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Abstract

Background: Genetic markers and maps are instrumental in quantitative trait locus (QTL) mapping in segregating
populations. The resolution of QTL localization depends on the number of informative recombinations in the
population and how well they are tagged by markers. Larger populations and denser marker maps are better for
detecting and locating QTLs. Marker maps that are initially too sparse can be saturated or derived de novo from
high-throughput omics data, (e.g. gene expression, protein or metabolite abundance). If these molecular phenotypes
are affected by genetic variation due to a major QTL they will show a clear multimodal distribution. Using this
information, phenotypes can be converted into genetic markers.

Results: The Pheno2Geno tool uses mixture modeling to select phenotypes and transform them into genetic
markers suitable for construction and/or saturation of a genetic map. Pheno2Geno excludes candidate genetic
markers that show evidence for multiple possibly epistatically interacting QTL and/or interaction with the
environment, in order to provide a set of robust markers for follow-up QTL mapping.
We demonstrate the use of Pheno2Geno on gene expression data of 370,000 probes in 148 A. thaliana recombinant
inbred lines. Pheno2Geno is able to saturate the existing genetic map, decreasing the average distance between
markers from 7.1 cM to 0.89 cM, close to the theoretical limit of 0.68 cM (with 148 individuals we expect a
recombination every 100/148=0.68 cM); this pinpointed almost all of the informative recombinations in the population.

Conclusion: The Pheno2Geno package makes use of genome-wide molecular profiling and provides a tool for
high-throughput de novomap construction and saturation of existing genetic maps. Processing of the showcase
dataset takes less than 30 minutes on an average desktop PC. Pheno2Geno improves QTL mapping results at no
additional laboratory cost and with minimum computational effort. Its results are formatted for direct use in R/qtl, the
leading R package for QTL studies. Pheno2Geno is freely available on CRAN under “GNU GPL v3”. The Pheno2Geno
package as well as the tutorial can also be found at: http://pheno2geno.nl.
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Background
Quantitative trait locus (QTL) mapping is a powerful
approach used in population analysis to link genetic vari-
ation with phenotypic variation [1]. It requires polymor-
phic genetic markers positioned on a genetic map. The
denser the genetic map, the lower the chance of miss-
ing true QTLs. Furthermore, more markers (i.e. greater
density) yield a more accurate overview of informative
recombinations. Theoretical limit of resolution depends
on the size of the genome, size of the population and type
of the cross.
Phenotypes showing a dichotomous 0/1 distribution

with approximately equal proportions in, for example, a
recombinant inbred line (RIL) population can be used
as genetic markers: genotypes can be called by connect-
ing the 0/1 to the parental strains A/B. Such markers
can then be used for de novo construction of the genetic
map or for saturation of a known genetic map [2,3]. A
simple approach using mean parental expression to split
dichotomous phenotypes into A/B categories works for
large datasets (n > 22, 000 markers [2]).
Continuous (non-dichotomous) phenotypes can also be

used as markers if they show a major QTL, since a major
QTL will cause the phenotype to show a clear multimodal
distribution to which a mixture model can be fitted [4,5].
Posterior probabilities derived frommixture modeling are
used for genotype calling, and such approaches have been
used to derive genetic markers for up to 1,200 molecular
phenotypes [6].
In order to construct or improve genetic maps using

high-throughput molecular markers, we scale up the mix-
ture model approach for non-dichotomous phenotypes
such as gene expression data. High performance mix-
ture models have been used to perform genotype calling
in SNP arrays [7-9]. The new tool we have developed,
Pheno2Geno, allows the use of comparable amounts of
expression data either to saturate genetic maps, or to
derive them de novo.

Implementation
Pheno2Geno provides the following functionalities to sat-
urate and generate genetic maps.
1) Preprocessing of the data: Pheno2Geno offers a

selection of data transformation functions (log, sqrt,
reciprocal, probit and logit). Gene expression data mea-
sured using microarrays are generally log or square root
transformed before further analysis [5,6,10]. Details about
which method to select can be found in the manual of the
Pheno2Geno package.
2) Analysis of parents of a segregating population:

When parental data are available, Pheno2Geno uses a t-
test to select molecular phenotypes showing significant
differences between parental strains of a segregating pop-
ulation. Such an approach is only possible when parental

data are replicated at least three times. This reduces the
computational load by restricting the analysis to molecu-
lar phenotypes that show differential expression between
parents.
3) Analysis of a segregating population: Phenotypes

with a major QTL will show clear multimodal distribu-
tions in a segregating population. Pheno2Geno fits a mix-
ture model to the phenotype distribution [4,5,11]. Pheno-
types showing a multi modal distribution are selected as
candidate markers by a user defined significance thresh-
old. Pheno2Geno then tests these candidate markers to
predict if mixing proportions are close to the expected
segregation frequency, e.g. 1:1 for a bimodal distribution
of two homozygous classes in an F2-derived RIL or 1:2:1
for a trimodal distribution of two homozygous and one
heterozygous class in an F2 cross. The deviation allowed
from this expected segregation frequency can then be set
by the user.
4) Assigning genotypes: For each of the candidate

markers, the posterior probabilities of belonging to each
of the component distributions in the mixture are calcu-
lated [11,12]. Using these posterior probabilities, the con-
tinuous phenotype values are converted into discrete data
(e.g. 0 or 1 for RILs; 0, 1 or 2 for F2). If the posterior proba-
bility of a specific marker-individual combination is lower
than a user-specified threshold, a missing value (*) or
partly informative value (e.g. not 0, but homozygous 2 or
heterozygous 1) is assigned to avoid introducing genotyp-
ing errors. If parental data are available, these can be given
a parental origin label (A or B for RILs, A, H or B for F2).
If parental data are not available, mixture-model-based
scores cannot be converted into parental origin labels. In
the case of RILs, Pheno2Geno is able to solve this prob-
lem by forming twice as many linkage groups compared to
the expected number of chromosomes. Pheno2Geno then
looks for the combination of two linkage groups that show
strong negative correlation. If a pair of negatively corre-
lated linkage groups is found, genotypes from one of these
linkage groups are inverted. After which the two linkage
groups are merged into a single chromosome.
5)De novo construction of genetic maps: If no genetic

map is available, Pheno2Geno can be used to create an
initial ’skeleton’ map. This is produced using very strict
settings in the mixture model analysis to obtain a lim-
ited number of highly trustworthy markers. These can-
didate markers are assigned to linkage groups using the
R/qtl function ‘formLinkageGroups’. Additional informa-
tion provided by the user can be used in this step, for
example, known physical and genetic positions. The pack-
age then uses the known physical positions to assign phys-
ical chromosome IDs to linkage groups and to determine
the correct orientation of the chromosomes. Pheno2Geno
subsequently orders all the markers inside a linkage
group using the R/qtl ‘orderMarkers’ function. Finally,
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the skeleton map is saturated to improve resolution, as
described below.
6) Saturation of a known map: Pheno2Geno performs

interval mapping of candidate markers on the original
map using the R/qtl ‘scanone’ function. When a candidate
marker has a single QTL peak, it is placed at this position.
The map is then re-estimated using the R/qtl ‘est.map’
function, followed by removal of duplicate candidate
markers and markers located at the position of a known
marker. West et al. [13] emphasized that creating genetic
markers from gene expression data is seriously hampered
by the presence of environmental variation and multi-
ple, possibly interacting, QTLs (epistasis). Pheno2Geno
uses R/qtl to test if candidate markers are affected by
multiple QTLs or pairwise interactions. This is done by
performing a two-dimensional genome scan with a two-
QTL model. Additionally, if the data was measured in
multiple environments, potential environmental interac-
tions are tested. The user then decides whether affected
candidate markers are flagged or removed from further
analysis.
7) Detection of errors: After saturation or de novo

construction of a genetic map, Pheno2Geno can detect
and correct genotyping errors, e.g. double recombina-
tions, missing data or semi-informative markers. Missing
genotype data can be imputed using the R/qtl function
‘fill.geno’, which allows users to perform genome scans by
marker regression without having to drop individuals with
missing genotype data. However, this should be done with
care as the resulting genotype data will be dubious when
a large number of missing genotypes have been imputed.
Furthermore, when saturating a knownmapwith available
genotype data, Pheno2Geno can detect sample mix-ups
in the original data using ‘R/lineup’, which is a part of
the R/qtl toolset. External tools, such as MixupMapper
[14] can also be used to detect and correct the original
genotype data.
Genetic maps created by Pheno2Geno can easily be

used for QTL mapping. The package provides output
structures compatible with R/qtl, the leading R pack-
age for QTL analysis in experimental crosses [15,16].
Pheno2Geno allows users to explore and compare the
resulting maps with their favorite genome browser. Maps
can be saved as a GFF (General Feature Format) which is
supported by most genome browsers.

Results
To test Pheno2Geno, we analyzed a population with a
sparse genetic map. The original Amplified Fragment
Length Polymorphism (AFLP) map was created using a
population of 420 RILs derived from a cross between Ara-
bidopsis thaliana Bayreuth (Bay-0) x Shahdara (Sha). The
original map contained 69 AFLP markers at an average
map distance of 7.1 cM [17].

