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Abstract

Background: Microbiome studies incorporate next-generation sequencing to obtain profiles of microbial
communities. Data generated from these experiments are high-dimensional with a rich correlation structure but
modest sample sizes. A statistical model that utilizes these microbiome profiles to explain a clinical or biological
endpoint needs to tackle high-dimensionality resulting from the very large space of variable configurations. Ensemble
models are a class of approaches that can address high-dimensionality by aggregating information across large
model spaces. Although such models are popular in fields as diverse as economics and genetics, their performance
on microbiome data has been largely unexplored.
Results: We developed a simulation framework that accurately captures the constraints of experimental microbiome
data. Using this setup, we systematically evaluated a selection of both frequentist and Bayesian regression modeling
ensembles. These are represented by variants of stability selection in conjunction with elastic net and spike-and-slab
Bayesian model averaging (BMA), respectively. BMA ensembles that explore a larger space of models relative to
stability selection variants performed better and had lower variability across simulations. However, stability selection
ensembles were able to match the performance of BMA in scenarios of low sparsity where several variables had large
regression coefficients.
Conclusions: Given a microbiome dataset of interest, we present a methodology to generate simulated data that
closely mimics its characteristics in a manner that enables meaningful evaluation of analytical strategies. Our
evaluation demonstrates that the largest ensembles yield the strongest performance on microbiome data with
modest sample sizes and high-dimensional measurements. We also demonstrate the ability of these ensembles to
identify microbiome signatures that are associated with opportunistic Candida albicans colonization during antibiotic
exposure. As the focus of microbiome research evolves from pilot to translational studies, we anticipate that our
strategy will aid investigators in making evaluation-based decisions for selecting appropriate analytical methods.

Keywords: Microbiome analysis, Sparse ensemble-based regression, Simulation design, Stability selection,
Bayesian model averaging, Evaluation

Background
Biological experiments that incorporate extensive next-
generation sequencing (NGS) to profile microbial com-
munities are becoming increasingly common in the
field of medical microbiology and elsewhere [1-3]. In a
substantial number of these studies, the primary objective
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is to establish associations between the microbial com-
munity and specific biological traits or endpoints of
clinical relevance. Analytical methods to test these asso-
ciations follow three general directions. The first explains
microbial abundance profiles in terms of biological and
clinical variables [4-11]. The second utilizes these micro-
bial profiles to classify samples into biological or clinical
categories (e.g., human body sites, health and disease
states, subject identities, etc.) [12-15]. A third explains
a clinical or biological endpoint in terms of microbial
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community profiles in combination with other biological
covariables [16,17]. The first two directions have formed
the basis for most of the analytical work in this field. In
this work, we explore the third direction.
Specifically, we used a mouse model to investigate the

risk factors during antibiotic therapy for opportunistic,
gastrointestinal (GI) colonization with Candida albicans,
a commensal fungus in the human GI tract (Figure 1 and
Table 1). C. albicans does not normally colonize mice
unless the resident GI flora is perturbed by antibiotics.
Therefore, we exposed mice to a single challenge with
C. albicans 7 days after initiating antibiotic treatments
that spanned a total of 21 days. Our initial observa-
tions indicated that some antibiotics induced a persis-
tently higher level of C. albicans colonization compared
to others. We sought further insights into these differen-
tial patterns of colonization by identifying the underly-
ing antibiotic-induced perturbations in the bacterial and
fungal GI microbiome, and the host immune factors.
Hence, we employed a regression framework to explain
the level of C. albicans colonization using microbiome
variables, immune factors and experimental conditions as
covariables.
We faced unique challenges in performing these anal-

yses. Our studies utilized animal models with tens of
samples (n). However, the total number of variables (p)
arising from NGS measurements of the microbiome, host
immune factors and other biological exposures was at
least an order of magnitude larger than the number of
samples (p >> n). In this scenario, a model estimated
using univariate or non-regularized regression model-
ing strategies [6,8] is likely to overfit the data and yield
findings that would not generalize well on data from
newer studies [18]. Moreover, this model does not take
into account the covariance structure of high-dimensional
data, making the naïve assumption of orthogonality of
covariables. In addition, such a model is only one among

the 2p possible model configurations that could explain
the data [19,20]. We therefore needed a modeling strat-
egy which a) incorporates penalized regression to avoid
overfitting, b) addresses multicollinearity, c) efficiently
searches through a large number of model configurations
prior to settling on the most likely model specification,
and d) estimates themodel parameters with low variability
in the face of modest sample sizes.
Ensemblemodels are a class of approaches that elegantly

satisfy all of the above requirements by merging informa-
tion on the explanatory variables from a large collection
of models to generate a ranked list of influential vari-
ables ordered by their importance [20]. These ensembles
estimate robust models with stable solutions by utiliz-
ing the inherent variability in either the sample space
through bootstrap methods [21,22] or the model space
using Bayesian methods [23] and Markov chain Monte
Carlo (MCMC) algorithms [24].
Random forests [25], a non-linear ensemble method,

has been widely used for classification and prediction
tasks in microbiome research [12,14]. However, random
forests are not directly usable in a problem domain
such as ours that requires the estimation of a model
in a linear regression framework for a continuous clin-
ical endpoint of interest. Investigators in the field have
adopted penalized regressionmethods [4,5,14-16] that are
able to effectively model multivariable covariances within
the microbiome. Nevertheless, these methods have been
employed in a non-ensemble setting which could poten-
tially lead to instability in model findings.
Only a few research groups have incorporated ensem-

ble linear regression modeling in a problem domain
similar to ours [17]. Furthermore, there has been no
assessment of how the characteristics of linear regression
ensembles affect model performance on realistic micro-
biome data. We address this gap in the microbiome lit-
erature by a) rigorously evaluating the performance of

