0.02 - 0.06 - 0.02 - 0.05 -

S5:OT-A 0.05 - - - 0.06 - - -

S5:OT,
S5:OT-A

0.10 0.03 - - 0.12 0.02 - -

S5:DiP, S5:DiP-A,
S5:OT, S5:OT-A

0.04 - - - 0.05 - - -

S1:OT, S1:OT-A,
S5:OT, S5:OT-A

0.02 - 0.02 - 0.05 - 0.07 -

J5:OT, J5:OT-A,
S5:OT, S5:OT-A

0.01 0.06 - - - 0.04 - -

S1:CBN,
S1:CBN-A

0.01 - 0.05 - 0.01 0.01 0.01 -

S1:CBN, S1:CBN-A,
S1:OT, S1:OT-A

- 0.01 0.25 - 0.02 - 0.14 -

J1:DiP, J1:OT,
J5:DiP, J5:OT,
S1:DiP, S5:DiP,
S5:OT

- 0.02 - 0.04 - 0.03 - 0.05

Combinations not shown have a frequency less than 0.05 for all columns or are
composed of more than 10 individual best methods. Frequencies normalized by
column total (N = 432). ‘A:B’ denotes filtering with A and using method B.

This paper is also one of the first to explicitly con-
nect evolutionary models with restrictions on the order
of mutations. Recently, in [39] a simulation tool has been
described where restrictions are incorporated into the
evolutionary model of [41]; our approach is more gen-
eral as [39] are limited to four drivers and no passengers
whereas, in addition to passengers and other evolutionary
models, we can specify restrictions in the order of muta-
tions using arbitrary graphs and allowing for a range of
deviations from monotonicity. In fact, one of the attrac-
tive features of OTs, CBNs, and Progression Networks
is their mechanistic interpretation as graphs that encode
restrictions in the order in which driver mutations can
accumulate [12,13,15,32]. And one major result of this
paper is that inferring those restrictions can be strongly
affected by evolutionary model (including deviations from
monotonicity) and sampling scheme, and that the relative
effect of these factors depends on the performance mea-
sure used. Yet restrictions in the order of driver mutations
and evolutionary models are virtually always examined
separately.
There is a rich literature about tumor progres-

sion models that focuses on the consequences of
drivers, passengers, and variation in selection pressures
[20,41,42,44,70,71], and a largely separate body of work

[13-15,19,21,31,32,45] that deals with understanding the
restrictions and order of accumulation of mutations (but
see [6] for a connection between the λi of CBNs and
selection coefficients, in the context of the Fisher-Wright
model of tumor progression in [49]). The work of Cheng
et al. [7,8] tries to infer the order of mutations within a
explicit evolutionary model of tumor progression; unfor-
tunately, no software is available, and thus comparisons
are not possible.
Focusing on methods with available software, the actual

values (and, thus, interpretation) of the conditional proba-
bilities inferred by OTs or the λi parameter for the waiting
time to event i, in CBNs, will be a complex interplay
between the restrictions encoded in the graphs and the
details of the tumor progression model as well as the sam-
pling scheme used. For both OTs and CBNs we should
expect estimated λs and conditional probabilities to vary
by node level or depth (where level or depth refers here
to how many edges there are in the path to the root):
deeper nodes will show smaller values and, for a given
depth, λs/conditional probabilities should be larger for
those nodes than “unlock” more downwards mutations.
The strength of this effect will increase with the number
of nodes along the largest path along the graph, espe-
cially when the evolutionary model and sampling scheme
result in strong selection for clones withmany drivers, and
we should see competition between multiple nodes that
descend from the same parent.
As an example of the impact of evolutionary model

and sampling scheme on the observable consequences
of the restrictions encoded in the graphs, Additional
file 7 shows inferred oncogenetic trees with their esti-
mated conditional probabilities for each of the three true
graphs without conjunctions (trees), under several sce-
narios, including inferred oncogenetic trees with a sam-
ple size of 26000 (to minimize sampling variation). The
inferred graphs are perfect, or almost perfect, reconstruc-
tions of the topology of the true graph, but the estimates of
the conditional probabilities show large differences. The
variations are in directions we would expect both between
S.Time and among models, as well as among nodes. Even
if the above results are intuitively reasonable, they high-
light that whereas the topologies of the graphs (the partial
orders) encode constraints in the order of mutations, the
conditional probabilities (or λs) we estimate and, most
importantly, the patterns of co-occurrence of mutations
and the sets of clones we observe, will depend crucially
on the evolutionary model and sampling scheme. Since
the topology reconstructions depend on the patterns
observed our inferences will be strongly impacted by evo-
lutionary model (and sampling scheme), as we have seen
repeatedly in the results. Moreover, examining the con-
sequences of sampling scheme (S.Time and S.Type) and
the detrimental effects of having to separate drivers from
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passengers on the quality of our inferences can only be
meaningfully considered with respect to an evolutionary
tumor progression model that generates the data.
As mentioned in the Introduction, the above interaction

