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Abstract

Background: Allelic specific expression (ASE) increases our understanding of the genetic control of gene expression

and its links to phenotypic variation. ASE testing is implemented through binomial or beta-binomial tests of sequence
read counts of alternative alleles at a cSNP of interest in heterozygous individuals. This requires prior ascertainment of
the cSNP genotypes for all individuals. To meet the needs, we propose hidden Markov methods to call SNPs from next
generation RNA sequence data when ASE possibly exists.

Results: We propose two hidden Markov models (HMMs), HMIM-ASE and HMM-NASE that consider or do not
consider ASE, respectively, in order to improve genotyping accuracy. Both HMMs have the advantages of calling the
genotypes of several SNPs simultaneously and allow mapping error which, respectively, utilize the dependence
among SNPs and correct the bias due to mapping error. In addition, HMM-ASE exploits ASE information to further
improve genotype accuracy when the ASE is likely to be present.

Simulation results indicate that the HMMs proposed demonstrate a very good prediction accuracy in terms of
controlling both the false discovery rate (FDR) and the false negative rate (FNR). When ASE is present, the HMM-ASE
had a lower FNR than HMM-NASE, while both can control the false discovery rate (FDR) at a similar level. By exploiting
linkage disequilibrium (LD), a real data application demonstrate that the proposed methods have better sensitivity
and similar FDR in calling heterozygous SNPs than the VarScan method. Sensitivity and FDR are similar to that of the
BCFtools and Beagle methods. The resulting genotypes show good properties for the estimation of the genetic
parameters and ASE ratios.

Conclusions: We introduce HMMs, which are able to exploit LD and account for the ASE and mapping errors, to
simultaneously call SNPs from the next generation RNA sequence data. The method introduced can reliably call for
cSNP genotypes even in the presence of ASE and under low sequencing coverage. As a byproduct, the proposed
method is able to provide predictions of ASE ratios for the heterozygous genotypes, which can then be used for ASE
testing.
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Background

RNAseq is revolutionizing transcriptome analyses [1].
While RNAseq is typically used for transcript-centric
analysis, where differential expression of genes or tran-
scripts is tested between treatments or tissues [2],
recently, RNAseq has been increasingly utilized for
nucleotide-centric inferences such as, for coding SNP
(cSNP) discovery [3], for cSNP genotyping to estimate
population parameters [4] or for allelic specific expression
[5,6].

ASE is particularly promising because it illuminates
the genetic control of gene expression and its links to
phenotypic variation [7]. In general, ASE testing is imple-
mented through binomial or beta-binomial tests of counts
of alternative alleles in reads aligned to cSNPs of inter-
est in heterozygous individuals [8]. Some algorithms and
models have been specifically tailored to perform this
inference using RNAseq data [8-11], but most of them
require prior ascertainment of cSNP genotypes to extract
read counts for heterozygous sites or they require RNAseq
or genomic sequence on parents of the individuals used
for ASE testing to reliably infer cSNP genotypes. More-
over, most models do not include biological replication
and assume either a single replicate or treat all biological
replicates alike and collapse counts down to the nucleotide
level. These assumptions may not be too restrictive in F1
crosses of inbred strains of individuals of model organisms
[12] for which exhaustive sequence resources are available
and biological variation is minimal, but they become more
problematic for outbred populations and their crosses [13]
and even for crosses of inbred lines when the purpose is
to focus on individual variation in ASE for breeding [14]
or population genetics inferences [15].

In the above cases, genotypes are called first from
RNAseq using models designed for calling SNP from
genomic sequence data [16-19], but there is a concern
that extreme allelic imbalance could cause a heterozygous
SNP to be mislabeled as homozygous or even not called at
all, especially when coverage is low, as happens with low
expressed genes [11,15]. This type of error is also present
when calling SNP from pooled DNA samples where the
expected allele frequency differs from 0, 0.5 and 1, as mod-
eled in most SNP calling programs [20]. Moreover, while
mislabeling a heterozygote as homozygote will not affect
the estimation of the ASE ratio, it leads to loss in power.
This is particularly important when working with outbred
populations or their crosses, where the number of het-
erozygote individuals may be limited if the frequency of
the minor allele is low. As a way to mitigate this prob-
lem, the use of phased haplotypes has been proposed
[11], with the purpose of more reliably calling genotypes
by exploiting linkage disequilibrium and minimizing the
chances of missing heterozygote individuals. Exploitation
of linkage disequilibrium is important because it has the
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potential to call SNP genotypes more accurately even with
low expressed genes due to low sequence coverage.

In this paper, we concentrate on the problem of ascer-
taining the cSNP genotype when ASE is likely to be
present. The HMM methods we propose improve geno-
typing accuracy by accounting for allelic imbalance,
exploiting LD and allowing for mapping error. The hid-
den Markov approach has several advantages. First, it can
model multiple SNPs simultaneously and their depen-
dence through underlying hidden variables. Simultane-
ous modeling allows the HMM to make use of more
data to estimate global parameters than a single SNP
method. This results in increased accuracy in SNP calling
especially in low expressed transcripts with low cover-
age. Second, the HMM is easy to implement through
an Expectation-Maximization (EM) algorithm. Third, the
HMM is very flexible. For example, it can be adapted to
all kinds of modeling to account for individual variation
in ASE ratios and sequence mapping errors. Fourth, the
HMM is a likelihood based approach that can be eas-
ily used to make statistical inference. Consistency and
asymptotic normality [21] can be established under some
regularity conditions. The likelihood ratio approach may
also be applied directly. Although HMM has been used
successfully to identify copy number variations [22,23],
it has not been applied to identify genotypes from RNA
sequence data when allele specific expression exists. The
proposed HMMs are immediately applicable after the
SNPs are identified and locations are ascertained by exist-
ing software (e.g. VarScan). A comparison of existing
software can be found in [18]

