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Abstract

Background: Many disease phenotypes are outcomes of the complicated interplay between multiple genes, and
multiple phenotypes are affected by a single or multiple genotypes. Therefore, joint analysis of multiple phenotypes
and multiple markers has been considered as an efficient strategy for genome-wide association analysis, and in this
work we propose an omnibus family-based association test for the joint analysis of multiple genotypes and multiple
phenotypes.

Results: The proposed test can be applied for both quantitative and dichotomous phenotypes, and it is robust
under the presence of population substructure, as long as large-scale genomic data is available. Using simulated
data, we showed that our method is statistically more efficient than the existing methods, and the practical
relevance is illustrated by application of the approach to obesity-related phenotypes.

Conclusions: The proposed method may be more statistically efficient than the existing methods. The application
was developed in C++ and is available at the following URL: http://healthstat.snu.ac.kr/software/mfqls/.
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Background
During the last decade, more than a hundred genome-
wide association studies (GWAS) have been initiated,
and GWAS have been successful in identifying many
susceptibility loci involved in human disease. However,
phenotypic variance explained by significant findings has
often been small, even for most heritable phenotypes
[1,2]. For example, SNPs significantly associated with
human height in GWAS involving tens of thousands of
subjects explain only about 5% of the phenotypic vari-
ance [3]. Various reasons for the so-called missing herit-
ability have been provided [2], but the effect-size
distribution for many phenotypes [4] reveals that further
investigation of an efficient strategy for genetic associ-
ation analysis remains necessary.
It has been found that analysis with secondary pheno-

types [5-9] reduces false negative findings, and several
* Correspondence: won1@snu.ac.kr; tspark@stats.snu.ac.kr
1Department of Public Health Science, Seoul National University, Seoul, Korea
2Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul,
Korea
Full list of author information is available at the end of the article

© 2015 Won et al.; licensee BioMed Central. T
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
different methods, such as the linear mixed model [9] and
combining of p-values [7], have been proposed. The most
efficient approach of multiple phenotypes depends on the
unknown disease model between multiple phenotypes and
genotypes. For instance, if multiple genes have a causal ef-
fect on multiple phenotypes, and the genotype-phenotype
models are multidimensional, multivariate analyses are
often expected to be most efficient [7]. In such a case, if
the marginal effects of genotypes on multiple phenotypes
are separately tested, multiple p-values for each marginal
effect need to be adjusted with multiple comparison cor-
rection methods [10-12], and for a large number of
p-values, the chance to identify the disease susceptibility
loci becomes smaller. However, joint analysis of multiple
phenotypes is much less affected by multiple comparison
issues, and is thought to improve power. Furthermore, the
presence of linkage disequilibrium (LD) between markers
his is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

http://healthstat.snu.ac.kr/software/mfqls/
mailto:won1@snu.ac.kr
mailto:tspark@stats.snu.ac.kr
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Won et al. BMC Bioinformatics  (2015) 16:46 Page 2 of 14
reveals the benefit of multi-marker association analysis
[13,14]. For instance, two-marker genome-wide associ-
ation analysis can sometimes be more efficient than one-
marker analysis, if the large-scale genetic information is
sufficiently dense [15-17]. Therefore in this report, we
focus on the joint analysis of multiple phenotypes and
genotypes.
The family-based design has been considered to be an

important strategy in genetic association analysis. How-
ever the parameter estimations for the analysis of family
data is numerically complicated, and few methods other
than the linear mixed model for quantitative phenotypes
have been available for family-based samples. In particu-
lar, FBAT statistics [18], based on the within-family com-
ponent, has been extended for the joint analysis of
multiple phenotypes and genotype [19-21]. Given the
nature of FBAT statistics, they are robust against the
population substructure and can be combined with
rank-based p-values [22,23] based on the between-family
component in a robust way [24]. However, even though
this approach provides global robustness against popula-
tion substructure, the phenotypic information is only
partially utilized and the loss of power can be substantial
if the number of founders is large.
In this report, we propose a new statistical method for

the joint analysis of multiple phenotypes and genotypes
with family-based samples. Our method can be utilized
for both quantitative and dichotomous phenotypes, and
is robust against the population substructure if the cor-
relation matrix between individuals can be estimated
from large-scale genetic data. The proposed method
consists of two steps. First, phenotypes are adjusted with
the offset based on the best linear unbiased predictor
(BLUP) [25] or disease prevalence. Second adjusted phe-
notypes are utilized for statistical inference. Using exten-
sive simulations, we showed that our method is
statistically more efficient than existing methods, and its
computational simplicity makes possible large-scale
genome-wide association analysis. The proposed method
was applied to the joint analysis of obesity-related phe-
notypes with the healthy twin study, Korea (HTK) and
our significant results illustrate the practical value of the
proposed method.
Methods
Notations and the disease model
The genetic association between M variants and Q phe-
notypes is considered. We assume that there are n fam-
ilies and ni individuals in family i. If we denote the

sample size by N, N is equal to
Xn

i¼1
ni . We let xijm and

yijq denote the coded genotype of individual j in family i
at variant m and the qth phenotype respectively, where
m= 1, …, M and q = 1, …, Q. We let
Xm ¼
x11m
⋮

xnnnm

0@ 1A; X ¼
X1

⋮
XM

0@ 1A;

Yq ¼
y11q
⋮

ynnnq

0@ 1A; and Y ¼
Y1

⋮
YQ

0@ 1A:

Here X is a N ×M matrix and Y is a N ×Q matrix. We
also define

Xij ¼
xij1
⋮

xijM

0@ 1A; and Yij ¼
yij1
⋮

yijQ

0@ 1A:

We assume that covariate column vector, Zij, which
affects the phenotype, is observed for individual j in fam-
ily i, and the intercept is included in Zij. We let

Z ¼
Zt
11
⋮

Zt
nnn

0@ 1A:

In addition, we assume that bijq is a random effect for
an additive polygenic effect for the qth phenotype and
the variable eijq is a random error. We let

Bq ¼
b11q
⋮

bnnnq

0@ 1A; B ¼
B1

⋮
BQ

0@ 1A; Eq ¼
e11q
⋮

ennnq

0@ 1A and

E ¼
E1

⋮
EQ

0@ 1A:

Covariances between individuals are explained by the
random effect bijq, and the variance-covariance matrix
for Bq can be parameterized by the function of kinship
coefficient matrix Ф. If we let πij,i'j' be the kinship coeffi-
cient between individual i in family j and individual i' in
family j', and dij be the inbreeding coefficient for individ-
ual j in family i, Фi is denoted by

1þ d11 2π11;12 2π11;13 ⋯
2π11;12 1þ d12 2π12;13 ⋯
2π11;13 2π12;13 1þ d13 ⋱

⋮ ⋮ ⋱ ⋱

0BB@
1CCA:

and we let

Φ ¼
Φ1 0 ⋯
0 Φ2 ⋱
⋮ ⋱ ⋱

0@ 1A:

Under the presence of population substructure, Ф
should be replaced with the genetic relationship matrix
estimated with large-scale genetic data to provide the ro-
bustness of the proposed method [26,27]. However the
robustness of proposed method depends on the accuracy
of the estimated genetic relationship matrix, and if the
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level of population substructure depends on the genomic
location, the proposed method is not valid [23,28]. In
such a case, transmission disequilibrium tests based on
Mendelian transmission [18,29] are unique choices ro-
bust against the population substructure.

Quasi-likelihood for association analysis
If we let the effect of variant m on phenotype q be βmq,
the null and alternative hypotheses are

H0 : β11 ¼ β12 ¼ ⋯ ¼ βMQ ¼ 0 vs H1 : not H0:

Either prospective or retrospective analysis for this hy-
pothesis testing can be selected depending on the sam-
pling scheme. While prospective analysis assumes that
phenotypes are response variable and compares the
phenotype distributions between each genotype group,
retrospective analysis assumed that individuals were se-
lected based on their phenotypes, and compares geno-
type distributions between affected and unaffected
individuals. In particular large numbers of genotypes en-
ables the estimation of genotypic correlations between
individuals, and analysis robust against nonnormality of
phenotypes can be conducted with retrospective analysis.
As a result, we focus on the retrospective analysis which
compares genotype frequencies according to disease
phenotypes. When comparing the genotype distribution,
it has been shown that the statistical efficiency of the
test statistic can be improved by adjusting phenotype
[30], and we introduce the offset μijq for qth phenotype
of individual j in family i at variant m to improve the ef-
ficiency of the proposed score test. We set

μij ¼
μij1
⋮

μijQ

0@ 1A; μ ¼ μ11 ⋯ μnnn

� �t
;

Tij ¼ Yij−μij; T ¼ Y−μ:

For any positive integer w, we let 1w be the w × 1 col-
umn vector that consisted of 1 and Iw be the w × w iden-
tity matrix. We denoted an MAF of variant m in
unaffected individuals by pm, and p = (p1, … , pM)t. We
assumed [31] that for a constant γm,q,

E XmjTqð Þ ¼ 2pm1N þ γm;qT
q;

where 0 < 2 pm + γm,q < 1. If we let V be the working cor-
relation matrix for Xm, the score for a variant m can be
defined by

TtV−1 Xm−E Xmð Þð Þ:
Here V and μ were incorporated to generalize the

quasi-likelihood score function and can be estimated by
maximizing the efficiency of the score statistics. Their
incorporation is a main difference from the assumptions
for WQLS and MQLS statistics [31,32]. The most effi-
cient choices of them makes the proposed score test
equivalent to MQLS statistic [33], and we extend this
approach to the joint analysis of multiple phenotypes
and genotypes. If we let ⊗ indicate the Kronecker prod-
uct, the quasi-likelihood score corresponding to the null
hypothesis is

S ¼ vec TtV−1 X−E Xð Þð Þ� � ¼ vec TtV−1 X−p⊗1Nð Þ� �
:

If we let eij be an N × 1 vector where the

jþ
Xj−1

i¼1
ni

� �
th element is 1 and the others are 0,

T ¼
X
i;j

eijTij
t :

Therefore,

S ¼
X
i;j

vec Tijeij
tV−1 X−p⊗1Nð Þ� �

¼
X
i;j

IM⊗ Tijeij
t

� �� �
vec V−1 X−p⊗1Nð Þ� �

:

Thus if we define

Sij ¼ IM⊗ Tijeijt
� �� �

vec V−1 X−p⊗1Nð Þ� �
;

we have

S ¼
X
ij

Sij:

Efficient choices of μ and V
Statistical efficiency depends on the choices of V and μ
[31,33,34], and the optimal choices have been provided
by maximizing the non-centrality parameters under the
alternative hypothesis (see Won and Lange [33] for de-
tailed information). For V, the identity matrix maximizes
the statistical efficiency of the quasi-likelihood [33], and
we consider it for V. The most efficient choice of μ may
be related with the sampling scheme, and either BLUP
or the prevalence were shown to be the most efficient
[33], depending on the sampling scheme. If families are
randomly selected, BLUP was shown to be the most effi-
cient for both dichotomous and quantitative phenotypes
[33], and if families with a large number of affected fam-
ily members are selectively utilized for association ana-
lysis, it was recommended that prevalence was used for
dichotomous phenotypes [31,33]. In this report, we focus
on randomly selected families, and we incorporate BLUP
from the linear mixed model for μ. The linear mixed
model [35] for quantitative phenotype is given by



Won et al. BMC Bioinformatics  (2015) 16:46 Page 4 of 14
Yq ¼ Zαq þ
XM
m¼1

Xmβmq þ Bq

þ Eq; vec Bð ÞeMVN 0;Φ⊗ΣBð Þ ð1Þ
and

EqeMVN 0; σ2E;qIN
� �

; Eq 0s : indep:

Here, we denote the qth diagonal element for ΣB by
σ2B;q . Several algorithms to estimate variance parameters

such as ΣB and σ2E;q for linear mixed model exist

[36-38], and the average information method [36] has
often been recommended because of its computational
efficiency. If we denote the estimates for σ2B;q and σ2E;q by

σ̂ 2
B;q and σ̂ 2

E;q under the null hypothesis respectively, and

Hq ¼ σ̂ 2
B;qΦþ σ̂ 2

E;qIN ; P
q

¼ Hqð Þ−1− Hqð Þ−1Z Zt Hqð Þ−1Z� �−1
Zt Hqð Þ−1;

then incorporation of BLUP as offset makes

Tq ¼ Yq−μ̂q ¼ IN−Z Zt Hqð Þ−1Z� �−1
Zt Hqð Þ−1−σ̂ 2

1qΦPq
� �

Yq;

T ¼ T1 ⋯ TQ
� �

:

For a dichotomous phenotype, the generalized linear
mixed model [39] might be considered as an appropriate
approach but the generalized linear mixed models can-
not be directly optimized. Approximations to avoid nu-
merical integration sometimes lead to serious bias
[40,41], and Crowder [42,43] showed that the choice of a
linear mixed model for dichotomous phenotypes is rea-
sonable in this context. Therefore we consider the di-
chotomous phenotypes as quantitative phenotypes, and
Tq estimated by the same way for quantitative pheno-
types was recommended for dichotomous phenotypes
when individuals were randomly selected [33]. There-
fore, for randomly selected families, we utilize the iden-
tity matrix for V and BLUP for μ for both quantitative
and dichotomous.

Quasi-likelihood maximum estimator for minor allele
frequencies
We denote var(Xij) by Ψ and we assume that

cov Xij;Xi0j0
� �

≈2πij;i0j0 var Xij
� � ¼ 2πij;i0j0Ψ:

Then we can have

var vec Xð Þð ÞÞ ¼ Ψ⊗Φ:

Ψ was estimated with a sample variance covariance
matrix, and we found that this choice usually works well.
Therefore the marginal quasi-likelihood score function
for p is
U pð Þ ¼ IM⊗1Nð Þt Ψ⊗Φð Þ−1 vec Xð Þ−p⊗1Nf g;
and without any knowledge about Ψ, the quasi max-
imum likelihood estimates for p can be calculated by

p̂ ¼ 1tNΦ
−11N

� �−1
1tNΦ

−1X
n ot

:

The quasi-likelihood maximum estimator for p is
equivalent to the best linear unbiased estimator. We can
simply assume that

vec Xð Þ ¼ IM⊗1Nð Þpþ e; E eð Þ ¼ 0; var eð Þ ¼ Ψ⊗Φ:

Therefore Gauss-Markov theorem indicates that the
best linear unbiased estimator for p is

IM⊗1Nð Þt Ψ⊗Φð Þ−1 IM⊗1Nð Þ� �−1
IM⊗1Nð Þt Ψ⊗Φð Þ−1vec Xð Þ

¼ vec 1tNΦ
−11N

� �−1
1tNΦ

−1X
n o

:

Family-based multivariate association test

If we let A ¼ Φ−1−Φ−11N 1tNΦ
−11N

� �−1
1tNΦ

−1 and
utilize the proposed choices of V and μ and the quasi
likelihood maximum estimator for p, Sij becomes

Sij ¼ IM⊗ Tijeij
t

� �� �
vec ΦAXð Þ ¼ vec Tijeij

tΦAX
� �

and our score is

S ¼
X
ij

Sij ¼ vec
X
ij

Tijeij
tΦAX

 !
¼ vec TtΦAXð Þ:

For the statistic based on quasi-likelihood score, we
can calculate the covariance of Sij and Si'j' as follows:

cov Sij; Si0j0
� � ¼ cov vec TijetijΦAX

� �
; vec Ti0j0eti0 j0ΦAX

� �� �
¼ IM⊗ TijetijΦA

� �� �
var vec Xð Þð Þ IM⊗ AΦei0 j0T

t
i0 j0

� �� �
¼ Ψ⊗ TijetijΦAΦei0 j0T

t
i0 j0

� �
:

Therefore, var(S) is

var Sð Þ ¼
X
i;j;i0;j0

cov Sij; Si0j0
� �

¼ Ψ⊗
X
i;j

Tijetij

 !
ΦAΦ

X
i0;j0

Ti0j0e
t
i0j0

0@ 1A0@ 1A
¼ Ψ⊗ TtΦAΦTð Þ;

and we have

St var Sð Þ−1Seχ2 df ¼ MQð Þ under H0:

The proposed statistic will be denoted as MFQLS in
the remainder of this report.