Our dataset consists of 148 RILs from the cross, which
were assigned to four different conditions using the
designGG package [18]. Each of the parents was measured
twice per condition. Gene expression per line was mea-
sured using tiling arrays (370,000 oligonucleotide probes
per array).
In total, 10,801 phenotypes (the input set) were detected

as being differentially expressed between parents (P <

0.01), and we did not correct for multiple testing, because
the input set was small enough to be handled efficiently by
Pheno2Geno. Mixture modeling identified 1,230 selected
phenotypes having approximately a 1:1 segregation ratio.
Pheno2Geno removed 267 phenotypes as potential mark-
ers showing QTL by environment interaction (LOD >=
7.5), 7 markers with multiple QTLs (LOD > 15), 279 can-
didate markers showing no QTL, and 77 candidate mark-
ers that appeared to show pairwise epistatic interactions
(LOD >= 7.5).
Using the remaining 600 candidate markers the origi-

nal map was saturated and 103 co-localizing markers were
removed. This resulted in 497 new gene-expression-based
markers (8 times the original number). The original and
saturated maps were re-estimated using the Kosambi map
function using the R/qtl function ‘est.map’. Map expansion
was observed for chromosomes 1 and 5, increasing the
total map length from 480.7 to 501.5 cM (Figure 1). Satu-
ration resulted in a decrease of the average map distance
from 7.1 cM to 0.89 cM, while saturation of theA. thaliana
Bay-0 x Sha map led to more than a sevenfold improve-
ment in marker density. This means that for studies, in
which molecular phenotypes were already measured, this
improvement can be achieved without any additional lab
costs.
Resolution of a genetic map is limited by the size of the

population from which the map is derived. A distance of
1 cM is equal to 1 recombination per 100 individuals. Our
sample size of 148 individuals implies that Pheno2Geno
could obtain, a theoretical resolution as high as 0.68 cM
between markers. The resolution of the Pheno2Geno sat-
urated map for A.thaliana is 0.89 cM, which is very close
to this theoretical limit.
A de novo reconstruction using only gene expression

data (ignoring the original markers and map) resulted in
a skeleton map containing 227 markers with an average
distance of 2.2 cM. This skeleton map had a length of
499.4 cM, and could be saturated again using less strict
parameters.
Additionally, we performed QTL mapping of our pub-

lished classical phenotype dataset [19] onto the saturated
map. As an example we show the QTL profile of the trait
“Time when 50% of seeds have germinated under 100 mM
NaCl” (Figure 2). Re-mapping the entire dataset of classi-
cal phenotypes onto this new map shows an increase in
QTL likelihood for 56% of the previously detected QTLs.
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Figure 1 Saturation results. A map comparison plot generated using the R/qtl function ’plot.map’ [15,16]. For each of the chromosomes, the
original map (left) and the saturated map (right) are plotted. Lines are drawn to connect markers. Markers that exist in one map but not the other are
indicated by short line segments. Before plotting, both maps were re-estimated using the R/qtl function ’est.map’. The original map consisted of five
chromosomes and 69 markers at an average distance of 7.1 cM. The saturated map consists of the original 69 markers plus 497 expression-based
markers at an average marker distance of 0.89 cM.

Additionally, 29 newQTLs were detected on the saturated
map, increasing the number of QTLs from 213 to 242.
These QTLs have LOD scores close to the significance
threshold when mapped onto the original map with LOD
scores between 3.4 and 5.
Finally, a QTLmapping of all the gene expression probes

showing differential expression between parents (10,801
probes) was performed, and 5,837 probes had a significant
(LOD > 5) QTL on the original map. Out of these, 3,943
probes (67.6%) showed an increase in QTL likelihood on

the saturated map (Figure 3) and an additional 210 new
significant QTLs were detected on the saturated map.

Conclusions and discussion
We have developed Pheno2Geno as a generic software
package for generating genetic markers and maps from
high-throughput molecular phenotypes. The package
works for any inbred diploid population, e.g. backcross, F2
intercross and recombinant inbred lines. Pheno2Geno has
four important features:
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Figure 2 Comparison of QTL profiles. Top Results of single-marker QTL mapping of a classical phenotype (y-axis) on the original (gray line), and
the saturated map (green line). Only chromosome 1 is shown. X-axis - positions of the original markers on the genetic map. Bottom Positions of
probes used during marker generation on chromosome 1. Gray dots - show positions of the original markers on the physical map. Colored dots
and circles - show candidate markers detected by Pheno2Geno. Orange circles - show candidate markers removed because they showed
significant environmental influence. Blue circles - show candidate markers removed because they showed an epistatic interaction with other
genetic markers. Green dots - show markers used for saturation of the original map. The final saturated map consists of all the green and gray dots.
The locations of the new markers on the old map are shown here so that maps are aligned for better clarity.