This paper is organized as follows. In the Methods
section, we introduce HMM-ASE for calling the under-
lying genotype while predicting the ASE status; HMM-
NASE will be introduced as a special case. In the Results
section, we present simulation results for the prediction of
the underlying SNP, using HMM-ASE and HMM-NASE
first. Then a real data analysis is used to demonstrate the
method proposed and compare it to other popular meth-
ods such as VarScan [17], BCFtools [19] and Beagle [24].
Concluding remarks are given in the Conclusion and Dis-
cussion section. We also provide Additional file 1 for
additional details of the EM algorithms and some addi-
tional numerical results. A manual for the R package
HMMASE can be found at http://www.stt.msu.edu/users/
pszhong/HMMASE .html.

Methods

The purpose of this Section is to introduce HMM-ASE,
which can infer the underlying genotypes and predict
SNP with ASE simultaneously using the RNA counts
from the next generation sequence data. The introduc-
tion of HMM-NASE will be given as a special case at the
end of this Section. Let X;; = (Xi, Xi, Xisz, Xia)T be
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observed allele specific RNA counts of the /-th SNP for
| =1,---,L and the i-th individual ( = 1, - - -, n), where
Xin, X, Xiis, Xjia represent observed counts for A, C, G
and T, respectively. Let n;; = Z;Lzl Xjjj be the total counts
at the [-th SNP of the i-th individual.

To simplify the notation, we will introduce the proposed
HMM-ASE method for a bi-allelic SNP. The extension
to other cases can be done in a similar manner. With-
out loss of generality, consider two possible alleles A and
T. There are three possible genotypes, two homozygous
AA and TT, and one heterozygous AT. For the heterozy-
gous genotype, we also wish to predict if an allelic specific
expression exists for alleles A and T. Specifically, we want
to further classify the heterozygous genotypes AT into
three states AT-NASE (heterozygous without ASE), AT-
ASE-HIGH (heterozygous with ASE, with reads of A more
than T) and AT-ASE-LOW (heterozygous with ASE, with
reads of T more than A). For convenience, let G;; represent
the (hidden) combination of genotype and allelic specific
status at the position/ ([ = 1, - - - , L) for the i-th individual
where

1 for “AA”;

2 for “AT-NASE”;

3 for “AT-ASE-HIGH”;
4 for “AT-ASE-LOW”;
5 for “TT”

(0.1)

where “AT-NASE” means the combination of genotype
“AT” and non-allelic specific expression (NASE); “AT-
ASE” means the combination of genotype “AT” and
allelic specific expression (ASE). Given the observed RNA
counts {X;; : i = 1,---,ml = 1,---,L}, we wish to
predict the underlying genotypes Gj for all i and [. This
prediction simultaneously determines the genotypes and
the ASE status of each SNP.

Assume that sequence error exists in X; so that all
alleles are possibly observed. The read counts X;; are gen-
erated from a hierarchical model, which is determined by
a hidden genotype G;; and allele specific ratio ;. That
is, given ni and 8,‘1, Xil = (Xill’XiIZ’Xil?nXin)T follows a
multinomial distribution, i.e.,

X;1|8;1 ~ Multinomial(n;;, p(8;;, €)); (0.2)
where p(3;;, €) represents the probability vector of multi-
nomial distribution, §;; represents the allelic specific ratio,
e is used to account for the mapping error. Given §;,
the probabilities of observing a read as A, C, G or T are
specified in the following probability vector

4e e e e
8'7 = - — 14 PR
p(zle) (( 3)11+333
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The ASE ratios §;; is a random variable that is generated
from a distribution depending on G;; = k in the following
ways

Iis,=1) fork =1;
Ii5,=0.5) for k = 2;
B(o.5,1)(0r1, B1) for k =3;
B(0,0.5) (@2, B2) for k = 4;
Iis,—0y for k = 5;

8ulGy =k ~ (0.4)

where I{5,—4) represents a discrete random variable with
probability mass one on point a, and Bs i1 (a, B) (S < U)
is a rescaled beta distribution taking values within (S, U)
which has a probability density function

1
fox) = (U — S)@tF-1Beta(a, B)
forS<x<U

(x—$)* (U —x)f?

(0.5)

where Beta(o, 8) is the beta function with parameters
a and B. Further, we assume that §; are independent
given Gj. As a usual HMM model, we assume the hidden
states {G;; : [ = 1,---,L} follows a Markov process to
allow dependence among the observed counts X;s. The
transition probability among underlying genotypes Gj; is
assumed to be

P(Gil = k/|Gi([_1) = k) =ay fork, K =1,--- M
(0.6)

with initial probabilities P(G;; = k) = mj and M = 5.
One may note that the transition probabilities in (0.6) do
not depend on the distances between SNPs, which moti-
vates us to extend the transition probability matrix as
a function of the distance between adjacent SNPs. The
details of this extension and the associated algorithm are
summarized in Additional file 1.

Denote the observed RNA counts data (incomplete) to
be X; = {Xj1,--+,Xiz} fori = 1,---, n. Then the poste-
rior probability of G; = k given X = {Xy,---,X,}, i.e,
P(Gy = k|X), will be used for predicting the underlying
genotypes and simultaneously infer the allelic specific sta-
tus at the /-th SNP for the i-th individual. The posterior
probability P(G;;|X) can be computed by Bayes’ formula

Lig(l) :=P(Gy =kIX) =Y P(GIX)[(Gy = k)

G;

— " P(X)

(0.7)

where G; = (Gi1,---,Gir)T is all the possible underlying
genotypes combinations on the L positions.