Figure 1 Extended family used in our simulations.

Table 1 Empirical type-I error estimates in the absence of
population substructure

α

TYPE Q D' 0.005 0.01 0.05

Quantitative 2 0 0.0056 0.0105 0.0481

2 0.5 0.0043 0.0091 0.0482

5 0 0.0059 0.0115 0.0506

5 0.5 0.0044 0.0103 0.0526

Dichotomous 2 0 0.0038 0.0088 0.0455

2 0.5 0.0039 0.0095 0.0502

5 0 0.0041 0.0083 0.0509

5 0.5 0.0056 0.0098 0.0501

The empirical type-I errors were estimated with 10,000 replicates at several sig-
nificance levels. We assumed that the number of markers is two, and that their
minor allele frequencies were generated as U(0.1, 0.4). ρ was assumed to
be 0.2.
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Utilizing individuals with incomplete information
Individuals with missing genotypes and nonmissing phe-
notypes, or vice versa, can be utilized for genetic associ-
ation analysis. For individuals with missing phenotypes
and nonmissing genotypes, tijq are assumed to be 0 and
these individuals are utilized for the proposed analysis.
These individuals are informative only for enhancing the
accuracy of the estimated variance–covariance matrix of
genotypes Ψ. For individuals with missing genotypes and
nonmissing phenotypes, the missing genotypes can be
replaced with the conditional expectations for the associ-
ation analysis [44]. We let the superscripts U and O indi-
cate individuals with missing genotypes and individuals
with nonmissing genotypes, respectively. We assume that
NO (NU) indicates the numbers of individuals with non-
missing (missing) genotypes, and in a similar way we define

Y� ¼ YO

YU

� 	
; and Φ� ¼ ΦOO ΦOU

ΦUO ΦUU

� 	
:

Then, if we denote the minor allele frequency for vari-
ant m by pm, the conditional mean vector of the missing
genotypes for multiple variants is

2pm1NU þΦUO ΦOO
� �−1

XO−2pm1NO

� �
and the incorporation of best linear unbiased estimator
[45] to pm makes it

EðXU jXOÞ ¼


1NU 1tNO ΦOO

� �−1
1NO

� �−1
1tNO ΦOO

� �−1
þΦOU ΦOO

� �−1
− ΦOO
� �−1

1NO 1t
NO ΦOO
� �−1

1NO

� �−1
1t
NO ΦOO
� �−1� 	�

XO:

This is an extension of the conditional expectation for

a single variant [44]. Therefore, if A� ¼ Φ�ð Þ−1− Φ�ð Þ−1

1N 1tN Φ�ð Þ−11N
� �−1

1tN Φ�ð Þ−1 , the proposed score and its
variance, respectively, become

S� ¼ vec W TO

TU

� 	t
ΦOO

ΦUO

� 	
A�X

� 	
;

var S�ð Þ ¼ Ψ⊗ W TO

TU

� 	t
ΦOO

ΦUO

� 	
A� ΦOO

ΦUO

� 	t
TO

TU

� 	
W

� 	
so that

S�t var S�ð Þ−1S�eχ2 df ¼ MQð Þ under H0:

The simulation model
In our simulation studies, we considered large families
with 10 subjects that extended over three generations
(see Figure 1). We assumed the existence of two disease
susceptibility loci, and that minor (major) alleles for both
loci were denoted by A(a) and B(b), respectively. If we
denote the minor allele frequencies as pA and pB, and
the linkage disequilibrium between these two loci by d,
the haplotype frequencies for AB, Ab, aB, and ab were
calculated by

pAB ¼ pApB þ d; pAb ¼ pA 1−pBð Þ−d;
paB ¼ 1−pAð ÞpB−d; and pab ¼ 1−pAð Þ 1−pBð Þ þ d:

In our simulation, Lewontin’s D' [46] was assumed to
be 0 or 0.5. Genotypes were assumed to be in Hardy–
Weinberg equilibrium and founders’ genotypes were
generated by multinomial distributions defined by geno-
type frequencies. The non-founders’ genotypes were ob-
tained by simulated Mendelian transmissions from their
parents, and we assumed that there was no recombin-
ation between two loci.
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The quantitative phenotypes were defined by summing
the phenotypic mean, polygenic effect, main genetic ef-
fect, and random error. We assumed that Q = 2 and 5,
and denoted the phenotypic means for Q phenotypes by
α1, …, and αQ. The genetic effect at variant m for pheno-
type q was generated by the product of βmq and the
number of disease alleles. Under the null hypothesis, the
genetic effect size parameters βmq were set to 0. The
polygenic effects B for Q phenotypes for each founder
was independently generated from MVN(0,ΣB), and the
average of maternal and paternal polygenic effects was
combined with values independently sampled from
MVN(0, 0.5ΣB) for the polygenic effects of offspring.
The random errors for Q phenotypes were assumed to
be independent and were independently sampled from
MVN(0,σE,q2IN). We assume that if Q = 2,

ΣB ¼ 1 ρ
ffiffiffi
2

p
ρ
ffiffiffi
2

p
2

� 	
; σ2

E;1 ¼ 1; σ2E;2 ¼ 2

and if Q = 5, they were
Figure 2 QQ-plots for quantitative phenotypes in the absence of pop
replicates for quantitative phenotypes. We assumed that the number of mark
(0.1, 0.5). ρ was assumed to be 0.2. (a) Q=2 and D'=0, (b) Q=2 and D'=0.5, (c)
ΣB ¼