Figure 1 Experimental design of the mouse microbiome study.Mice were divided into a control group and two treatment groups. The
treatment groups received either vancomycin (van) or a combination of penicillin, streptomycin and gentamicin (PSG). After 7 days, some of the
mice were administered a C. albicans challenge. Terminal ileum samples were collected on days 7 and 21 and fecal pellet samples on days 7, 9, 14
and 21. C. albicans colonization level was measured by counting the Colony forming units (CFU) following quantitative culture of the fecal pellets.
Cytokine mRNA expression (C mRNA) was measured in the terminal ileum samples. Bacterial 16S and Fungal ITS were amplified from both the
terminal ileum sections and the fecal pellets. These amplicons were sequenced with 454 pyrosequencing. The YAP bioinformatic workflow [54] was
used to obtain genus-level taxonomic assignments for the bacterial and fungal sequences.
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Table 1 Characteristics of data from themousemicrobiome study

Measurement Original variable Pre-processing Dimension Role in models

16S Sequence counts log (Relative abundances) 344 Independent

ITS Sequence counts log (Relative abundances) 109 Independent

C mRNA Expression levels log (GAPDH normalized expression levels) 6 Independent

CFU Colony counts log
(
Colony forming units (CFU)

grams of fecal matter

)
1 Dependent (Response)

Antibiotic treatment

± C. albicans challenge

+ Length of treatment

Categorical Dummy encoding 5 levels Independent

C. albicans colonization level was measured by counting the Colony forming units (CFU) following quantitative culture of the fecal pellets. Cytokine mRNA expression
(C mRNA) was measured in the terminal ileum samples. Bacterial 16S and Fungal ITS were amplified from both the terminal ileum sections and the fecal pellets. These
amplicons were then sequenced by 454 pyrosequencing and taxonomically classified with a tailored bioinformatic pipeline [54].

a selection of frequentist and Bayesian ensemble regres-
sion modeling approaches, and b) introducing a simula-
tion and evaluation framework that can be constructed
to closely mimic the characteristics of any experimen-
tal microbiome dataset. Using this framework and a
suite of metrics, we determine how various characteris-
tics of ensembles influence model performance. We also
demonstrate the application of these ensembles to our
experimental mouse data. Results from our evaluation
demonstrate that ensembles capable of exploring larger
model spaces perform better with lower variability.

Methods
Simulation design
We generated data for our simulation study using the
linear model,

Y = Xβ + ε, (1)

where Y is the response variable, X is the design matrix
with n samples and p variables, β is the p-dimensional vec-
tor of regression coefficients and the random error ε ∼
N

(
0, σ 2 · In

)
where In is the identity matrix. We describe

the construction of the components X, β and ε below.

Designmatrices
We constructed two design matrices based on the exper-
imental mouse gut bacterial and fungal microbiome
profiles, respectively. We first eliminated the rows and
columns which had zero counts across all samples; n and
p refer to the total number of rows and columns that
remained. In the bacterial matrix, n = 30 and p = 192
while in the fungal matrix, n = 36 and p = 47. We then
constructed the design matrix X by log-transforming the
relative abundances of genera, t′ij where i ∈ {1, 2, . . . n} and
j ∈ {1, 2, . . . , p}.

φij =
(

tij + 1∑p
j=1 tij + 1

)
, t′ij = log(φij), (2)

where φij and tij denote the relative abundance and the
sequence count of bacterial or fungal genus, j in sample
i, respectively. We added a smoothing constant of 1 to tij
to ensure non-zero proportions for all genera. The log-
transformation ensures that all variables have a similar
dynamic range across all the samples [26]. p denotes the
total number of genera.
Since

∑p
j=1 φij = 1 for every i, the relative abundance

of one of the genera is fully specified by the others. To
address this redundancy, we selected one of the genera
as a reference, and dropped it from the design matrix X.
We chose the reference genus, jref to be the one with the
greatest abundance across all the samples. i.e.,

jref = argmax
j∈{1,2,... p}

n∑
i=1

tij. (3)

Influential variables
Microbiome sequence data describes an entire commu-
nity of organisms. It is not known whether this commu-
nity consists of a large or a small subset of influential
microbes. In addition, their degree of association with
the response is also unknown. We addressed this uncer-
tainty using the following strategies: a) considering a range
of sparsity settings (% of variables specified as influential
∈ {2%, 3%, 4%}), and b) sampling regression coefficients
from either a bimodal distribution, β = ±1 or a uniform
distribution, β ∈ U .
We denote the set of specified influential variables as Vi.

We randomly selected the indices of these variables and
divided them into two halves V1

i and V2
i . We used two

alternative schemes for assigning regression coefficients
β to the selected variables in V1

i and V2
i , following the

approach in Meinshausen et al. [22].

1. β = ±1: ∀v ∈ V1
i ,βv = 1; ∀v ∈ V2

i ,βv = −1.
2. β ∈ U : ∀v ∈ V1

i ,βv ∼ U(0.5, 1.0); ∀v ∈ V2
i ,βv ∼

U(−1.0,−0.5).
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Signal to noise ratio
The signal to noise ratio (SNR) is defined as [27]

SNR = ||Xβ||2√
nσ

, (4)

where ||Xβ||2 is the l2 norm of the predicted response.
We computed the SNRs in our experimental mouse data
by estimating an elastic net model [28]. The bacterial data
had an SNR of 4.6, while the fungal data had an SNR of 5.2.
In our simulation, we applied three different SNRs of 0.25,
4.60 and 16.00, that correspond to high, medium, and low
noise settings, respectively. For a given SNR, we sampled
the random error εi ∼ N (0, σ 2) where i ∈ {1, 2, . . . n} and
where σ is chosen as:

σ = ||Xβ||2√
n · SNR

. (5)

It is easier to recover the influential variables under a
higher SNR since the response has a larger association
with the variables relative to the random error term.
For each combination of X, β and SNR, we performed a

total of 130 simulations and report results aggregated over
these runs, making our findings robust to variations. We
conducted our evaluation and analysis in the R language
for statistical computing [29] and have released our code
at GitHub [30].

