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Abstract

Background: The discovery and mapping of genomic variants is an essential step in most analysis done using
sequencing reads. There are a number of mature software packages and associated pipelines that can identify
single nucleotide polymorphisms (SNPs) with a high degree of concordance. However, the same cannot be
said for tools that are used to identify the other types of variants. Indels represent the second most frequent
class of variants in the human genome, after single nucleotide polymorphisms. The reliable detection of
indels is still a challenging problem, especially for variants that are longer than a few bases.

Results: We have developed a set of algorithms and heuristics collectively called indelMINER to identify indels
from whole genome resequencing datasets using paired-end reads. indelMINER uses a split-read approach to
identify the precise breakpoints for indels of size less than a user specified threshold, and supplements that
with a paired-end approach to identify larger variants that are frequently missed with the split-read approach.
We use simulated and real datasets to show that an implementation of the algorithm performs favorably
when compared to several existing tools.

Conclusions: indelMINER can be used effectively to identify indels in whole-genome resequencing projects.
The output is provided in the VCF format along with additional information about the variant, including information
about its presence or absence in another sample. The source code and documentation for indelMINER can be freely
downloaded from www.bx.psu.edu/miller_lab/indelMINER.tar.gz.
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Background
Genetic differences between individuals are encoded as
local changes consisting of substitutions and small indels
that alter a few base pairs, and large-scale changes that
consist of larger indels, rearrangements and copy number
variations. Whole genome sequencing using NGS tech-
nologies offers a unique opportunity to study these
variations and enable a better understanding of genome
function and diversity. There are a number of mature soft-
ware packages and associated pipelines that can identify
single nucleotide polymorphisms (SNPs) with a high de-
gree of concordance [1]. However, the same cannot be
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said for tools that are used to identify the other sources of
variation.
Indels are the most common structural variant that

contribute to pathogenesis of disease [2], gene expres-
sion and functionality. Current approaches to identify
indels include de-novo assembly of unaligned reads [3],
read splitting [4,5], depth of coverage analysis [6] and
analysis of insert size inconsistencies. Each of these ap-
proaches has their own strengths and weaknesses. For
example, even though de-novo assembly offers the best
opportunity to accurately call these variants, assembly
with short reads is a challenging problem that requires
significant computational resources. Similarly split-read
approaches perform with a high degree of accuracy for
short and medium sized indels, but the false-negative
rate increases significantly with increase in size of the
variations. Paired-end read and depth of coverage ap-
proaches frequently miss small indels, and are unable to
predict the breakpoints accurately. We believe a hybrid
his is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

http://www.bx.psu.edu/miller_lab/indelMINER.tar.gz
mailto:ratan@bx.psu.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Ratan et al. BMC Bioinformatics  (2015) 16:42 Page 2 of 8
strategy that integrates the information using more than
one of the above approaches is required to identify these
indels with a high degree of sensitivity and specificity.
Here we present indelMINER, a method that uses a

combination of split-read and paired-end approaches to
identify the breakpoints of insertions and deletions. The
identified indels can be annotated with additional infor-
mation such as the depth of coverage across the predicted
breakpoints, and the list can be subsequently filtered to
generate a high quality subset of variants. In addition to
identification of indels, indelMINER can also be used
to investigate the absence or presence of support for
a set of indels in another sample. This is valuable in in-
vestigation of normal/tumor pairs as well in cases where
several individuals of a family are sequenced to identify
de-novo changes in the proband, and a novel feature of
indelMINER. We present the results of using indelMINER
on simulated data as well as real data from the individ-
ual NA18507 and a cancer genome dataset. We compare
the performance and results of indelMINER to previously
published results from several other similar tools.

Results
Simulated dataset
In order to calculate the sensitivity and specificity of our
method, and compare it to that of a few other popular
tools, we implanted 3,723 known homozygous deletions,
and 3,777 known homozygous insertions [7] into chromo-
some 22 of the human genome. 100 bp long paired-end
(average insert distance 500 bps, s.d. 30 bps) Illumina
reads were simulated from this modified sequence using
pIRS [8], such that each nucleotide on the reference was
covered 20 times on an average. The reads were mapped
to the human reference chromosome 22 using BWA [9]
version 0.5.9, with the default parameters. The resulting
BAM file was sorted based on the chromosomal coordi-
nates, and the reads were realigned around putative indels
using IndelRealigner tool from the GATK suite [10].
We ran SAMtools [11], PINDEL [4], PRISM [5] and

indelMINER on this dataset and the results are summa-
rized in Table 1. The indels identified by the tools were
compared to the true set, and in case of deletions a call
was marked as validated if there was a reciprocal overlap
with at least half of the actual deletion. The details of
Table 1 Comparison of SAMtools, PINDEL, PRISM and
indelMINER on simulated dataset with 3,723 deletions
and 3,777 insertions