1 ρ
ffiffiffi
2

p
ρ

ffiffiffi
2

p
ρ

ffiffiffi
2

p
ρ

ρ 1
ffiffiffi
2

p
ρ

ffiffiffi
2

p
ρ

ffiffiffi
2

p
ρffiffiffi

2
p

ρ
ffiffiffi
2

p
ρ 2 2ρ 2ρffiffiffi

2
p

ρ
ffiffiffi
2

p
ρ 2ρ 2 2ρffiffiffi

2
p

ρ
ffiffiffi
2

p
ρ 2ρ 2ρ 2

0BBBB@
1CCCCA;

σ2
E;1 ¼ 1; σ2E;2 ¼ 2; σ2E;3 ¼ 3; σ2E;4 ¼ 4; σ2E;5 ¼ 5:

Here ρ indicates the correlation between different
phenotypes.
Furthermore, the robustness of the proposed statistic

in the presence of population substructure was evaluated
with simulated data. We assumed that there were two
subpopulations and each founder was assigned to one of
the two subpopulations with 0.5 probability. Means of Q
phenotypes in both populations differed by 0.2. The
amounts of linkage disequilibrium for both populations
were assumed to be same and the allele frequencies for
each marker in two subpopulations were generated by
the Balding–Nichols model [47]. The allele frequencies,
qA and qB, in an ancestral population was generated
from U(0.1, 0.4) and if we let FST be the fixation index
ulation substructure. QQ-plots were generated from results of 10,000
ers were 2, and that their minor allele frequencies were generated as U
Q=5 and D'=0, and (d) Q=5 and D'=0.5 were assumed respectively.
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by Wright [48], the marker allele frequencies for the two
subpopulations were independently sampled from the
beta distributions (pk(1 – FST)/FST, (1– pk)(1 – FST)/
FST). The value for Wright’s FST was assumed to be
0.01, and 0.05.
Last, the simulations of the dichotomous phenotypes

were performed using the liability threshold model. Once
the quantitative phenotypes with polygenic effect and ran-
dom error were generated, they were transformed to being
affected if quantitative phenotypes are larger than the
threshold, but to unaffected when not. The threshold was
chosen to preserve the assumed prevalence. We assumed
that prevalence was 0.1 and 0.2 if Q = 2, and it was 0.1, 0.1,
0.2, 0.2, and 0.3 if Q = 5. The statistical validity of the pro-
posed method for dichotomous phenotypes was also evalu-
ated under the presence of population substructure.
Genotypes and liability scores were generated under the
same model as used for the quantitative traits with the
Balding–Nichols model, and liabilities for each individual
were transformed to either being affected or unaffected,
respectively.
Figure 3 QQ-plots for dichotomous phenotypes in the absence of po
10,000 replicates for quantitative phenotypes. We assumed that the number o
as U(0.1, 0.5). ρ was assumed to be 0.2. (a) Q=2 and D'=0, (b) Q=2 and D'=0.5
Results
Evaluation of the proposed statistical approach using
simulated data
For the evaluation of statistical validity, the empirical
type-1 error estimates for extended families were calcu-
lated at the various significance levels from 10,000 repli-
cates for both dichotomous and quantitative phenotypes.
One hundred extended families were generated in each
replicate, and we assume that ρ = 0.2. Table 1 shows that
the empirical type-1 error rates always preserve the
0.005, 0.01, and 0.05 nominal significance levels for both
quantitative and dichotomous phenotypes. The quantile
quantile (QQ) plots in Figures 2 and 3 also confirmed
the overall validity of our statistical approach for both
dichotomous and quantitative phenotypes.
For comparison of power with existing methods, the

empirical power estimates were calculated from 2,000
replicates at the 0.005 significance level for quantitative
and dichotomous phenotypes. We assumed that ρ were
0.2 and 0.5. For the proposed method, results from dif-
ferent choices of V and μ were compared, and they were
pulation substructure. QQ-plots were generated from results of
f markers was 2, and that their minor allele frequencies were generated
, (c) Q=5 and D'=0, and (d) Q=5 and D'=0.5 were assumed respectively.
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with an omnibus family-based association test (MFBAT)
[21]. We let diag(var(Y1), …, var(YQ)) be the block diag-
onal matrix that consists of submatrices, var(Y1), …, and
var(YQ). Then it is a NQ ×NQ dimensional matrix. If
diag(var(Y1), …, var(YQ)) and BLUP are utilized for V
and μ, respectively, the proposed method for quantita-
tive phenotypes becomes an extension of the mixed-
model association score test on related individuals
(MASTOR) [9] for the joint analysis of multiple pheno-
types and multiple genotypes. For dichotomous pheno-
types, if INM and the prevalence are utilized for V and μ,
respectively, our score is an extension of the more
powerful quasi-likelihood score test (MQLS) [27,31] for
the joint analysis of multiple phenotypes and multiple
genotypes. Therefore, they will be denoted as MMAS-
TOR and MMQLS in the remainder of this report.
Table 2 shows that MFQLS are always most efficient for

both quantitative and dichotomous phenotypes, and it is
followed by MMASTOR for quantitative traits, and by
MMQLS for dichotomous traits. Even though MFBAT is
always least efficient, this method is globally robust to
population substructure, and thus MFBAT is still pre-
ferred in some scenarios, such as candidate gene analysis.
In addition, our results show that the power improvement
for each method is proportional to Q and D', but inversely
related with ρ. This result is reminiscent of the analysis
of repeated measures, even though results may vary
Table 2 Empirical power estimates in the absence of
population substructure