To obtain the posterior probability in (0.7), we note
the probabilities P(X, G;) and P(X) depend on a vector
of unknown parameters 8 = (o1, B1, o2, B2, €, A) T where
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A = (app) are parameters in the transition matrix. We
will use maximum likelihood estimates (MLE) to estimate
0. We can find the MLEs of # by an EM algorithm [25,26].
To this end, we introduce the following complete data
corresponding to the observed data X,

Y={Gy by, Xy:l=1,---,L}fori=1,---,n.
The likelihood function for the complete data is
L@O1Y) = f(Y]0) = f(XIG)f (G|6)

n L n L
=[] ]AXalG) [T] | 2610164 @76 0

i=1[=1 i=1[=2

where fx (X;;|Gj) is the conditional density of X;; given Gj;
obtained from (0.2) and (0.4) whose explicit forms can be
found in the Additional file 1 and G = (Gy,---,G,)T. It
follows that the log-likelihood function of L(8]Y) is given

by

n

L
log L(BY) = ) > " logfx(XulGi)

i=1 [=1

n L
+ Z Z log {ﬂGf(l—l):Gfl (0)}

i=1 [=2

+ Zlog {6, 0)}.

i=1

Given ™, the update 8D is found by maximizing
E [10gL(0|Y)|X,0(m)]. The details of the EM algorithm
can be found in the Additional file 1. We implemented the
EM algorithm by a forward and backward method [27].
Further details about the forward and backward algorithm
can be found in the Additional file 1.

The HMM-NASE method could be considered as a
simplification of the HMM-ASE method. The difference
between HMM-NASE and HMM-ASE is that HMM-
NASE does not consider the possible existence of ASE. As
a result, the underlying genotypes of HMM-NASE only
contain three states AA,TT and AT-NASE, which means
that Gj; in (0.1) can only have three possible values 1,2
and 5. The emission probability will be (0.3) with k set
to be 1,2 and 5 in (0.4). Then the above forward back-
ward algorithm is still applicable except that the unknown
parameter is reduced to 6 = (e, A)T.

The real data analyzed in this paper were collected by
[28]. The experimental procedures were approved by the
All University Committee on Animal Use and Care at
Michigan State University (AUF# 09/03-114-00).
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Results

Simulation study

We performed a simulation study to demonstrate the pro-
posed HMM-ASE and HMM-NASE methods. The under-
lying genotypes of SNPs were generated with the linkage
disequilibrium (LD) information. Assume that LD(d) is
the LD between two SNPs with distance d, which is a
known function of d. For simplicity, in this simulation,
we assume that the LD is a constant function of d and
each SNP has only two possible alleles: either A or T. The
genotypes were generated by combining two independent
haplotypes.

Let S;; be the allele (either A or T) at the /-th SNP for
the i-th individual. The marginal probabilities for A and T
are P(Syy = A) = pa. = paand P(S; =T) = pr. = pr
respectively. For any pair of SNPs which are next to each
other in the position, the joint probability mass is defined
as P(Sy = x,S;q41) = J) = pxy where x,y are either
AorT.

Note that the LD(d) is then defined as

LD(d) = (paa —pA-p-A)z.
pa-pT)P-AP-T)

Hence paa,par,pra and prr can be computed once
LD(d),pa. and p.4 are given. We generated each side
(a haplotype) of the SNP sequences independently. Both
sides are generated by the following three steps:

(a) Set/ =1 and generate a random variable
by ~ Bernoulli(pa.). If by = 1 then we set S;; = A,
otherwise S;; = T.

(b) Letl =1+ 1. Generating allele at / + 1 position
conditional on the / position. Namely,
P(Si+1) = AlSiy = %) = pxa/px., where x could be
either A or T.

(c) Repeating step (b) until we get L SNPs.

We then generated total read counts n; = Z§=1 Xik
from a Negative Binomial (NB) distribution indepen-
dently for at each SNP / = 1,---,L and individual
i = 1,---,n Conditional on the underlying genotype
and the total RNA counts, we generated the allele specific
RNA counts X;; through the hierarchical model given in
(0.2) through (0.4). For illustration purpose, we consid-
ered a data set that was generated only by 4 underlying
states in the simulation. Namely, AA, AT-NASE, AT-ASE-
HIGH and TT, where the distribution of the allele specific
ratio §; for the AT-ASE-HIGH state was changed to a
Beta(a, B) distribution where we set « = 30,8 = 10
such that the mode and center of the beta distribution is
concentrated around 0.75.

The following scenarios were used in the simulation. We
designed three different numbers of individuals (n): 6, 12
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and 24, and two different numbers of SNP (L): 10 and 100.
For each of the above six individual/SNP combinations,
the total number of reads were simulated from negative
binomial distributions NB(2, 0.4) with five different A val-
ues: 8, 16, 24, 32 and 56 as well as two different values
for LD: 0.5 and 0.8. We did 10 replications for each of
the above combinations. We measured the performance
of the proposed method by empirical false discovery rate
(EFDR) and empirical false negative rate (EFNR), where
were defined, respectively, as

EEDR — # Homozygotes called heterozygotes

Total # of called heterozygous

#
FENR — Heterozygotes called homozygotes

Total # of called homozygous

The proposed HMM-ASE and HMM-NASE were
applied to the above scenarios. Table 1 and Table 2 sum-
marize the EFDR and EFNR for both methods in the case
with 10 SNPs. The first and second columns of both tables
represent the values of A and LD. The larger the value
of A, the larger the average of the RNA counts. On one
hand, HMM-ASE and HMM-NASE share some similarity.