Modeling approaches
In our evaluation, elastic net with cross-validation (ENC)
was the baseline non-ensemble penalized regression
method.We chose the remaining frequentist and Bayesian
ensemble modeling approaches with the objective of
determining how the size of the ensemble, construc-
tion of the model space, and the choice of regularization

parameters within the ensemble influenced performance.
We summarize these approaches in Table 2 and describe
them in detail below.

Elastic net with cross-validation (ENC)
The ENC procedure [28] is a specific instance of a penal-
ized regression model [31,32].

β̂ =argmax
β

{ n∑
i=1

|yi−Xiβ|2+λ

(
α||β||1+(1 − α)

1
2
||β||22

)}
,

(6)

where β̂ is the solution to the estimation problem,
the penalty terms, ‖β‖1 = ∑p

i=1 |β i| and ‖β‖2 =√∑p
i=1 |β i|2 are the l1 and l2 norms of the coefficient vec-

tor β ,
∑n

i=1 |yi−Xiβ|2 is the residual sum of squares (RSS),
λ is the tuning parameter that penalizes the RSS by the size
of the regression coefficients and α is a tuning parameter
that balances the l1 and l2 penalties. An α of 1 promotes
sparsity in the model, while an α of 0 ensures that corre-
lated variables are assigned similar regression coefficients.
An optimal value of α finds a balance between the two
penalties. We employed leave-one-out cross-validation to
determine the optimal combination of α and λ (λoptimal =
λENC) that minimized the mean squared error (MSE) of
the model [31]. We used the implementation of ENC
available in the glmnet R package [32].

Frequentist ensembles
We evaluated frequentist ensembles that were varia-
tions on the ensemble strategy originally described by
Meinshausen and Bühlmann (MB) [22]. In their work,
MB proposed a method to improve stability of variable
selection within the least absolute shrinkage and selec-
tion operator (LASSO) approach [33]. Since ENC is a

Table 2 Summary of themodeling approaches included in the evaluation

Model Ensemble characteristics Output Paradigm R Package

Tuning parameter Model space construction

ENC λENC None Influential variables ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Frequentist (l1, l2 penalties) quadrupen, glmnet

PS λMB
⎫⎪⎬
⎪⎭Subsampling

Influential variables

LS λENC Inclusion probabilities

SS � Inclusion probabilities

PR λMB
⎫⎪⎬
⎪⎭ Resampling

Influential variables

LR λENC Inclusion probabilities

SR � Inclusion probabilities

BMA EMS = 1
}
MCMC

Inclusion probabilities
}
Bayesian (Spike & slab prior) BoomSpikeSlab

BMAC EMSCV Inclusion probabilities

ENC: The baseline penalized regression model. Elastic net with λoptimal = λENC derived from cross-validation (CV), Ensembles based on 100 subsamples: PS:
Meinshausen & Bühlmann’s algorithm with a single λoptimal = λMB selected to minimize the expected number of false positives, LS: Single λoptimal = λENC with no
variable selection, SS: Stability selection across the entire 100 λ ∈ � grid with no variable selection, Ensembles based on 100 resamples: PR, LR, SR: Identical to PS,
PR and LR, respectively, with model space constructed through resampling. BMA: Bayesian model averaging with expected model size (EMS) = 1, BMAC: BMA with
EMS determined by CV (EMSCV ).
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generalization of the LASSO approach and our baseline,
we replaced LASSO with ENC in MB’s stability selection
procedure.

Ensembles based on subsamples (PS, LS, SS, SSW)
Within MB’s stability selection procedure, we first gener-
ated 100 subsamples of the data. From each subsample,
we estimated regression coefficients β on a grid of regu-
larization parameters λ ∈ �. � consisted of 100 λ values
obtained using the Least angle regression (LARS) algo-
rithm within ENC [31,34] implemented in the glmnet R
package [32]. Given the set of selected variables at any λ,
S(λ) = {j : βj(λ) �= 0}, the inclusion probability P(j ∈
S(λ)) of any variable j ∈ {1, 2, . . . p} was computed as

P(j ∈ S(λ)) = 1
B

B∑
b=1

1j∈Sλ(b), (7)

where b is the index of any given subsample, B = 100
is the total number of subsamples and Sλ(b) is the set of
selected variables at regularization parameter λ in sub-
sample b. To minimize the expected number of false
positives within the selected set of variables, S(λ), MB
developed an algorithm to select both the optimal regu-
larization parameter λoptimal = λMB and a stable set of
variables, Ŝstable ⊆ S(λMB) [22]. We adopted an imple-
mentation of MB’s algorithm from the quadrupen R pack-
age [35]. Since MB’s algorithm was designed to reduce
false positives and employed subsampling to construct
the model space, we called this modeling approach, PS.
In addition to PS, we evaluated ensemble variants which
enabled us to determine how performance was influenced
by the choice of the regularization parameter λoptimal,
size and nature of the model space, and the computation
strategy for inclusion probabilities.
In the first variant of PS, we chose the single regulariza-

tion parameter λoptimal = λENC , specified by the ENC pro-
cedure in glmnet [32]. Unlike PS that performed variable
selection at λMB, we computed the inclusion probabilities
of the p variables across the 100 subsamples at λENC using
Equation 7. We termed this variant LS since it operated at
a single λoptimal and employed subsampling to construct
the model space.
In the next variant, we expanded the size of the model

space by computing the average inclusion probabilities, Ij,
of the variables across the 100 regularization parameters
λ ∈ �,

Ij = 1
100

·
100∑
i=1

P(j ∈ S(λi)), (8)

where j ∈ {1, 2, . . . p}. The approach assigned high inclu-
sion probabilities to the stable variables which were most

consistently selected across the � grid and employed sub-
sampling to construct the model space. Hence we termed
this variant SS.
We also considered an alternative definition of inclusion

probability, Iwj , j ∈ {1, 2, . . . , p} based on a suggestion from
our referee.