ρ Q D' MMASTOR MFBAT MFQLS

Quantitative phenotypes 0.2 2 0 0.5180 0.2025 0.5830

2 0.5 0.7235 0.3750 0.7805

5 0 0.7800 0.3855 0.7870

5 0.5 0.9200 0.6430 0.9240

0.5 2 0 0.4915 0.1655 0.5400

2 0.5 0.6785 0.3340 0.7505

5 0 0.7015 0.3020 0.7350

5 0.5 0.8725 0.5405 0.8885

Dichotomous phenotypes ρ Q D' MMQLS MFBAT MFQLS

0.2 2 0 0.2015 0.0530 0.2340

2 0.5 0.3050 0.1070 0.3470

5 0 0.3205 0.0995 0.3710

5 0.5 0.6215 0.2460 0.6660

0.5 2 0 0.1795 0.0535 0.2130

2 0.5 0.2945 0.0915 0.3270

5 0 0.2670 0.0910 0.3085

5 0.5 0.5200 0.2130 0.5900

The empirical power was estimated using 2,000 replicates at the 0.005
significance level. We assumed that the number of markers was two, and that
their minor allele frequencies were 0.2.
depending on the situation. For the analysis of repeated
measurements, it has been shown that power improve-
ment is proportionally related with the number of obser-
vations for each individual, but inversely related with the
correlation between different measurements [49]. This
may be because the larger D' leads to reduced standard
deviation of the statistics, while the larger ρ may induce
sample size reduction.

Evaluation with simulated data in the presence of
population substructure
The proposed methods for both dichotomous and quan-
titative phenotypes were evaluated in the presence of
population substructure. Wright’s FST indicates the level
of population substructure and we assumed that FST =
0.01 and 0.05. Robustness of the proposed method to
population substructure is provided if the genetic rela-
tionship matrix is estimated with large-scale genetic in-
formation and replace the kinship coefficient matrix
[27]. In our simulation studies, we generated 100,000
common variants of which minor allele frequencies were
larger than 0.1, and which are not related to the pheno-
types. With these large-scale genotypes, we empirically
estimated the genetic relationship matrix [27], which
was then used as Φ in the proposed methods. The em-
pirical type-1 error rates were calculated from 10,000
replicates at the 0.005, 0.01, and 0.05 significance levels.
Table 3 Empirical type-I error estimates in the presence
of population substructure

α

TYPE FST Q D' 0.005 0.01 0.05

Quantitative 0.01 2 0 0.0048 0.0098 0.0546

2 0.5 0.0066 0.0105 0.0513

5 0 0.0046 0.0098 0.0521

5 0.5 0.0058 0.0105 0.0534

0.05 2 0 0.0054 0.0094 0.0514

2 0.5 0.0050 0.0108 0.0521

5 0 0.0057 0.0094 0.0509

5 0.5 0.0046 0.0094 0.0496

Dichotomous 0.01 2 0 0.0050 0.0107 0.0488

2 0.5 0.0039 0.0082 0.0472

5 0 0.0059 0.0108 0.0499

5 0.5 0.0045 0.0089 0.0465

0.05 2 0 0.0065 0.0125 0.0529

2 0.5 0.0049 0.0108 0.0477

5 0 0.0053 0.0115 0.0525

5 0.5 0.0046 0.0093 0.0480

The empirical type-I errors were estimated using 10,000 replicates at several
significance levels. We assumed that the number of markers is two, and that
their minor allele frequencies were generated as U(0.1, 0.5). The phenotypic
correlations were assumed to be 0.2.
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Table 3 shows that the empirical type-1 error rates for
MFQLS are approximately equal to the nominal signifi-
cance levels in the presence of the population substruc-
ture. Figures 4 and 5 respectively show QQ plots from
results for quantitative and dichotomous phenotypes
when FST was assumed to be 0.01 and ρ was 0.2. The
QQ plots showed that the statistical validities for both
dichotomous and quantitative phenotypes were pre-
served at various significance levels.
The empirical power estimates for quantitative and

dichotomous phenotypes are shown in Tables 4 and 5.
The empirical power estimates were calculated from 2,000
replicates and the nominal significance levels were
assumed to be 0.001 and 0.01 for quantitative and
dichotomous phenotypes, respectively. The empirical
power estimates for the proposed method were compared
with those of MMASTOR and MFBAT for quantitative
phenotypes, and with those of MMQLS and MFBAT for
dichotomous phenotypes. The results showed that our
method is always the most efficient, followed by MMAS-
TOR for quantitative phenotypes and by MMFBAT for
Figure 4 QQ-plots for quantitative phenotypes in the presence of popu
replicates for quantitative phenotypes. We assumed that the number of ma
U(0.1, 0.5). ρ was assumed to be 0.2, and Wright’s FST was assumed to be 0
(d) Q=5 and D'=0.5 were assumed respectively.
dichotomous phenotypes; this was also the case in the ab-
sence of population substructure. In particular, a greater
reduction in power was observed along with the larger
FST.