between order restrictions and evolutionary model, and
the unavoidable need to interpret parameters in the con-
text of a given evolutionary model, are coherent with the
limitations pointed out by Sprouffske et al. [37]: that onco-
genetic tree models (and related models) are not really
evolutionary models and do not represent ancestral rela-
tionships, but only summarize patterns of co-occurrences
of mutations across samples. Virtually all studies of meth-
ods for inferring order restrictions are susceptible to
this criticism, since they simulate data directly from the
generative (but non-evolutionary) OT/CBN/Progression
Network model. However, the design I have used here
completely overcomes this limitation: I have simulated the
data using plausible evolutionary models that incorporate
the restrictions in the order of mutations via a straightfor-
ward effect on the fitness of clones. Moreover, deviations
from monotonicity are not added to the model just as an
unexplained error term, but are an integral part of the
evolutionary model that can be related, for instance, to
the genetic context-dependence of the driver/passenger
status.
Sprouffske et al. [37] conclude that cross-sectional data

can be misleading if we try to infer the order of muta-
tions. But this conclusion is based on a design where a
single OT is inferred from a cross-sectional sample where
mutations are not restricted to obey a pre-specified set of
restrictions. Thus, it is not surprising that the OT fit does
not do well. The results of [37] of course highlight that
if different subjects have different sets of order restric-
tions, then no single OT will capture these patterns, a
limitation that is already recognized in the early litera-
ture on ongenetic trees [14,15], and that has prompted the
development of mixtures of oncogenetic trees [24,25,72].
But, by themselves, their results do not show that OTs
(or CBNs or DiPs) from cross-sectional data cannot fare
well if there is a true underlying set of restrictions that
can be represented as a single graph. Quite to the con-
trary, I have shown here, embedding the restrictions in
evolutionary models, that they can do very well and even
recover the exact underlying graph (at least under certain
scenarios). Moreover, [37] do not show that any particu-
lar within-subjectmethod is actually capable of recovering
the true paths from their data (they sidestep that problem
altogether).
The two key remaining questions to be answered

regarding the usage of cross-sectional data, then, are
two: 1) whether the accumulation of mutations in can-
cer progression can be reasonably represented by a single
graph that encapsulates restrictions; 2) if 1) does not hold,
whether cross-sectional methods such as mixtures of

oncogenetic trees can recover the set of different restric-
tions. If the answer to 1) is positive, the results of this
paper indicate that we have methods that can recover
those relationships, and these results also highlight pos-
sible avenues to improve them. But question 1) is one
that neither this study nor the one of [37] can answer
(I simulated data assuming a Yes to that question and [37]
assuming a No). Question 2) remains to be thoroughly
addressed, and neither this paper nor [37] shed light on
the matter. If the answer is negative, then we need to
start focusing on within-individual data, which are much
harder to obtain. Nevertheless, the approaches in this
paper provide a principled and general way to address that
question by simulating data under scenarios were there
is no single set of restrictions in common to all subjects,
and examining the consequences both for our methods of
inferring trajectories and for the data patterns themselves
(so as to try to infer, from them, whether or not there is a
single set of restrictions).

Conclusions
This paper presents a comprehensive study that has exam-
ined, for the first time, the effects of sampling decisions,
evolutionary models, and presence of passenger muta-
tions in the performance of methods for the inference
of restrictions in the order of accumulation of mutations
during tumor progression. The main conclusions, which
both provide practical guidance for users of these meth-
ods with patient data and identify key areas of further
methodological research, can be summarized as follows:

1. Method and sampling choice should be guided by the
performance measure considered most important:
no combination of Method, Filtering, and Sampling
scheme excels in all performance measures. This is
not unexpected, but it is worth emphasizing that
each performance measure is sensitive to a different
kind of deviation, and the results in this paper show
that characterizing behavior with only one or two
performance measures could have been deceptive.
Moreover, as we have seen, the relative strengths of
each method are better captured and understood
using different performance measures.

2. In terms of method choice, a very simple summary is
(see also examples of inferred graphs in Additional
file 5): CBN tends to return graphs with too many
edges, including too many conjunctions, DiP tends to
return graphs with too few edges between non-root
nodes, and OT does a good overall job even though it
will fail, by construction, to return any conjunction.
In more detail, OT and OT-A are the best methods,
except if we are particularly interested in minimizing
PND and we suspect conjunctions are present (when
we might want to consider CBN) or FPF (when we
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might want to consider DiProg —recalling that FPF is
generally of minor value compared to measures PND
and PFD). Since it is impossible for OT to return any
conjunctions, further research on computationally
efficient methods to recover conjunctions is sorely
needed.