Iwj =
100∑
i=1

wλi · P(j ∈ S(λi)), (9)

where wλi , the weight assigned to λi, is proportional to the
average number of non-zero variables at λi

wλi =
∑B

b=1 1j∈Sλi (b)∑100
i=1

∑B
b=1 1j∈Sλi (b)

, (10)

where b is the index of the subsamples and B = 100 is the
total number of subsamples. We termed this variant SSW.

Ensembles based on resamples (PR, LR, SR, SRW)
Since MB [22,27] recommend the use of resampling as
an equivalent alternative to subsampling in the context of
stability selection, we varied the nature of model space
construction within the frequentist ensembles by adopt-
ing bootstrap resampling as an alternative to subsampling
with size 
n

2 �. Subsampling without replacement and sam-
pling at random with replacement (bootstrap resampling)
are examples of schemes within a family of exchangeably
weighted bootstrap schemes [36,37]. The equivalence of
the two bootstrapping schemes has been described in [38]
and [39] and demonstrated through theoretical results
and extensive simulations of non-linear regression [40].
In addition, the two schemes have very similar statistical
properties [41]. It has also been independently shown that
bootstrap resampling improves stability of the LASSO
procedure, which is a special case of ENC [42].
We implemented the resampling alternatives to PS, LS,

SS and SSW, and termed them PR, LR, SR and SRW,
respectively.

Bayesian ensembles
In addition to the frequentist ensembles, we evaluated
Bayesian ensembles that further expanded the size of the
model space explored. These larger ensembles were based
on spike-and-slab Bayesian model averaging (BMA) [24]
implemented in the BoomSpikeSlab R package [43]. Given
a set of multicollinear variables, spike-and-slab BMA
assigns higher inclusion probabilities to influential vari-
ables highly associated with the response. Strongly cor-
related variables that are equally associated with the
response are assigned similar inclusion probabilities. Thus
the BMA framework is conceptually similar to our base-
line frequentist penalized regression approach, ENC, and
its ensemble variants.
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The spike-and-slab prior consists of two components
and is described in detail in [44,45]. The spike component
of the prior is modeled by a Bernoulli distribution for each
variable and is described by

γ ∼
p∏

i=1
π

(γi)
i (1 − πi)

(1−γi), (11)

where γ is a vector of binary indicators, γi; i ∈ {1, 2 . . . p}.
If γi = 1, the ith variable is selected as influential. If γi = 0,
the ith variable is not influential and βi = 0. πi is the prob-
ability of the ith variable being influential and computed
as πi = k

p . k is the expected model size and specifies the
number of variable coefficients expected to be non-zero.
Conditional on the set of influential variables {i : γi =

1}, the slab component of the prior distribution models
the regression coefficients β for these variables. The dis-
tribution is a variant of the Zellner’s g-prior [46] and is
given by

β| (σ 2, γ
) ∼ N

(
b,Fγ

−1) , (12)

where b denotes the prior expectation of β and is set to 0
in our experiments. Fγ is the sub-matrix that corresponds
to the influential variables {i : γi = 1} within the full prior
Fisher information matrix,

F = g
n

· X
TX
σ 2 . (13)

In the event of multicollinearity, F may not always
be positive definite. Therefore, the BMA implementation
within BoomSpikeSlab ensures a proper posterior distri-
bution by linearly interpolating XTX with its diagonal to
obtain the smoothed Fisher information matrix [44,45],

F smooth = g
n

· w × XTX + (1 − w) × diag(XTX)

σ 2 , (14)

where g is set to 1 and w = 0.5. σ 2 is the variance of the
random error ε in the regression model and distributed as

1
σ 2 |γ ∼ �

(ν

2
,
ss
2

)
, (15)

where �
(

ν
2 ,

ss
2
)
represents a gamma distribution with

mean ν
ss and variance

ν
ss2 . We retained the default values of

ν = 0.01 and ss = 0.5 · s2y from the BoomSpikeSlab R pack-
age [43]. s2y is the standard deviation of the response. We
set the expected model size, k, to the default value of 1 in
the variant termed BMA. For the variant termed BMAC,
we estimated k with five-fold cross-validation to minimize
the MSE. This enabled the BMAC variant to adapt to the
inherent sparsity setting in the data.
The BMA procedure incorporates a MCMC algorithm

that traverses a very large space of models to estimate

the posterior distribution of the regression model param-
eters [44]. For our datasets, the running means of the
selection indicators and the regression coefficients con-
verged well before 10,000 MCMC iterations. Hence, we
ran the MCMC algorithm for 10,000 iterations and dis-
carded the initial 1000 iterations as burn-in. We then
estimated the variable inclusion probabilities from the
remaining 9000 iterations. The inclusion probability for
the ith variable is the proportion of iterations (or draws)
with non-zero regression coefficients

P(γi = 1) = 1
D

D∑
d=1

1βi �=0(Md), (16)

where D = 9000 is the total number of draws of model
parameters from the posterior distribution, and Md indi-
cates the model parameters at iteration d.