Applications to a genome-wide association in the HTK
cohort
The HTK cohort which consisted of families ascertained
with healthy twins was initiated to identify genetic vari-
ation responsible for complex traits and the role of the
environment in the etiology of complex diseases. HTK
cohort consists of 2,473 individuals including 900 mono-
zygotic (MZ) twins and 234 dizygotic (DZ) twins. In par-
ticular, MZ twins have same genotypes, and a single
individual from each twin was randomly selected for
genotyping. 1861 individuals were genotyped with
Affymetrix Genome-Wide Human SNP array 6.0. We
discarded SNPs with p-values for Hardy–Weinberg equi-
librium (HWE) less than 10–5 or MAF less than 0.01,
leaving 516,610 SNPs for subsequent analysis. The pro-
portion of genotypes identical between individuals in
lation substructure. QQ-plots were generated from results of 10,000
rkers was 2, and that their minor allele frequencies were generated as
.01. (a) Q=2 and D'=0, (b) Q=2 and D'=0.5, (c) Q=5 and D'=0, and



Figure 5 QQ-plots for dichotomous phenotypes in the presence of population substructure. QQ-plots were generated from results of
10,000 replicates for quantitative phenotypes. We assumed that the number of markers were 2, and that their minor allele frequencies were
generated as U(0.1, 0.5). ρ was assumed to be 0.2, and Wright’s FST was assumed to be 0.01. (a) Q=2 and D'=0, (b) Q=2 and D'=0.5, (c) Q=5 and
D'=0, and (d) Q=5 and D'=0.5 were assumed respectively.
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each family was calculated and individuals with incon-
sistency between the genetic and reported relationship
(n = 58) were excluded. At the same time, individuals
with coding error about type of twin status were ex-
cluded, and in total genotypes for 1801 individuals were
used for analysis.
The body mass index (BMI) is defined as individuals’

body mass divided by the square of their height and the
waist-hip ratio (WHR) is the ratio of the circumference
of the waist to that of the hips. The triglyceride (TG) is
an ester derived from glycerol and three fatty acids, and
we took a logarithm to TG. With these three phenotypes
we performed joint analysis to identify the disease sus-
ceptibility loci for obesity-related phenotypes. Age and
sex were included as covariates for the linear mixed
model and BLUP was utilized as offset for MFQLS. The
number of individuals with missing phenotypes for BMI,
WHR, and TG were 4, 1, and 28, respectively, and their
tijq were assumed to be 0. For comparison, EMMAX
[26] based on linear mixed model was separately applied
for each phenotype and covariates used for MFQLS were
also included as those for EMMAX. We calculate gen-
etic relationship matrix with common SNPs and they
were used as variance-covariance matrix for EMMAX to
adjust the population substructure.
The QQ plots in Figure 6 show that the results for the

EMMAX and MFQLS preserve the nominal significance
level, and Manhattan plots in Figure 7 demonstrate that
the results from MFQLS are more significant than the
results from EMMAX. Genome-wide significance level
with Bonferroni correction is 9.68 × 10–8 and Table 6
shows the results for SNPs of which p-values were less
than 5 × 10–7 for EMMAX or MFQLS. rs651821 is an
unique genome-wide significant result and the p-value
of rs651821 derived by MFQLS was markedly less than
those derived by EMMAX. P-values of rs17119975 and
rs4417316 were larger than the significance level by
Bonferroni correction but they are still expected to be
promising candidate disease susceptible loci. In particu-
lar, the genetic positions of these three SNPs were simi-
lar, and we checked the linkage disequilibrium between
theses SNPs with pairwise r2 from the Chinese and



Table 4 Empirical power estimates for quantitative
phenotypes in the presence of population substructure

FST ρ Q D' MMASTOR MFBAT MFQLS

0.01 0.2 2 0 0.5020 0.1935 0.5680

2 0.5 0.6860 0.3530 0.7570

5 0 0.7380 0.3610 0.7965

5 0.5 0.9065 0.6430 0.9180

0.5 2 0 0.4765 0.1630 0.5300

2 0.5 0.6710 0.3365 0.7390

5 0 0.6820 0.2990 0.6975

5 0.5 0.8450 0.5057 0.8600

0.05 0.2 2 0 0.4880 0.1925 0.5330

2 0.5 0.6550 0.3250 0.6925

5 0 0.7210 0.3465 0.7375

5 0.5 0.8765 0.6430 0.8885

0.5 2 0 0.4555 0.1620 0.4830

2 0.5 0.6335 0.3150 0.6745

5 0 0.6525 0.2995 0.6570

5 0.5 0.8160 0.4850 0.8190

The empirical power was estimated using 2,000 replicates at the 0.005
significance level. We assumed that the number of markers was two, and that
their minor allele frequencies were generated as U(0.1, 0.5).

Table 5 Empirical power estimates for dichotomous
phenotypes in the presence of population substructure

FST ρ Q D' MMQLS MFBAT MFQLS

0.01 0.2 2 0 0.2075 0.0565 0.2350

2 0.5 0.3365 0.1135 0.3795

5 0 0.3455 0.0975 0.3825

5 0.5 0.6025 0.2330 0.6455

0.5 2 0 0.1830 0.0545 0.2140

2 0.5 0.2900 0.1165 0.3120

5 0 0.2855 0.0910 0.3240

5 0.5 0.5345 0.2200 0.5965

0.05 0.2 2 0 0.1975 0.0575 0.2300

2 0.5 0.2840 0.0995 0.3210

5 0 0.2990 0.0915 0.3335

5 0.5 0.5405 0.2140 0.5860

0.5 2 0 0.1680 0.0595 0.2065

2 0.5 0.2605 0.1095 0.2930

5 0 0.2620 0.0910 0.3025

5 0.5 0.4835 0.1800 0.5370

The empirical power was estimated using 2,000 replicates at the 0.005
significance level. We assumed that the number of markers was 2, and that
their minor allele frequencies were 0.2.
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Japanese data in the HapMap Release 3. rs17119975 and
rs4417316 were in linkage disequilibrium with r2 = 0.823,
but r2 between rs651821 and the others are less than
0.01. Small p-values of rs17119975 and rs4417316 may
be generated with the same genetic component even
though both are located in different genes, and it should
be noticed that the smallest p-value for rs17119975 and
rs4417316 was found with MFQLS.
Based on those results, we conducted the gene-based