Table 1 EFDR (homozygotes called heterozygotes) in
blocks of 10 SNP using HMM-ASE and HMM-NASE

(A, LD)

Number of individuals

6 12 24
(8,0.5) ASE 0.0167(0.017) 0.0117(0.010) 0.0308 (0.020)
NASE 0.0033(0.007) 0.0050 (0.006) 0.0071 (0.004)
(8,0.8) ASE 0.0000 (0.000) 0.0150(0.007) 0.0133(0.005)
NASE 0.0017 (0.005) 0.0050 (0.006) 0.0029(0.004)
(16,0.5) ASE 0.0100 (0.009) 0.0000 (0.000) 0.0058 (0.004)
NASE 0.0017 (0.005) 0.0008 (0.003) 0.0000 (0.000)
(16,0.8) ASE 0.0033(0.008) 0.0017(0.004) 0.0033 (0.004)
NASE 0.0000 (0.000) 0.0008 (0.003) 0.0004 (0.001)
(24,0.5) ASE 0.0000 (0.000) 0.0033 (0.005) 0.0008 (0.002)
NASE 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
(24,0.8) ASE 0.0000 (0.000) 0.0000 (0.000) 0.0033 (0.004)
NASE 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
(32,05) ASE 0.0000 (0.000) 0.0000 (0.000) 0.0058 (0.006)
NASE 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
(32,0.8) ASE 0.0000 (0.000) 0.0017(0.004) 0.0000 (0.000)
NASE 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
(56,0.5) ASE 0.0000 (0.000) 0.0000 (0.000) 0.0008 (0.002)
NASE 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
(56,0.8) ASE 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
NASE 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)

Standard deviations are included in parenthesis.
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Table 2 EFNR (heterozygotes called homozygotes) in
blocks of 10 SNP using HMM-ASE and HMM-NASE

(A, LD)

Number of individuals

6 12 24
(8,0.5) ASE 0.0367(0.018) 0.0217(0.013) 0.0242(0.028)
NASE 0.0833(0.038) 0.0733(0.019) 0.0675(0.015)
(8,0.8) ASE 0.0100 (0.009) 0.0033(0.005) 0.0075 (0.005)
NASE 0.0450 (0.046) 0.0533(0.026) 0.0700 (0.020)
(16,0.5) ASE 0.0133(0.014) 0.0067 (0.004) 0.0075 (0.004)
NASE 0.0567 (0.036) 0.0433 (0.025) 0.0479(0.016)
(16,0.8) ASE 0.0067 (0.015) 0.0067 (0.011) 0.0033 (0.004)
NASE 0.0467 (0.046) 0.0367(0.023) 0.0396 (0.011)
(24,0.5) ASE 0.0033 (0.008) 0.0000 (0.000) 0.0017(0.002)
NASE 0.0233(0.025) 0.0308 (0.020) 0.0379(0.014)
(24,0.8) ASE 0.0033 (0.008) 0.0000 (0.000) 0.0042 (0.007)
NASE 0.0383(0.022) 0.0392(0.026) 0.0296 (0.016)
(32,0.5) ASE 0.0000 (0.000) 0.0033 (0.005) 0.0000 (0.000)
NASE 0.0300(0.019) 0.0375(0.021) 0.0396(0.019)
(32,0.8) ASE 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
NASE 0.0417(0.043) 0.0208 (0.013) 0.0346 (0.018)
(56,0.5) ASE 0.0033 (0.008) 0.0000 (0.000) 0.0000 (0.000)
NASE 0.0233(0.014) 0.0275(0.013) 0.0288 (0.009)
(56,0.8) ASE 0.0033 (0.008) 0.0000 (0.000) 0.0000 (0.000)
NASE 0.0200(0.019) 0.0200(0.015) 0.0196 (0.009)

Standard deviations are included in parentheses.

By increasing the value of XA, the EFDR and EFNR of
both HMMs were smaller with lower variability (smaller
standard deviation). Increasing the LD value led to bet-
ter predictions, which shows that both HMMs made use
of the LD information in predicting genotypes. Specifi-
cally, one can see that the EFDR and EFNR rates were
improved with increased LD when 2 is relative small. On
the other hand, the EFNR rates of HMM-NASE in Table 2
were almost always consistently larger than the EFNR
rates from HMM-ASE in the same table while the EFDR
(Table 1) of HMM-ASE were slightly higher than those
of HMM-NASE when A is relative small. This demon-
strates that HMM-ASE has better sensitivity than HMM-
NASE in heterozygote SNP genotypes from RNAseq data
when ASE is likely present because ASE is considered
in HMM-ASE. To better illustrate these two methods,
Figure 1 compared the EFDR and EFNR for HMM-ASE
and HMM-NASE methods when n = 24.

Finally, we assessed the effect of increasing the size of
the SNP block on HMM-ASE and HMM-NASE results.
We repeated the simulations using 100 SNP blocks. The
results are presented in Tables 3 and 4. For the LD struc-
ture, coverage and sample sizes used in this simulation,
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Figure 1 A comparison of the EFDR and EFNR for the HMM-ASE vs HMM-NASE for n = 24, L = 10 with LD=0.5 and 0.8.
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there was virtually no significant difference in error rates
compared to the results using a smaller SNP block. This
suggests that small SNP blocks are as efficient as larger
blocks in utilizing the advantage of LD. Thus, we pre-
fer using small blocks to reduce the computation load. In
addition, we also observed that the number of individu-
als used in the simulation only had minor effects on the
EFDR and EFNR with differences well within the range of
standard errors.