SV caller Observed indels False-positives False-negatives

SAMtools 6,491 172 (2.65%) 1181

PINDEL 7,239 328 (4.53%) 589

PRISM 7,406 301 (4.06%) 395

indelMINER 7,365 263 (3.57%) 398
the arguments and parameters used for this experiment
are detailed in the Additional file 1. SAMtools exhibits
the lowest false-positive rate for this dataset (2.65%),
but its false-negative rate is significantly higher when
compared to the other software. Out of the remaining
tools, indelMINER exhibits the lowest false-positive
rate (3.57% compared to 4.06% for PRISM and 4.53% for
PINDEL) as well a false-negative rate that is significantly
lower than PINDEL (10.54% for indelMINER, 15.59% for
PINDEL), and comparable to that of PRISM (10.46%).

Real dataset
We used about 28-fold data corresponding to the Yoruban
HapMap individual NA18507 (Accession: SRX016231) to
evaluate indelMINER on real data. The same sample has
been characterized in multiple studies [4,5,12,13] and se-
quenced using multiple platforms [14,15], making it an
ideal test case to compare the results of indelMINER. We
downloaded the fastq reads for the HapMap individual
from the Short read archive (Accession: SRX016231).
These 101 bp reads were generated using the standard
Illumina paired-end library protocol, with an average in-
sert length of about 500 bps. We aligned these reads to
the hg19 reference sequence using BWA version 0.5.9
with the default parameters except -q 15, which was used
to trim the low quality segment of the read down to
35 bps at the 3’ end. The reads around putative indels
were realigned using GATK IndelRealigner, followed by
use of MarkDuplicates (http://picard.sourceforge.net) to
flag the potential PCR duplicates. The resulting BAM file
was used to identify indels using SAMtools, PINDEL,
PRISM and indelMINER (See Additional file 1).
For the NA18507 genome, indelMINER detected 643,636

indels (347,590 deletions and 296,046 insertions).
Additional file 1: Figure S1 shows the length distribution
of the identified indels and Additional file 1: Figure S2
shows their distribution across the human chromosomes,
which correlates well to the amount of DNA present in
the chromosomes. 313 of the identified indels overlap with
the protein coding exons corresponding to the set of
RefSeq [16] genes. 44.81% of these coding indels are of
lengths that are a multiple of 3. This is in close concord-
ance with previous studies [17,18] that have reported that
in-frame indels should constitute about 50%-60% of all
coding indels. 412,001 (64.01%) of these indels identified
using indelMINER were also found in dbSNP version 137
and 454,120 (70.55%) of them were found in the Database
of Genomic Variants (DGV). 220,434 (34.25%) of the vari-
ants were also identified in the Phase 1 release 3 of the
1000 genomes project in African samples.
We also compared the variants identified using indelMINER

to those identified using SAMtools, PINDEL and PRISM.
Figure 1 shows a comparison of the variants called by the
various tools using the same read alignments. Two calls
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Figure 1 Comparison of indels identified using SAMtools,
PINDEL, PRISM and indelMINER drawn using VennDiagram [19].
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were marked as an overlap if they had a reciprocal overlap
greater than 50% of the breakpoint range. All of the in-
cluded software agreed on 315,159 of the indels, whereas
about 658,363 of the indels were supported by at least two
of the software we looked at as part of this study.