1) Big data computation. Pheno2Geno can process
large volumes of different kinds of molecular phenotypes
[20] including gene expression, protein- and metabolite
abundance. The memory requirements of the algorithm
are reduced by reading in and processing files in chunks
rather than all at once. Complete analysis of the show-
case data (370,000 probes) was performed in under an
hour on an average desktop PC (Intel Core i5 processor,
4 GB of RAM). For even larger datasets, the Pheno2Geno
package is embedded in the xQTL workbench [21,22],

allowing for easy parallelization and use of cluster and
cloud computing.
2) Integration with R/qtl. The package employs well-

optimized methods and functions of R/qtl for all the map-
ping steps as well as filling, estimating and re-estimating
maps. Moreover, genetic maps created by Pheno2Geno
can be used directly in R/qtl, providing a smooth transi-
tion from genetic map creation to QTL mapping.
3) Strict selection of candidate markers. Pheno2Geno

contains multiple selection steps to filter out candidate
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a)

b)

Figure 3 Comparison of QTL detection power. a) LOD scores on the original and the saturated map. QTL mapping was performed on all 10,801
tiling array probes showing differential expression between parents (p < 0.01 Student t-test) using the original and saturated maps. 5,837 out of
10,801 probes show a QTL with a LOD > 5 on the original map. Blue dots - represent 3,943 probes (67.6%) that show an increased LOD score on
the new saturated map. Moreover, 210 new QTLs were detected on the saturated map. Red dots - probes showing a decrease in LOD score on the
saturated map. Green circles - are probes used to saturate the map. b) Changing LOD scores. For each of the phenotypes the top QTL peak was
selected. If the peaks measured on the original and saturated maps shared a location, then the difference between the LOD scores was calculated.
Solid green line - shows median of differences between QTL peaks from chromosome 4, calculated inside a sliding 10 cM window stepped across
the chromosome with a step of 1 cM. For each of the windows the value was plotted in the middle of the compartment (thus no value for the first
and the last 5 cM). Ticks on the x-axis show the position of the markers: tall gray ticks - show original markers; short green ticks - show markers
selected by Pheno2Geno. Only one region, in which no new markers were added (75-80 cM), does not show an increase in power.

markers of low quality e.g. candidate markers affected
by multiple QTLs and/or environment. These are then
flagged and can easily be excluded from the analysis.

4) Gene expression phenotypes. We have demon-
strated that Pheno2Geno works on array-based gene
expression data. If a gene expression phenotype shows a
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significant QTL (eQTL) and if this eQTL co-localizes with
a probe (a local eQTL), then the derived marker will be
placed at the location of that probe. If the QTL does not
co-localize with the probe (a distant eQTL), the derived
marker will not be placed in the region targeted by the
original probe but at the position of the distant eQTL
(Figure 2) [23,24].

Availability and requirements
• Project name: Pheno2Geno
• Project home page: http://www.pheno2geno.nl
• Operating system(s): Any platform for which the R

software [25] is implemented, including Microsoft
Windows, Mac OS and Linux

• Programming language: R
• Other requirements: Packages installed in R: qtl,

mixtools [11]
• License: GNU General Public License version 3
• Any restrictions to use by non-academics: None

Analysis software (Additional files 1, 2 and 3), data
(Additional file 4) and results (Additional file 5) are pro-
vided as supplementary material.

Limitations
Currently, the Pheno2Geno package can only analyze
crosses between diploid inbred strains. If there are no
phenotypes with major QTL the method is unable to gen-
erate new markers. If there are phenotypes with major
QTL their physical location may still be unknown. In
the case of gene expression phenotypes the new marker
may co-localize with the known physical position of the
gene (cis effect) or map at a different location (trans
effect). In the latter case the physical location remains
unknown. New markers generated by Pheno2Geno seg-
regate in this cross, but not necessarily in other
crosses.

Additional files

Additional file 1: Pheno2Geno package. Contains the R package
Pheno2Geno described in this article. The package is distributed under the
GNU Public License http://www.gnu.org/. It contains a subset of the data
used in this article. The complete dataset is available for download:
https://molgenis26.target.rug.nl/downloads/pheno2geno/

Additional file 2: A compiled version of the Pheno2Geno R package.
Contains the Pheno2Geno package compiled for the Windows operating
system.

Additional file 3: Analysis script A. thaliana. Contains an R script with
the analysis. The figures presented in this paper are produced by this script
and the Pheno2Geno package.

Additional file 4: Original genotypes A. thaliana. CSV file containing
the original genotype and genetic map data.

Additional file 5: Saturated genotypes A. thaliana. CSV file containing
the improved genotype and genetic map data.
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