Simulation conditional on haplotypes from real data

To make the haplotype structures in the simulation data
more realistic, we randomly selected hayplotype struc-
tures from a real data in the pig resource population [28]
to create the genotypes. Conditional on the genotypes,
we generated the counts data using the same methods as
those in Tables 1, 2, 3 and 4. Results of the EFDR and
EFNR of the HMM-ASE and HMM-NASE methods are
shown in Table 5. HMM-ASE still maintained a low level
EFDR and EFNR indicating that the HMM-ASE method
is robust to the change of underlying haplotype struc-
tures. But the EFNR of the HMM-NASE method was
higher in Table 5, because HMM-NASE did not account
for the ASE, which exists in the simulated data. To confirm
this, we further generated counts without ASE (ASE

ratios=0.5), the results are summarized in Table 6. Both
the HMM-ASE and HMM-NASE methods performed
well in this case, suggesting that the HMM-NASE method
is robust to the change of haplotype structures but not
to the existence of ASE. This confirms the importance of
developing the HMM-ASE method.

Real data analysis

Assessing accuracy of heterozygote calling rates
Called cSNP genotypes were compared to gold-standards
or true genotypes. In the simulation, the true genotype
was readily available. For the real data analysis, genotypes
obtained from a DNA SNP chip were used as a gold stan-
dard to evaluate the performance of ¢cSNP calling and
genotyping. The EFDR and Sensitivity were computed to
assess the accuracy of genotype calling where

# Heterozygotes called heterozygotes

Sensitivity =
Y Total # of heterozygotes

These measures are especially relevant when the intent
of genotype calling is to perform ASE testing, because
they focus on key heterozygous genotypes. EFDR and
Sensitivity can be computed globally across all sites and
individuals on a cSNP site basis.
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Table 3 The EFDR (homozygous called heterozygous) and
EFNR (heterozygous called homozygous) with 100 SNPs
for HMM-ASE
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Table 4 The EFDR (homozygous called heterozygous) and
EFNR (heterozygous called homozygous) with 100 SNPs
for HMM-NASE

(A, LD) Number of individuals (A, LD) Number of individuals
6 12 24 6 12 24
EFDR EFDR
(8,0.5) 0.0163(0.009) 0.0163(0.003) 0.0230(0.004)  (8,0.5) 0.0053(0.005) 0.0035 (0.001) 0.0045 (0.001)
(8,0.8) 0.0067 (0.003) 0.0050(0.002) 0.0068 (0.003)  (8,0.8) 0.0025(0.002) 0.0015 (0.001) 0.0020(0.001)
(16,0.5) 0.0050 (0.002) 0.0053 (0.001) 0.0068 (0.001) (16,0.5) 0.0005 (0.001) 0.0003 (0.001) 0.0005 (0.000)
(16,0.8) 0.0033 (0.002) 0.0025 (0.001) 0.0030 (0.001) (16,0.8) 0.0002 (0.001) 0.0002 (0.000) 0.0001 (0.000)
(24,0.5) 0.0027 (0.002) 0.0017 (0.001) 0.0030 (0.002) (24,0.5) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
(24,0.8) 0.0017 (0.002) 0.0002 (0.000) 0.0009 (0.001) (24,0.8) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
(3205) 0.0017(0.002) 0.0008 (0.001) 0.0008 (0.001)  (32,05) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
(32,08 0.0007 (0.001) 0.0008 (0.001) 0.0008 (0.000)  (32,0.8) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
(56,0.5) 0.0007 (0.001) 0.0000 (0.000) 0.0008 (0.000)  (56,0.5) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
(56,0.8) 0.0003 (0.001) 0.0002 (0.000) 0.0002 (0.000)  (56,0.8) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
EFNR EFNR

(8,0.5) 0.0230(0.003) 0.0218(0.007) 0.0138(0.003)  (8,05) 0.0728(0.015) 0.0740(0.009) 0.0701 (0.005)
(8,0.8) 0.0113(0.005) 0.0088 (0.004) 0.0071(0.003)  (8,0.8) 0.0533(0.011) 0.0498 (0.014) 0.0520(0.005)
(16,0.5) 0.0080 (0.004) 0.0063 (0.003) 0.0047(0.002)  (16,0.5) 0.0557(0.012) 0.0466 (0.009) 0.0467 (0.005)
(16,0.8) 0.0033(0.001) 0.0032(0.002) 0.0028 (0.001)  (16,0.8) 0.0358(0.010) 0.0364 (0.008) 0.0401 (0.009)
(24,0.5) 0.0017 (0.002) 0.0028 (0.002) 0.0022 (0.001) (24,0.5) 0.0412(0.011) 0.0398 (0.007) 0.0407 (0.003)
(24,0.8) 0.0020 (0.001) 0.0017(0.001) 0.0010 (0.001) (24,0.8) 0.0347 (0.006) 0.0298 (0.008) 0.0305 (0.004)
(32,0.5) 0.0013(0.001) 0.0005 (0.001) 0.0011 (0.001) (32,0.5) 0.0280 (0.007) 0.0338 (0.004) 0.0313(0.005)
(32,0.8) 0.0003 (0.001) 0.0005 (0.001) 0.0004 (0.000) (32,0.8) 0.0292 (0.010) 0.0304 (0.007) 0.0285 (0.003)
(56,0.5) 0.0003 (0.001) 0.0005 (0.001) 0.0001(0.000)  (56,0.5) 0.0257(0.007) 0.0268 (0.004) 0.0265 (0.003)
(56,0.8) 0.0003 (0.001) 0.0002 (0.000) 0.0000(0.000)  (56,0.8) 0.0203 (0.008) 0.0218(0.003) 0.0213(0.002)

Their standard deviations are shown in the parentheses.