Variable selection
In high-dimensional settings, variable selection results in
a sparse set of variables which provide the best expla-
nation for the data. ENC performs variable selection by
assigning the non-influential regression coefficients to
zero. PS and PR directly compute the set of influential
variables. For all the other approaches that generate vari-
able inclusion probabilities, we applied a variable selection
algorithm. In this algorithm, we first ranked the inclu-
sion probabilities in decreasing order. We then computed
the first order lagged differences between the ranked
inclusion probabilities, identified the largest gap in this
sequence, and selected the variables above this gap as
influential. Suppose IPi, i ∈ {1, 2, . . . p} denote the ranked
inclusion probabilities, then the index that corresponds to
the largest gap in inclusion probabilities is

î = argmax
i

{IPi − IPi+1} , (17)

and the set V̂i = {v1, v2, . . . vî} is the chosen set of influ-
ential variables. We refer to this strategy as the lagged
differences (LD) algorithm.

Evaluation metrics
We evaluated the approaches on the basis of their ability to
select the truly influential variables as well as their ability
to rank these variables accurately.

Variable selection
ROC curves andAUC scoreThe receiver operating char-
acteristic (ROC) curve is a visual depiction of the variable
selection performance of an approach across a range of
thresholds on the inclusion probability. We constructed
the ROC curve for each approach by plotting true positive
rate (TPR) versus false positive rate (FPR) while sweeping
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across a sequence of 22 inclusion probability thresholds
between 0.00 and 1.01 on the logarithmic scale. True
positives (TP) are those variables which were correctly
identified as influential by an approach. False positives
(FP) are those which were incorrectly identified as influ-
ential by an approach. TPR and FPR are defined as follows

TPR = TP
|Vi| FPR = FP

p − |Vi| , (18)

where p is the total number of variables and Vi is the set
of all influential variables in the simulated data. In con-
structing the ROC curve for any given approach, variables
with inclusion probabilities above a given threshold were
counted as influential variables selected at that threshold.
We also computed the area under the ROC curve (AUC)
score for each of the approaches. The AUC is a single met-
ric that quantifies the performance of any given approach
across the complete range of inclusion probability thresh-
olds [47]. Both the ROC curve and the AUC metric
allowed us to assess the performance of approaches that
generated inclusion probabilities for variables but did not
perform variable selection. Therefore, these metrics eval-
uated model performance independent of any particular
algorithm for variable selection.

F-score The F-score is a single metric that measures the
accuracy of variable selection with respect to the truly
influential variables. It is the harmonic mean of precision
and recall and is given by

Precision = TP
TP+FP

Recall = TP
|Vi|

F-score = 2
(
Precision × Recall
Precision + Recall

)
.

(19)

Variable ranking
We measured the Spearman’s rank correlation coefficient
between the simulation-assigned ranks r = (r1, r2, . . . rp)
and the observed ranks r̂ = (r̂1, r̂2, . . . r̂p) of the variables.
For variable i, ri was based on the absolute value of its
regression coefficient while r̂i was based on its inclusion
probability from a given approach.
The Spearman’s rank correlation between r and r̂ is

specified by

ρ =
∑p

i=1(ri − r̄)(r̂i − ¯̂r)√∑p
i=1(ri − r̄)2

∑p
i=1(r̂i − ¯̂r)2

, (20)

where r̄ and ¯̂r are the mean ranks of the true regression
coefficients and the inclusion probabilities, respectively.

Results and discussion
Receiver operating characteristic (ROC)
Figure 2 shows the mean ROC curves, computed over 130
simulations, for approaches that assign inclusion proba-
bilities to variables without performing variable selection.
Good performance is characterized by high TPR and low
FPR over a wide range of inclusion probability thresholds.
The diagonal line on the plots represents random variable
selection performance. ROC curves below the diagonal
indicate poor performance while those above have better
than random performance.
Overall, BMA variants consistently outperformed all the

other approaches. Performance of all approaches deterio-
rated in high dimensions and with increasing number of
influential variables, demonstrating that all ensembles had
uniform difficulty in variable selection within less-sparse
settings. Indeed, the setting with the highest percent-
age (4%) of influential variables and largest regression
coefficients (β = ±1) presented the most challenging sce-
nario. The performance gap between BMA and the other
approaches decreased in this case.
The relatively strong performance of all approaches in

the low-dimensional fungal setting was most likely due
to the smaller space of variable configurations. In most
scenarios, SS and SR performed better than LS and LR
approaches, illustrating the advantage of moving from a
single λoptimal to a larger model space consisting of a grid
λ ∈ �.
At higher SNRs, BMA with cross-validated expected

model size (BMAC) performed better than the other
approaches. We also note that higher SNRs were uni-
formly associated with better performance.