Cancer normal/tumor pair
All cancers arise as a result of accumulation of mutations
that confer growth advantage. The advent of next-generation
sequencing provides a powerful and cost-effective tool to
characterize these genome-wide changes. The primary
tumor tissue and adjacent or distal normal tissue are fre-
quently sequenced and analyzed to identify germline and
rare somatic mutations. The first step in such an analysis
is to identify the mutations that are unique to the cancer.
Issues such as normal DNA contamination of tumor
DNA complicate the analysis by reducing the tumor vari-
ant allele frequency.
Large granular lymphocyte (LGL) leukemia is character-

ized by a clonal expansion of either CD3+ cytotoxic T or
CD3− NK cells, and is frequently associated with auto-
immune diseases such as rheumatoid arthritis [20,21]. A
patient was consented under Institutional Review Board
protocols initiated at the Pennsylvania State University
and continuing at the University of Virginia in accordance
with the Declaration of Helsinki. The patient consented
to inclusion in an LGL Leukemia patient registry which
permits the publication of de-identified patient character-
istics and an additional addendum consenting to next
generation sequencing and the public deposition of data
derived therefrom. We sequenced the peripheral blood
and matched saliva from a patient diagnosed with LGL, to
a coverage of 29-fold and 17-fold respectively (Additional
file 1: Figure S3). We used indelMINER to (a) identify
indels in the blood sample and (b) investigate and tag
those indels based on their presence or absence in the
matched saliva sample. indelMINER identified 575,426
indels in the blood sample, out of which 572,188 of them
were also observed in the saliva. Indelocator (https://www.
broadinstitute.org/cancer/cga/indelocator) has been used
in earlier studies [22] to identify indels in normal/tumor
pairs. We used Indelocator on the same dataset, and it
identified 478,534 indels in the blood sample, 438,331 of
which were also observed in the matching normal sample.
We found that 392,512 (82.02%) of the indels found by
Indelocator were also found by indelMINER, whereas the
remaining indels were observed by only one of the two
software tools. We randomly selected 10 indels that were
identified by indelMINER but not identified by Indelocator
for validation (Additional file 2). We were not able to de-
sign a reliable pair of primers for 5 of the indels due to
their location in low-complexity regions or repeat regions
in the human genome. 4 of the remaining 5 indels were
validated using Sanger sequencing, including a large dele-
tion spanning 350 bases (Figure 2).

Discussion and conclusions
Recent studies have reported on the concordance of single-
nucleotide variants identified using different software tools
[1] as well using different sequencing platforms [23]. The
fraction of polymorphic sites where all platforms/tools
agree varies between 70-90% for the SNP calls. Often the
overlap of predicted indels between different methods is
much lower, indicating that none of the methods offer a
comprehensive satisfactory solution.
indelMINER uses a combination of approaches to iden-

tify indels of arbitrary size from paired-end short reads. It
can predict the exact breakpoint for small and medium
size indels, and the approximate breakpoints for the larger
deletions. The performance of the algorithm degrades in
regions where a single short-read covers multiple indels,
as well as in regions where the mapping quality of the se-
quences is low. A de novo assembly approach has been
shown to be more suitable in a large fraction of such re-
gions. The current version of indelMINER can only han-
dle indels; however the same algorithm can be extended
to handle other types of structural variants, in a manner
similar to PINDEL and PRISM. We do not use sequences
where both reads from the same fragment align with a
mapping quality of zero, i.e., cases where neither of the
mates can be aligned unambiguously in finding the indels.
If one of the reads can be aligned unambiguously, then
indelMINER can use that information to split and align
the second read. As explained earlier, we do use such se-
quences that align ambiguously in the mode where we are
just looking to tag the presence or absence of a variant.
When tagging the presence or absence of indels in sample
B indelMINER uses all the alignments including the
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Figure 2 IGV snapshot of the alignments showing the deletion chr12:471,091-471,494 in the blood sample (top half of the plot) and
the absence of the deletion in the saliva sample (bottom half of the plot).
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secondary alignments to check against the indels found
in sample A.
We used both simulated and real data to show that

indelMINER has low false-positives and a low false-negative
rate when compared to several other tools in the same cat-
egory. indelMINER can also be used in study of normal/
tumor pairs, and in studies where multiple individuals
from the same family are being sequenced. The PCR valida-
tions confirm the accuracy and sensitivity of indelMINER,
and its ability to identify indels in high-throughput se-
quencing datasets.

Methods
Overview
indelMINER relies on a combination of split-read and
paired-end read approaches to identify indels from a BAM
file for a sample (Figure 3). Even though it can be run on
any coordinate sorted BAM file, we recommend running
the GATK IndelRealigner [10] on it prior to running
indelMINER. This local realignment serves to transform
regions with misalignments due to indels into clean reads
containing a consensus indel that can be then easily
identified. The cleaned reads are analyzed in order of
their alignments to the reference sequence, and segments
of candidate reads are realigned within a specified diag-
onal band [24], identified using a fast k-mer comparison of
the read and the reference sequence. These alignments
are collected and used to identify candidate insertions and
deletions. The identified variants are annotated with add-
itional information pertaining to the region within the
breakpoints, including the average depth of coverage, the
RMS mapping quality of reads, and the count of reads
with a mapping quality equal to zero. These can be used
to filter the calls to obtain a more reliable set of differ-
ences between the target and the reference genome. Here
we describe each of the steps in greater detail.