Comparison with alternative methods We applied the
proposed HMMs, HMM-ASE and HMM-NASE, to a real
RNAseq dataset and compared SNP genotype calls with
those from VarScan, SAMtools+BCFtools and BEAGLE,
well-known methods for SNP and mutation calling from
sequence data. RNAseq data were available for 24 female
pigs from an F2 cross of Duroc and Pietrain in our pig
resource population [29-32]. Pig breeds are outbred and
show substantial variation in allele frequency, high linkage
disequilibrium within breed and limited phase agreement
between breeds [33]. These animals were part of a larger
transcriptional profiling study [34] and had been selected
because they showed extreme phenotypes for loin eye
area (a trait of economic value) compared to their litter
mates. SNP chip data were available from the 60K illu-
mina chip [35] from a recent study. Genotype data from
the chip were treated as a gold standard against which
cSNP called with RNAseq were validated. RNA from each
sample was reverse transcribed into cDNA, fragmented
and labeled to generate 24 barcoded libraries that were

Their standard deviations shown in the parenthesis.

sequenced on an Illumina HiSeq 2000 (100 bp, paired-end
reads). Each library was sequenced in four lanes with the
raw read data consisting of 96 pairs of fastq files (4 per
sample) containing approximately 15million short-reads
(100 bp) each. Those fastq files were pre-processed using
FASTX toolkit (http://hannonlab.cshl.edu/fastx_toolkit/)
and FASTQC (http://www.bioinformatics.babraham.ac.
uk/projects/fastqc/) to assess read quality. Then, Tophat
[36] was used for mapping the reads to the reference
genome (Sus scrofa 10.2.69 retrieved from the Ensembl
database) using an index generated by Bowtie2 [37]. The
aligned records were stored in BAM/SAM format [38].
Alignment statistics and base coverage were calculated for
each file using SAMTools [38]. Initially coding SNP dis-
covery and genotyping were done with VarScan [17]. First,
a base alignment file (.mpileup) for each covered position
was obtained for each chromosome using the mpileup
option of SAMTools [19] and subsequently VarScan [17]
was used to call genotypes and count reads mapping to
each segregating allele. We focused on chromosome 13
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Table 5 The EFDR (homozygous called heterozygous) and
EFNR (heterozygous called homozygous) with 100 SNPs

using the haplotype structures from real data
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Table 6 The EFDR (homozygous called heterozygous) and
EFNR (heterozygous called homozygous) with 100 SNPs

using the haplotype structures from real data

A Number of individuals A Number of individuals
6 12 24 6 12 24
EFDR EFDR
3 ASE 00784(0.0234)  0.0729(0.0093)  0.0752(0.0089) 8 ASE 0.0222(00100)  0.0264(0.0091)  0.0243(0.0038)
NASE  00235(0.0150)  0.0276(0.0119)  0.0267 (0.0111) NASE  00250(0.0064)  0.0313(0.0103)  0.0297 (0.0060)
16 ASE 00328(0.0099)  0.0338(0.0088)  0.0331(0.0086) 16  ASE 00026 (00032)  0.0023(0.0020)  0.0043(0.0033)
NASE 0.0016(0.0027) 0.0028 (0.0036) 0.0019(0.0017) NASE 0.0023 (0.0025) 0.0023 (0.0027) 0.0040 (0.0033)
24 ASE 0.0153(0.0070) 0.0137(0.0064) 0.0164 (0.0054) 24 ASE 0.0006 (0.0013) 0.0003 (0.0008) 0.0006 (0.0005)
NASE  0.0012(0.0026) ~ 0.0008(0.0013)  0.0004(0.0006) NASE  0.0006(0.0013)  0.0000(0.0000)  0.0003 (0.0005)
32 ASE 00118(0.0087) ~ 0.0110(0.0031) ~ 00076(0.0033) 32  ASE 0.0000 (0.0000)  0.0002 (0.0006)  0.0004 (0.0005)
NASE 0.0000 (0.0000) 0.0000 (0.0000) 0.0001 (0.0003) NASE 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
56 ASE 0.0022(00033) ~ 0.0030(0.0028)  0.0019(0.0011) 55 AsE 0.0000(0.0000)  0.0000 (0.0000)  0.0000 (0.0000)
NASE 00000 (0.0000)  ©0.0000(0.0000)  0.0000(0.0000) NASE  0.0000(0.0000)  0.0000(0.0000)  0.0000 (0.0000)
EFNR EFNR
8 ASE 00418(00169)  00479(00129)  0.0502(0.0098) 5 Aqe 00375(00224)  00295(0.0090) 00259 (0.0072)
NASE  02161(00533)  0.2084(0.0434)  0.2075(00410) NASE  00322(00193)  0.0251(0.0080)  0.0219(0.0048)
16 ASE 00239(0.0095)  00214(00109)  00211(00056) ¢ f 0.0028(0.0032)  0.0030(0.0024)  0.0033 (0.0020)
NASE 17 1 4 1762
> 1888(00517)  01986(00455)  0.1762(0.0360) NASE  0.0037(0.0043) 00027 (0.0021)  0.0028(0.0019)
24 ASE 00161(0.0077)  0.0164(0.0093)  0.0143(0.0032)
24 ASE 0.0002 (0.0008)  0.0000(0.0000)  0.0006 (0.0006)
NASE 1523(0.0584)  0.1788(0.0503)  0.1577 (0.0246)
NASE  0.0000(0.0000)  0.0000(0.0000)  0.0006 (0.0007)
32 ASE 00060 (0.0071)  0.0079(0.0063)  0.0088 (0.0036)
32 ASE 0.0000 (0.0000)  0.0000(0.0000)  0.0000 (0.0000)
NASE 1434(0.0839)  0.1367(0.0507)  0.1368(0.0227)
NASE 00003 (0.0011)  0.0002(0.0005)  0.0000 (0.0000)
56 ASE 00040 (0.0057)  0.0031(0.0028)  0.0025 (0.0012)
56 ASE 0.0000 (0.0000)  0.0000(0.0000)  0.0000 (0.0000)
NASE 1339(0.1005)  0.1178(0.0348)  0.1332(0.0287)
NASE  0.0000(0.0000)  0.0000(0.0000)  0.0000 (0.0000)