Area under the ROC curve (AUC)
Figure 3 shows the variability in AUC across 130 sim-
ulations for the approaches that assign inclusion prob-
abilities. The corresponding median AUCs are shown
in Additional file 1. An AUC of 1.0 is ideal and cor-
responds to a scenario where an approach consistently
ranks influential variables higher than non-influential
variables. In our simulations, the trends in AUC mir-
rored the patterns in the ROC curves. BMA vari-
ants and specifically, BMAC, obtained the highest AUC
along with the lowest variability, showing the advan-
tages of exploring the largest model space among all
approaches.
While BMA variants had a near perfect AUC in the

low-dimensional fungal setting, the AUCs for non-BMA
approaches were also higher in this setting. Although SS
and SR had AUCs similar to BMA in the fungal set-
ting, they had a much higher variability. The resampling
variants, LR and SR, yielded small but consistent improve-
ments in median AUC relative to their subsampling coun-
terparts in the high-dimensional setting.
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Figure 2 Receiver operating characteristic (ROC) curves.Mean ROC curves across 130 simulations are shown for approaches that do not
perform variable selection. An ideal ROC has a high TPR and a low FPR over a wide range of thresholds. S denotes the sparsity setting or the
proportion of influential variables in the data. The diagonal dashed line represents random variable selection performance. a. β = ±1 and b. β ∈ U .
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Figure 3 Variation in area under the ROC curve (AUC) across 130 simulations are shown for approaches that do not perform variable
selection. Points beyond the end of the whiskers denote outliers. An AUC of 1.0 is ideal. S denotes the sparsity setting or the proportion of
influential variables in the data. a. β = ±1 and b. β ∈ U .
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The lowest SNRs resulted in the lowest AUCs and the
highest variability. Since SNRs of < 0.25 are not repre-
sentative of our experimental datasets and in addition,
yielded uniformly poor performance across all ensem-
bles, we report results only for medium and high SNR
situations in the evaluations that follow.

F-score
Higher values of the F-score indicate a good balance
between precision and recall. Figure 4 shows the variation
in F-scores across 130 simulation runs for all approaches
while Additional file 1 shows the medians. For methods
that did not perform variable selection, we applied the
inclusion probability threshold from the LD algorithm to
select the top influential variables.
BMAC outperformed all the other approaches across

all settings. BMA was a close second, however, its per-
formance deteriorated at lower sparsity settings. As was
pointed out by one of our referees, this finding shows the
benefits of cross-validating the expected model size within
BMAC, enabling it to adapt better to the sparsity in the
data. The PR algorithm performed as well as BMAC in
the low-sparsity and medium SNR settings within high
dimensions and in the presence of large regression coef-
ficients (β = ±1). This would suggest that resampling
conferred a distinct advantage over subsampling, enabling
PR to perform well despite its small model space.
In lower dimensions, BMA approaches, with the largest

ensembles, outperformed all other approaches across all
SNR settings. SS and SR performed similar to BMA in a
number of low-dimensional fungal settings but the vari-
ability in their performance was substantially higher.

Spearman’s rank correlation
Figure 5 shows the variable ranking performance mea-
sured using Spearman’s rank correlation between the esti-
mated and true variable ranks for each of the approaches
for β ∈ U . The corresponding median correlations are
shown in Additional file 1. Overall, the rank correlation
decreased with an increase in dimensionality. BMA
approaches showed higher correlation and lower vari-
ability relative to the other approaches in high dimen-
sions. However, all approaches performed similarly in low
dimensions.

Additional simulations
We performed two additional simulations to address
points raised by our referees.

Performance without log-transformation
In this simulation, we examined the performance of all
ensembles on relative abundance data that were not log-
transformed. Data without log-transformation showed
similar trends in performance as log-transformed data

(Additional file 2). However, the number of outliers
increased across all metrics in the data without log-
transformation. This suggests that log-transformation of
relative abundances decreases variability in the perfor-
mance of ensembles.

Weighted average of inclusion probabilities
We also performed simulations to compare SS and SR
with their weighted counterparts, SSW and SRW, com-
puted using Equation 9. Overall, the performance of the
weighted approach was not consistently different from the
unweighted approach (Additional file 3). However, there
were minor increases in the median performance of the
weighted approach in high-SNR settings.

Application to mouse microbiome data
We now illustrate the application of the ensembles
(Table 2) to identify influential variables in our experi-
mental mouse microbiome data collected from the termi-
nal ileum. Briefly, the gastrointestinal tract is an ecological
niche for both bacterial and fungal flora. By depleting the
competing bacterial microbiota, antibiotics create vacan-
cies in the niche that co-existing fungi can repopulate.
However, a high level of colonization by a single fungal
species such as C. albicans is an unfavorable clinical out-
come [48], especially in immunosuppressed and dysbiotic
patient populations [49-51]. We therefore designed our
mouse microbiome study to examine the factors influenc-
ing C. albicans colonization of the gastrointestinal tract
following initiation of antibiotic treatment.
The experimental design of our mouse microbiome

study is summarized in Figure 1 and Table 1. Following
exposure to antibiotics and C. albicans, we profiled the
microbial communities in the mouse gut by amplifying
and sequencing the taxonomically discriminant bacterial
16S rDNA [52] from the V3-V5 variable region and the
fungal ITS rDNA [53]. Using the YAP bioinformatic work-
flow [54], we obtained taxonomic assignments that reach
genus-level resolution for both bacteria and fungi. Assign-
ments unclassified at the genus-level were annotated with
the prefix UC. The median number of reads per sam-
ple was 3500 for bacterial 16S and 2000 for fungal ITS
regions. We built two linear regression models to assess
the association of bacteria and fungi with the level of C.
albicans colonization. We estimated the bacterial models
from 30 samples and the fungal models from 36 samples.
Both the bacterial and fungal models were specified as
follows

Y = Xgβg + Xcβc + Xaβa + ε, (21)

where Y is the colonization level measured in
log

(
Colony forming units (CFU)

grams of fecal matter

)
, Xg is a vector of log rela-

tive abundances of sequences assigned to bacterial or
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Figure 4 Variation in F-score across 130 simulations. Points beyond the end of the whiskers denote outliers. An F-score of 1.0 is ideal. The LD
algorithm was used to select variables for approaches that do not perform variable selection. SNR=0.25 is not shown. S denotes the sparsity setting
or the proportion of influential variables in the data. a. β = ±1 and b. β ∈ U .
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Figure 5 Variation in Spearman’s rank correlation (β ∈ U ) across 130 simulations are shown for approaches that do not perform variable
selection. Points beyond the end of the whiskers denote outliers. A correlation of 1.0 is ideal. Higher correlation indicates that the approach is able
to capture the original variable rank more accurately. SNR=0.25 is not shown. S denotes the sparsity setting or the proportion of influential variables
in the data.