Definitions
First we define a few terms that will be used in the
description of the workflow and algorithms used in
indelMINER.

1. A read group R (a, b, o) is defined as a set of paired-end
sequences that are the product of a single lane or
barcode of a sequencing run. The expected outer
distance for the pairs in this group is described
by the interval [a, b] and the expected relative
orientation is given by o, where o ∈ [‘++’, ‘+-’, ‘-+’, ‘–’].
The first symbol represents the orientation of the
mate that comes earlier on the chromosomal
co-ordinates. For example, the expected relative
orientation for Illumina paired-end reads is ‘+-’.

2. A paired-end sequence P (r1, r2, r, o, i) consists of
two reads r1 and r2 that are sequenced from the
same DNA fragment. The paired-end fragment
belongs to the read group r, and o and i refer to the



Figure 3 (See legend on next page.)
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Figure 3 Overview of the indelMINER algorithm. Panel titled “Identification of candidate reads” shows three of the cases when a read is
identified for realignment or paired-end analysis. (a) shows a case when mates align with the expected orientation but one of the mates is only
partially aligned, (b) shows a case when one mate from a fragment aligns to a location mpos on the reference, while the other mate does not
align, and (c) shows the case when both mates align with the expected relative orientation, but the outer distance constraint is violated. Panel
titled “Identification of diagonal” shows the various alignments of the unaligned mate using k-mer comparisons, and the subsequent selection
of one of the diagonals based on alignment score and distance from mpos. Panel “Split read alignment” shows the extension of the chosen
diagonal, and the panel “Identification of indel” shows the alignment and extension of the remaining sequence from the unaligned mate, to a
region around mpos selected based on a user-specified threshold.
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relative orientation and the outer distance of r1 and
r2 when both of them are aligned to a reference
sequence. The first symbol in o defines the orientation
of r1, and the second symbol defines the orientation
of r2.

3. maxsrdelsize and maxpedelsize are user specified
thresholds that refer to the maximum size of the
deletion that we want to identify using split read and
paired-end read approaches respectively.

Identification of candidate reads
The reads in the BAM file are analyzed in order of their
alignment to the reference sequence. A read r1 (r2) of a
pair P (r1, r2, r, o, i) is selected for split read alignment if
any of the following conditions is satisfied

a) P (r1, r2, r, o, i) is properly paired (o ∈ [‘+-’] for
Illumina PE reads, and a ≤ i ≤ b where r = R (a, b, o)),
and r1 (r2) aligns to the reference with one or more
indels, or has a unaligned/soft-clipped segment in it.
In other words, these are the reads that align to the
reference genome with the expected orientation and
outer distance, but one of the mates is either aligned
partially, or aligned to the reference genome with one
or more gaps (Figure 3, Identification of candidate
reads (a)).

b) The mate r2 (r1) is aligned but r1 (r2) is unaligned
(Figure 3, Identification of candidate reads (b)).

We also collect the pairs P (r1, r2, r, o, i) where r1 and
r2 align to the reference with the expected orientation,
but the insert length constraints are not satisfied i.e. (i < a)
or (i > b), where r = R (a, b, o) for a separate paired-
end read analysis (Figure 3, Identification of candidate
reads (c)).

Split read alignment of reads
As discussed above, a read r1 that is selected for split-
read analysis has a mate read r2 that aligns to the refer-
ence sequence at a position denoted by mpos (Figure 3,
Identification of candidate reads). The read r1 is now
aligned to the reference within the interval [mpos – b,
mpos + b], where b refers to the maximum expected outer
distance for their read group (Figure 3, Identification of
diagonal, Split read alignment). If one end of the read
aligns to position pos in the above interval, then we at-
tempt to align the read from the other end within the
interval [pos, pos +maxsrdelsize] or [pos – maxsrdelsize,
pos], depending on the relative orientation of r1 and r2
(Figure 3, Identification of indel). If that fails then we
check to see if the unaligned segment of r1 is a candidate
insertion. The above alignments proceed in two steps.
First, we use a k-mer comparison of the read sequence to
the candidate reference segment to find the best diagonal
band i.e. the diagonal band where the read and the refer-
ence share the most number of unique k-mers. The align-
ments are then performed using a strategy that requires
only O(NW) computation time and O(N) space, where
N is the length of the shorter of the two subsequences
and W is the width of the band [24]. Each split read where
both read ends can be aligned in a way that they support
an indel, are saved for further analysis.