Their standard deviations shown in the parenthesis.

and extracted counts of reads agreeing with reference
(R) or alternative (A) allele with respect to the reference
genome at putative 5364 cSNP discovered by VarScan,
which included 65 SNPs represented in the 60K chip for
which we had reliable genotype data. We segmented the
SNP data into 65 brackets that included each of those
SNP and their surrounding cSNPs. Each bracket was ana-
lyzed separately with our program because we expect that
only closely linked cSNPs will benefit from our multi-SNP
HMM model.

There were a total of 1560 genotypes to impute (24 ani-
mals and 65 SNPs), 591 heterozygotes and 969 homozy-
gotes. VarScan (Table 7) did not impute any homozygotes
as heterozygotes (EFDR = 0), but it only correctly identi-
fied 449 of the 591 heterozygotes (Sensitivity= 0.76). This
drop in sensitivity to detect heterozygotes was accounted
for by the non-call rate (64/591=0.11) and wrongly calling
78 heterozygotes as homozygotes (0.14). The HMM-ASE
and HMM-NASE had an EFDR=0.015 (9/(571+9)) and
2/(5704-2)=0.0035, respectively. But the sensitivities were

The data were generated without ASE, namely, all the heterozygous genes have
ASE ratio 0.5. Their standard deviations shown in the parenthesis.

1.0 (detected all Heterozygotes) and 0.998, respectively if
the restriction of having at least one read was imposed.
Remarkably, even some genotypes without any reads were
imputed correctly due to exploitation of zygotic disequi-
librium. In this particular data set, HMM-ASE did not
show additional advantage by considering ASE effects,
indicating that modeling dependence is more important
than modeling ASE. We also called ¢SNPs using two
widely used algorithms: SAMtools+BCFtools and SAM-
tools+BCFtools+Beagle. SAMtools+BCFtools is probably
the most commonly used algorithm for calling SNP, it calls
SNP genotypes independently and its likelihood func-
tion assumes no ASE. When read counts are very low,
SAMtools+BCFtools may not call SNP genotypes. Alter-
natively, BEAGLE uses the output from the previous algo-
rithm and performs SNP calling by accounting for LD.
Table 7 shows that these two methods were very simi-
lar to the proposed methods in terms of EFDR, which
were 0.007 and 0.010, respectively. These two methods
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Table 7 Contingency tables of genotype calling with five methods (columns) versus actual genotypes (rows)

Actual VarScan Genotype HMM-ASE HMM-NASE

genotype He Ho NC He Ho NC He Ho NC
(Reads=0) (Reads=0)

He 449 78 64 571 0 20 570 1 20

Ho 0 886 83 9 914 46 2 921 46

Actual SAMTOOLS-+BCFTOOLS BEAGLE

genotype He Ho NC He Ho NC

He 576 9 6 583 8 0

Ho 4 957 8 6 963 0

Values in bold represent counts of correct calls. The other values are incorrect calls or Non-called (NC).

performed slightly better than HMM-ASE and HMM-
NASE for SNPs with zero counts. But the proposed meth-
ods were slightly better than the SAMtools+BCFtools and
Beagle methods for SNPs with non-zero counts (See Table
S.2 in Section 3 of the Additional file 1). Since the perfor-
mance of HMM-ASE, HMM-NASE, SAMtools+BCFtools
and Beagle methods were very similar in discovering het-
erozygous SNPs, we decided to proceed with HMM-ASE
analysis after assigning non-calls to those genotypes with-
out any read.

Upon a SNP-by-SNP analysis of genotype calls, the low
sensitivities obtained with the two programs (HMM-ASE
and VarScan) for some markers can be largely explained
by low coverage (Figure 2). In our HMM-ASE model,
having at least 200 total reads (across all 24 individu-
als) produced sensitivities over 0.8 but the effect of these
errors in final inferences is not clear. For example, if
inferred genotypes are used for ASE, the effect of missing

a heterozygote is lower power, while the effect of incor-
rectly imputing a homozygote as heterozygote could be
biases in the estimated ASE (and false positive rate of ASE
tests). Conversely, the two errors could potentially can-
cel out when using genotypes to estimate minor allelic
frequency (MAF). Consequently, we proceeded to esti-
mate MAF using ascertained genotypes and confirmed
that HMM-ASE estimated MAF very precisely (Figure 3)
with a correlation of 0.94 with DNA chip based estimates.