fungal genera, Xc is a vector of log normalized mRNA
expression levels of cytokines, Xa is a vector of 5 binary
variables indicating antibiotic treatment (vancomycin or
PSG: penicillin, streptomycin and gentamicin) for a span
of 7 or 21 days and exposure to C. albicans on the 7th day,
and ε is the residual error in the model.
Since the microbial proportions sum to one, the propor-

tion of any given genus is known given the proportions
of all the other genera. To avoid this redundancy, we
could exclude the proportion of any one reference genus.
However, doing so would mean we are unable to obtain
inclusion probability for this genus. We thus selected two
reference genera with the highest abundances across all
samples and repeated themodel building procedure twice,
each time excluding one of the two reference genera from
Xg . We estimated the final set of selected variables and
inclusion probabilities for all genera by averaging across
these two models.
We applied each of the approaches (Table 2) from the

simulation study to this data to discover the microbiome-
immune-antibiotic signatures associated with the level of
C. albicans colonization. The inclusion probability for any
variable reflects its importance to the response. For meth-
ods that do not perform variable selection, we used the
LD algorithm to derive an inclusion probability threshold
for identifying the top influential variables. Since ENC, PS

and PR directly provide us with lists of influential variables
and do not assign inclusion probabilities, we annotated
the inclusion probabilities for these influential variables as
100%.

Mousemicrobiome findings
Figure 6 shows the bacteria and cytokines identified
as influential by the approaches along with their inclu-
sion probabilities (in %). ENC showed the least sparsity
and selected the maximum number of bacteria and host
immune cytokines. Although Veillonella was identified
as an influential variable in all approaches, only BMA,
BMAC, SS and SR assigned it the highest inclusion prob-
ability. However, unlike SS and SR, the difference in the
inclusion probabilities of Veillonella and the other influ-
ential variables was much larger in the BMA models.
Figure 7 shows results from the fungal model. Treat-

ment with PSG for a span of (a) 7 days, and (b) 21 days
along with exposure to C. albicans were both assigned
very high inclusion probabilities by BMA and BMAC.
Unlike the bacterial model, the highest-ranking vari-
ables in SS and SR were different from those in BMA
approaches. PR and PS shared common variables with
both SS and SR and the BMA approaches. The other sin-
gle λ approaches (LR, LS) showed some similarities
with SS and SR, however, their inclusion probability
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Figure 6 Candida colonizatin: Influential variables in the bacterial model. Variables selected in each of the modeling approaches are
highlighted in green. The LD algorithm was utilized for selecting variables for approaches that do not perform variable selection. Values in the cells
are inclusion probabilities expressed in %. ENC, PS and PR do not generate inclusion probabilities. In these models, an inclusion probability of 100%
indicates that the variable was selected as influential.
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Figure 7 Candida colonization: Influential variables in the fungal model. Variables selected in each of the modeling approaches are
highlighted in green. The LD algorithm was utilized for selecting variables for approaches that do not perform variable selection. Values in the cells
are inclusion probabilities expressed in %. ENC, PS and PR do not generate inclusion probabilities. In these models, an inclusion probability of 100%
indicates that the variable was selected as influential.

assignments were substantially different. ENC showed a
lack of sparsity analogous to the bacterial models.
Viewed together, findings from the bacterial and fun-

gal models indicate that the type of antibiotic, span of
exposure to the antibiotic and specific antibiotic-induced
changes in the bacterial microbiota substantially influ-
enced the levels of C. albicans colonization. The con-
current effects of the host immune cytokines and the
co-existing fungal microbiota on the level of C. albicans
colonization were weaker. These findings are promising
since they suggest that tailoring antibiotic regimens as
well as concomitant modulation of the microbiota dur-
ing antibiotic administration could be employed to reduce
opportunistic C. albicans colonization.

Comparison of approaches
To further examine similarities and differences in the
workings of each of the modeling approaches, we plot-
ted the inclusion probability versus rank for all variables
across the ensembles (Figure 8). In both high and low-
dimensional settings, the approaches separated out into
three distinct groups. In the first group that included
BMA and BMAC, inclusion probabilities showed the
steepest decay. In the second, comprising the SS and SR,
the decay was more gradual. The single λ approaches
constituted the third group. Here the rate of decay was
similar to SS and SR, however the dynamic range of inclu-
sion probabilities was larger. The sharper decay in the
BMA methods indicates a more discriminative ranking
that allows a distinct separation of the influential variables
from the non-influential ones.

On clustering the approaches based on Euclidean dis-
tance between the inclusion probability vectors, the single
λ approaches were further away from PS, PR, SS, SR and
the BMA approaches, indicating their divergent perfor-
mance. The proximity of SS and SR to BMA approaches
suggests that SS and SR, computed over a much larger
number of subsamples or resamples, could potentially
approach the performance profile of BMA.