Identification of indels
In this step, we collect all the candidate variants V (e1, e2),
where e1 and e2 refer to either the two split halves as a re-
sult of the realignment in the previous step, or refer to the
two reads from the same fragment that did not satisfy
the outer distance constraints. We create a graph G and
represent every candidate variant supported by a split or
paired-end read, as a vertex. Two vertices are joined by an
edge if they support the same variant in the target gen-
ome. If the two vertices represent split-reads, then the
only condition for an edge between them is that they sup-
port the same breakpoints. If the two vertices represent
mates that do not satisfy distance constraints, then an
edge can be drawn between them if the resulting break-
points from the two variants do not violate the outer dis-
tance constraint for reads represented by V1 and V2.
Each clique in the graph should now represent a variant

in the target genome. However due to errors in sequen-
cing, ambiguous alignments, ploidy, incompleteness and
inaccuracies in the reference genome, a significant fraction
of these subgraphs are not fully connected. So instead of
restricting the definition of a variant to a clique, we con-
sider each connected component in the graph G to repre-
sent a variant in the target genome, and the vertices in
the connected component to represent the evidence that
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supports that particular variant. We heuristically identify a
maximal clique in each connected component to calculate
the putative breakpoints. Since no edges connect split read
vertices to the paired read vertices, this analysis can re-
port a single variant as two separate variants, one sup-
ported only by split reads, and the other supported only by
paired-end reads. The next step in indelMINER involves
combining the split read and paired-end read evidence for
the same variant. This can be easily accomplished by sort-
ing the variants and then combining the adjacent variants
if merging them does not violate the outer distance con-
straint for the pairs that support the variant.

Filtering and annotation
The resulting variants can be filtered based on the number
of pairs and split-reads that support the variant, the aver-
age depth of coverage across the breakpoints, the RMS
value of the mapping quality across the breakpoints and
the number of reads across the breakpoint that align with
a zero mapping quality. We also report the length of
the flanking sequences on both sides of the variant for
every read that supports the variant. Besides identification,
indelMINER can also be used to tag indels with their pres-
ence or absence in another sample. This is extremely use-
ful in analysis of normal/tumor pairs and in cases where
multiple members of the same family are being analyzed
for de-novo variants. This is accomplished by using a list
of putative indels in one of the samples “A” (tumor in
case of normal/tumor pairs) as input to an instance of
indelMINER. indelMINER stores these intervals from
sample A, and then processes all improper pairs and split
reads in the second sample “B”; including reads with zero
mapping qualities, secondary and suboptimal alignments,
to find any evidence that can support the breakpoints in
“A”. This information is used to annotate the variants as
being present or absent in sample B.

Additional files

Additional file 1: The suppmentary methods and figures.

Additional file 2: List of indels chosen for validation and its details.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AR, WM designed the study and developed indelMINER. The validations
were performed by TLO. AR, WM, TPL wrote the manuscript. All authors read
and approved the final manuscript.

Acknowledgements
We thank Dan Notterman and Lisa Schneper for discussions and suggestions
during the development of indelMINER.

Funding
This work was supported by funding from Penn State CTSI NIH Grant
Number UL1TR000127, and Gordon and Betty Moore Foundation to AR.
Author details
1Center for Comparative Genomics and Bioinformatics, Pennsylvania State
University, 506, Wartik Laboratory, University Park, PA 16802, USA.
2Department of Medicine, Hematology and Oncology, and the University of
Virginia Cancer Center, University of Virginia, Charlottesville, VA 22908, USA.
3Department of Public Health Sciences and Center for Public Health
Genomics, University of Virginia, Charlottesville, VA 22908, USA.

Received: 18 June 2014 Accepted: 29 January 2015

References
1. Lam HYK, Pan C, Clark MJ, Lacroute P, Chen R, Haraksingh R, et al.

Detecting and annotating genetic variations using the HugeSeq
pipeline. Nat Biotechnol. 2012;30:226–9.