In order to assess the effect of genotype ascertainment
on estimation and testing of ASE, we used heterozygous
genotypes (either observed with chip or ascertained) and
fit a beta-binomial model [39] to read counts. In fact,
when working with HMM-ASE this would not be nec-
essary because our method produced estimates of ASE
parameters, but we used the beta-binomial model in order
to separately assess the effect of genotype calling errors.
In Figure 4 we observe that using genotypes ascertained
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Figure 4 log-ASE ratio of fitting beta-binomial model on counts
from Heterozygous individuals. Heterozygous status was either
taken from chip data (x-axis) or from genotypes called from sequence
data (y-axis).

with the HMM-ASE produced very accurate estimates of
ASE. On the other hand, using heterozygote genotypes
ascertained with VarScan also produced good agreement
with those from chip data, except when the sensitivity
was very low either because of calling heterozygotes as
homozygotes or because of non-calling a genotype (hor-
izontal points close to zero). These effects were even
more obvious when looking at associated p-values. In that
case, missing heterozygotes from the single SNP analy-
sis program (in this case VarScan) substantially reduced
significance (Figure 5).

Conclusion and discussion

In this paper, we present HMM methods to call SNP geno-
types in the presence of allelic imbalance by exploiting
zygotic disequilibrium. In its present form, HMM-ASE
and HMM-NASE require that cSNP locations have been
previously ascertained and conditional on those it can
accurately call their genotypes. Our program is particu-
larly useful for cSNP genotyping after a SNP discovery
step has been applied [18]. This is important because
while many programs are tailored for ¢SNP discovery
[18] and genotyping assuming allelic balance in heterozy-
gotes, there is a need for accurate genotype calling by
exploiting linkage disequilibrium in the presence of ASE
in individuals from outbred populations [15]. HMM-ASE
and HMM-NASE can use read counts of 4 bases or pre-
filtered biallelic counts. The biallelic option was used in
the real data case because previous cSNP discovery using
VarScan produced counts of reference and alternative alle-
les. A similar pre-processing step can be performed with
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Figure 5 log,((p-value) of fitting beta-binomial model on counts
from Heterozygous individuals. Heterozygous status was either
taken from chip data (x-axis) or from genotypes called from sequence
data (y-axis).

a number of available programs [18]. The strength of
HMM compared to other methods is that it can reliably
call heterozygous cSNP genotypes even in the presence of
ASE and under low sequencing coverage. Furthermore, by
comparing to DNA-chip genotypes, genotypes produced
using the proposed methods resulted in good estimates of
ASE and MAF. This is important in population genetics
that can use low-coverage sequence of many individuals in
order to accurately estimate MAF, linkage disequilibrium
and other population genomics parameters [33]. Another
potential use of genotypes obtained from HMMs is to per-
form ASE testing [13]. Although not extensively studied
in this first paper, HMM-ASE could be used to derive
not only the ¢cSNP genotypes but their ASE ratios. In its
current form, HMM-ASE integrates out such information
when calling genotypes, but further work in this area is
warranted.

An important part of implementing our HMM algo-
rithm in HMM-ASE and HMM-NASE consists of seg-
menting the SNPs in groups that are tractable and infor-
mative. From the simulation study and real data analysis,
we found that the HMM-NASE was very robust in terms
of group segmentation but HMM-ASE was slightly more
sensitive to the number of SNPs and the length of the
segment. In particular, EFDR (genotyping homozygotes as
heterozygotes) was slightly lower when the segment was
1kb long compared to 4 kb long. We experimented with
many criteria to partition the SNPs in the real data set and
found that the inferences were robust to the number of
SNPs in the segment for a range of 2 to 25 SNPs over a
1/2 kb to 2 kb long segments. We only observed one SNP
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within a 1 kb segment containing 35 SNPs had slightly
higher EFDR. Further inspection of the segment indicated
that this region likely included SNPs from several tran-
scripts and that the zygotic disequilibrium seemed to be
low for SNPs on different transcripts. A possibility to mit-
igate this problem could be to group SNP by transcript by
using bioinformatics tools such as the ensemble variation
API [40]. Since this problem was sporadic (one segment)
in our data set we believe that such an approach was not
needed.

In summary, in this paper we present and evaluate an
algorithm for calling SNP genotypes in the presence of
allelic imbalance by exploiting linkage disequilibrium. The
method is particularly suitable for calling cSNP from low-
coverage RNA-seq data and the resulting genotypes show
good properties for estimation of genetic parameters and
allelic ratios. We provide HMMASE, an R package to
implement the proposed algorithm (http://www.stt.msu.
edu/users/pszhong/HMMASE html). Our algorithm per-
formed better than VarScan and similarly to BCFtools and
Beagle, indicating that the joint modeling of ASE and LD
recovered important information although our algorithm
did not use haplotypes information. Furthermore, our
promising results encourage further research on extend-
ing the algorithm to incorporate haplotype structures and
performing the ASE testing.

Availability of supporting data

The data set and the R package HMMASE supporting the
results of this article are available in http://www.stt.msu.
edu/users/pszhong/HMMASE .html.

Additional file

Additional file 1: Supplemental. Contains a detailed algorithm of the
proposed HMM-ASE algorithm (Section 1), with an extension to the case
with distance dependent transition matrix (Section 2).In Section 3, we
include some additional real data analysis results using distance
dependent transition matrix and the comparison with BCFtools and Beagle
after excluding the zero counts in the data set. In Section 4, two additional
tables for simulation studies with haplotypes generated from the real data
are also included.
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