Conclusions
Microbiome studies constitute a recently developed area
of research that incorporate NGS to profile communities
of diverse microbes residing in a variety of ecosystems. As
a result, microbiome data shares many of the characteris-
tics of NGS data that make it challenging to analyze. These
challenges arise from high-dimensionality, limited sample
sizes, multicollinearity within covariables, modest SNRs
and a very large space of models. Ensemble modeling is
able to provide a comprehensive solution to these analyti-
cal challenges. However, except for non-linear ensembles
such as random forests, ensemble modeling has not been
adopted widely in microbiome research.
Our goal in this paper was to familiarize investigators

in the field with the characteristics of both frequen-
tist and Bayesian ensemble-based regression approaches
and present an evaluation of these approaches on real-
istic microbiome data. We also introduce a simulation
framework that can be built from any experimental micro-
biome dataset to closely mimic the characteristics of real
data. We demonstrate the usefulness of this framework in
evaluating analytical approaches using a suite of metrics
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Figure 8 Comparison of inclusion probability profiles across all approaches. The top panels show the sorted inclusion probabilities plotted
against the rank of the variables in the model. The bottom panels show the pairwise similarities between the inclusion probability profiles of all the
approaches. The similarity between any pair of approaches i and j is given as Sij = 1

1+Dij
, where Dij is the Euclidean distance between the inclusion

probability vectors of approaches i and j. We generated the dendrogram using agglomerative clustering with the centroid linkage method. We then
ordered the correlogram using the order of models generated in the dendrogram. a. Bacterial models, b. Fungal models.

that assess various facets ofmodeling performance. Unlike
other simulation strategies [4,16] that sample covari-
ates from parametric distributions, we directly utilize the
covariance structure, SNR and the dimensions inherent
in our experimental mouse data for our simulation. Even
though parametric simulation approaches enable gen-
eration of arbitrary number of samples, we expect the
findings from our simulation-based evaluation to trans-
late better to experimental datasets. Our implementa-
tion, in the R statistical language, is freely available from
GitHub [30], making it convenient for researchers in the
microbiome research community to adopt and apply our
evaluation methodology to their own datasets without the
need for expensive ground truth annotations.
We found that the Bayesian approaches had several

favorable attributes that distinguished them from the
other ensembles we evaluated. In realistic settings with

medium SNRs and uniformly distributed coefficients for
influential variables (β ∈ U ), they performed con-
sistently better or at par with frequentist approaches
depending on the number of influential variables. Fur-
thermore, they showed substantially less variation across
replications. Selecting the optimal expected model size via
cross-validation (BMAC) improved performance in more
challenging high-dimensional settings with a large num-
ber of influential variables. PR, the resampling variant of
the original stability selection algorithm [22] performed
as well as BMAC in these scenarios, highlighting its abil-
ity to perform effective variable selection when there are
several variables with large regression coefficients. On the
whole, the resampling variants had small but consistent
performance gains over their subsampling counterparts,
suggesting that resampling was able to create an improved
model space relative to subsampling. Even though SS, SR,
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PS and PR, the frequentist ensembles, performed reason-
ably well at lower dimensions, they exhibited substan-
tially more variability in their performance. Our findings
thus enabled us to pick BMAC for our experimental set-
ting with modest sample sizes and high-dimensionality in
measurements.
We note that BMAC uses the data for both estimat-

ing a hyperparameter of the prior distribution and for
computing the posterior distribution. It is therefore not
a full Bayesian approach. An ideal alternative would be
to employ a full Bayesian model that includes a hyper-
prior for the prior inclusion probabilities [55]. While our
work has systematically evaluated a powerful set of sparse
linear regression modeling methods that average across
large model spaces in the context of continuous response
variables, a future direction would be to extend these
evaluations for analyzing categorical responses and time-
to-event outcomes that are prevalent in clinical settings.
These models include logistic, multinomial, and survival
regression.
Our analysis could have been performed at the higher

taxonomic levels of phylum, class, order and family. How-
ever, we selected the genus-level primarily because it
provided the closest taxonomic resolution to our response
(C. albicans colonization). A limitation of our approach,
which is shared by other analytical approaches such
as [4,16,17], is the assumption that taxonomic assignment
for all organisms at all phylogenetic levels is equally accu-
rate. As a result, covariables are treated alike regardless of
classification accuracy. However in practice, classification
error could vary across phylogenetic branches as well as
taxonomic levels and depends on factors such as the qual-
ity of annotated taxonomic databases as well as the other
parameters of underlying bioinformatic algorithms [56].
A crucial avenue of future research would be to integrate
information from models constructed from taxonomic
assignments at varying classification accuracies.
Another area that we have not explored in this work is

the inclusion of interactions and variable sub-structures
within the high-dimensional regression framework. In the
microbiome setting, this would involve several higher-
order interaction terms among taxa. Many such sym-
biotic and antagonistic relationships are known to exist
among taxa and cytokines but are hard to assess in ana-
lytical settings. Including these interactions is compu-
tationally challenging because they would increase the
model space exponentially. Recent developments in sta-
tistical algorithms that efficiently explore this additional
complex model space [57,58] hold promise for mak-
ing this problem more tractable at the scale of micro-
biome data. In the context of biological interpretations,
it could be useful to integrate variable clustering with
ensemble-based regression in a framework similar to the
one proposed in [59] to obtain a greater understanding

of the most relevant dynamics and relationships in the
community.
In conclusion, as microbiome studies evolve towards

translational settings, analysts are likely to face chal-
lenges in selecting appropriate modeling strategies that
yield consistent and stable performance with low vari-
ability [60]. Therefore, we expect that our research will
provide both insights for choosing among ensemblemeth-
ods and an evaluation framework critical for making an
objective selection.

Additional files

Additional file 1: Median values of performance metrics
(median_scores.pdf). Figures showing median values of performance
metrics presented as boxplots in the main paper.

Additional file 2: Performance without log-transformation
(no_log_transformation.pdf). Figures showing performance of all the
approaches on data without log-transformations.

Additional file 3: Performance with weighted inclusion probabilities
(weighted_ip.pdf). Figures showing performance of SS, SR, SSW and SRW
approaches.
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