3. Using frequency-based statistics when we do not
know which mutations are true passengers can lead
to a heavy performance penalty mainly in the form of
failure to discover existing restrictions. In addition,
having to filter genes makes it much harder to
intuitively understand, and reason about, what is
likely to happen in any scenario, and this in turn
makes interpretation of results and reconciliation of
output from different methods much harder. Thus, it
probably pays off to try to use other approaches that
incorporate information about non-silent mutation
rates, pathway information together with
combinatorial properties of drivers in pathwayws, or
functional consequences of mutations to differentiate
drivers from passengers [73-78]. It might not always
be possible to use these other methods. If we need to
rely on frequency-based approaches, selecting those
mutations with a frequency larger than 5% is an
overall reasonable choice (but not the single best
choice for any performance measure other than Diff).

4. Sampling time and type, by themselves, had minor
effects compared to, say, filtering or method choice
(and we will rarely have control over these factors
when we use data already available in databases).
However, we might have information about
characteristics of the tumor that indicate that it is in
an exponential (the Bozic or exp models) or logistic-
like growth (the McF models) phase; sampling as late
as possible is to be preferred for the first cases,
whereas trying to obtain samples distributed over
different stages of the disease is best in the second.
The best choice of sampling time, however, will
depend on performance measure and whether or not
we are certain about which are the driver genes.

5. Single cell sampling is about as good as whole tumor
sampling, unless we use whole tumor sampling with
extremely small detection thresholds (which leads to
poorer performance, except for performance
measure PND).

6. Although with S.Size the larger the better, its effect is
relatively minor for OT and CBN (not so for DiP), a
result that agrees with those in [13], specially for
some performance measures. In particular, resources
might be better spent trying to be certain about the
identity of the true drivers than increasing sample
size from 100 to 1000.

7. Data augmentation is not always the right choice,
although with OT and DiP there is little to loose from

always using data augmentation but potentially a lot
to loose from not using augmentation (see Additional
file 2). Unfortunately, simple rules of thumb like
“always use data augmentation when at least one
gene has a frequency of one, and never otherwise” do
not work well, especially across all methods, and
appropriate choice warrants further study.

8. Evolutionary model had a strong impact on method
performance, both directly and indirectly through its
interactions with other factors (such as sampling
time or filtering). Assessment of method
performance via simulations in this and related
problems should thus be done incorporating order
restrictions within plausible models of tumor
evolution, which also allows us to naturally examine
the effects of other factors, such as sampling. In
particular, a framework similar to the one used here
could be applied to scenarios where order
restrictions differ between subgroups of individuals.

Availability of source code and data
Additional file 8 contains the complete performance
statistics data. Additional file 9 contains shell and R
scripts to run simulations, analysis, and produce tables
and figures as well as the code and output for the GLMM
model fits.

Additional files

Additional file 1: Supplementary methods. Additional details about:
a) experimental design; b) evolutionary models and their simulation; c) the
true graphs used; d)methods and software for inferring restrictions (CBN,
OT, DiP); e) computation of performance measures; f)multiple
comparisons with the best (MCB); g) generalized linear mixed models;
h) availability of code, scripts and full model fits.

Additional file 2: Supplementary results. Additional results including:
a)marginal plots of several two and three-way interactions; b) full tables of
overall ranking of methods and filtering, including splits by S.Size;
c) commented example of filtering and method effects; d) full tables of
frequencies of confidence sets; e) full tables from the GLMM fits; f) tables
comparing how often the augmented alternative is better; g) timings
(execution time) of methods.

Additional file 3: Understanding the different ranking compared to
Hainke et al. A detailed examination of the possible reasons for the
differences in results concerning OT and CBN between my results and
those of Hainke et al. (2012).

Additional file 4: Complete tables of confidence sets. All confidence
sets for the 864 combinations of among-data set variables for both the
Drivers Known and Drivers Unknown scenarios.

Additional file 5: Examples of inferred graphs. Examples of inferred
graphs from each of the six methods for two of the scenarios under each
Model and True Graph.

Additional file 6: Colored tables of median performance for all
combinations of factors. Tables that show, for all performance measures,
as well as for the number of edges in the transitive closure of the relations,
the median values for all combinations of factors. The tables use colors (like
a heatmap) to ease locating the best and worst median values.

http://www.biomedcentral.com/content/supplementary/s12859-015-0466-7-s1.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0466-7-s2.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0466-7-s3.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0466-7-s4.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0466-7-s5.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0466-7-s6.pdf
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Additional file 7: Estimated conditional probabilities in inferred
oncogenetic trees. Figures of reconstructed oncogenetic trees (including
inferences using a sample size of 26,000), including the estimates of
conditional probabilities.

Additional file 8: Complete data. An RData file (Dataset.RData.zip) that
contains three R data frames with the full performance statistics data (and
additional information). Unzip the file and then open it with R.

Additional file 9: Code, scripts, model fits. A zip file
(Code_scripts_model_fits.zip) that contains shell and R scripts to run
simulations, analysis, and produce tables and figures, as well as the output
of GLMMmodel fits (and the code to obtain them).
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