2. Stenson PD, Ball EV, Mort M, Phillips AD, Shaw K, Cooper DN. The Human
Gene Mutation Database (HGMD) and its exploitation in the fields of
personalized genomics and molecular evolution. Curr Protoc Bioinform.
2012;39:1. 13:1.13.1–1.13.20.

3. Li S, Li R, Li H, Lu J, Li Y, Bolund L, et al. SOAPindel: efficient identification of
indels from short paired reads. Genome Res. 2013;23:195–200.

4. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth
approach to detect break points of large deletions and medium sized
insertions from paired-end short reads. Bioinformatics. 2009;25:2865–71.

5. Jiang Y, Wang Y, Brudno M. PRISM: Pair read informed split read mapping
for base-pair level detection of insertion, deletion and structural variants.
Bioinformatics. 2012;28(20):2576–83.

6. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: An approach to
discover, genotype and characterize typical and atypical CNVs from family
and population genome sequencing. Genome Res. 2011;21:974–84.

7. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, et al. The diploid
genome sequence of an individual human. PLoS Biol. 2007;5:e254.

8. Hu X, Yuan J, Shi Y, Lu J, Liu B, Li Z, et al. pIRS: Profile-based Illumina pair-end
reads simulator. Bioinformatics. 2012;28:1533–5.

9. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics. 2009;25:1754–60.

10. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.
The Genome Analysis Toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

11. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
sequence Alignment/Map format and SAMtools. Bioinformatics.
2009;25:2078–9.

12. Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, et al.
Mapping and sequencing of structural variation from eight human
genomes. Nature. 2008;453:56–64.

13. Albers C, Lunter G, MacArthur DG, McVean G, Ouwehand WH, Durbin R.
Dindel: accurate indel calls from short-read data. Genome Res. 2010:961–973

14. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown
CG, et al. Accurate whole human genome sequencing using reversible
terminator chemistry. Nature. 2008;456:53–9.

15. McKernan KJ, Peckham HE, Costa GL, McLaughlin SF, Fu Y, Tsung EF, et al.
Sequence and structural variation in a human genome uncovered by
short-read, massively parallel ligation sequencing using two-base encoding.
Genome Res. 2009;19:1527–41.

16. Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI Reference Sequences
(RefSeq): current status, new features and genome annotation policy.
Nucleic Acids Res. 2012;40(Database issue):D130–5.

17. Mills RE, Pittard WS, Mullaney JM, Farooq U, Creasy TH, Mahurkar AA, et al.
Natural genetic variation caused by small insertions and deletions in the
human genome. Genome Res. 2011;21:830–9.

18. Mullaney JM, Mills RE, Pittard WS, Devine SE. Small insertions and deletions
(INDELs) in human genomes. Hum Mol Genet. 2010;19:R131–6.

19. Chen H, Boutros PC. VennDiagram: a package for the generation of
highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics.
2011;12:35.

20. Sokol L, Loughran TP. Large granular lymphocyte leukemia. Curr Hematol
Malig Rep. 2007;2:278–82.

21. Loughran TP, Kadin ME, Starkebaum G, Abkowitz JL, Clark EA, Disteche C, et al.
Leukemia of large granular lymphocytes: association with clonal chromosomal
abnormalities and autoimmune neutropenia, thrombocytopenia, and
hemolytic anemia. Ann Intern Med. 1985;102:169–75.

http://www.biomedcentral.com/content/supplementary/s12859-015-0483-6-s1.docx
http://www.biomedcentral.com/content/supplementary/s12859-015-0483-6-s2.xlsx


Ratan et al. BMC Bioinformatics  (2015) 16:42 Page 8 of 8
22. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM,
et al. Sequence analysis of mutations and translocations across breast cancer
subtypes. Nature. 2012;486:405–9.

23. Ratan A, Miller W, Guillory J, Stinson J, Seshagiri S, Schuster SC. Comparison
of sequencing platforms for single nucleotide variant calls in a human
sample. PLoS One. 2013;8:e55089.

24. Chao KM, Pearson WR, Miller W. Aligning two sequences within a specified
diagonal band. Comput Appl Biosci. 1992;8:481–7.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Simulated dataset
	Real dataset
	Cancer normal/tumor pair

	Discussion and conclusions
	Methods
	Overview
	Definitions
	Identification of candidate reads
	Split read alignment of reads
	Identification of indels
	Filtering and annotation

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Funding
	Author details
	References