analysis with MFQLS for those three genes. All SNPs in
each gene were utilized for the joint analysis of multiple
phenotypes and multiple genotypes. Single SNP is lo-
cated in APOA5, and three SNPs are in BUD13 and
ZNF259. The result for APOA5 is same as results for
rs651821. Thus, our MQLS statistics assumes that Q = 3
and M = 1 for APOA5, and Q = 3 and M = 3 for BUD13
and ZNF259. Table 7 shows results from the MFQLS
analyses, and we found that APOA5 and ZNF259 are
genome-wide significant even though the genome-wide
association analyses with M = 1 identified only a single
genome-wide significant SNP. Therefore, the analyses of
multiple genotypes provided more genome-wide signifi-
cant results, and seem to be efficient strategy for associ-
ation analysis.

Discussion
In this report, we have extended a score test based on
the quasi-likelihood to joint analysis of multiple pheno-
types and genotypes. The proposed method can be ap-
plied to dichotomous and quantitative phenotypes, and
it is statistically valid even in the presence of population
substructure. With extensive simulation studies, we
found that the proposed method is statistically more effi-
cient than existing methods. The genome-wide associ-
ation analysis of the HTK cohort with M = 1 and Q = 3
required 13 minutes and 26 seconds. The pedigree struc-
ture does not affect the computational intensity and thus
we can conclude that the proposed method is computa-
tionally efficient enough to complete genome-wide asso-
ciation analysis using a few thousand individuals within
a few hours. The software for the proposed method is
downloadable from http://healthstat.snu.ac.kr/software/
mfqls/.
The proposed method is based on quasi-likelihood

[31-33,44] and the relationship of the proposed method
with the existing methods based on quasi-likelihood can
be explained by different choices of V and μ. For in-
stance, if M and Q are 1, the MASTOR statistic [44]
used the phenotypic variance covariance matrix and
BLUP for V and μ, respectively. If an identity matrix and
prevalence are used, our method is equivalent to MQLS
[31]. We empirically confirmed that, in retrospective
analysis, the identity matrix was the most efficient
choice for V and the most efficient choice of offset can

http://healthstat.snu.ac.kr/software/mfqls/
http://healthstat.snu.ac.kr/software/mfqls/


Figure 6 QQ-plots for the results from the genome-wide association study. (a) BMI, (b) WHR and (c) logTG was analyzed with EMMAX based
on Linear Mixed Model. (d) BMI, WHR and logTG were jointly analyzed using MFQLS.

Figure 7 Manhattan-plots for the results from the genome-wide association study. (a) BMI, (b) WHR and (c) logTG was analyzed with
EMMAX based on Linear Mixed Model. (d) BMI, WHR and logTG were jointly analyzed using MFQLS.
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Table 6 Significant results from genome-wide association
study

SNP CHR POS Gene Minor
allele

EMMAX MFQLS

rs651821 11 116167789 APOA5 C 1.075 × 10-12 2.295 × 10-14

rs17119975 11 116139767 BUD13 C 2.191 × 10-7 1.940 × 10-7

rs4417316 11 116157511 ZNF259 T 3.121 × 10-7 3.138 × 10-7
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be either BLUP or prevalence, depending the sampling
schemes [31,33]. Our results for the joint analysis of
multiple genotypes and phenotypes also yielded similar
results. However, families for association analysis are
often ascertained based on some family members and
the choice of offset is not clear in such a scenario. This
will be further investigated in our follow-up studies.
The proposed methods test the homogeneity of geno-

type distribution along the phenotypes, but this retro-
spective analysis is expected to be less efficient than the
prospective analysis of random samples. However, it has
recently been shown that power loss for retrospective
analysis is often negligible [33], and the retrospective
analysis can be preferred because of their flexibilities for
genetic association analysis. For instance, first, the pro-
posed method is robust to outliers and nonnormality of
phenotypes. While the genetic heterogeneity between in-
dividuals can be adjusted with an estimated kinship coef-
ficient matrix, nonnormality and outliers of phenotypes
often lead to loss of validity or efficiency of the statistical
inference [33]. In particular, when multiple samples are
pooled, the heterogeneity of phenotypic distributions be-
tween samples requires stratified analysis, but the het-
erogeneity of genotypes between individuals may be
controlled by using a genetic relationship matrix for
retrospective analysis, which enables the direct analysis
of the pooled sample. Second, the uncertainty of missing
genotypes can be controlled using the proposed method.
Missing genotypes are usually imputed based on linkage
disequilibrium, and they were utilized for association
analysis without consideration of the uncertainty of the
imputed genotypes. However if the variation of the im-
puted genotypes is substantial and it is not considered
for genetic association analysis, statistical inference can
be invalidated. However the proposed method can con-
sider the uncertainty of the imputed genotypes, and it
enables the valid statistical inference in such a scenario.
Table 7 Gene-based association analysis for APOA5,
BUD13 and ZNF259

CHR Gene List of SNPs P-value

11 APOA5 rs651821 2.295 × 10-14

11 BUD13 rs11600380, rs17119975, rs1145208 1.331 × 10-5

11 ZNF259 rs4417316, rs6589566, rs603446 2.044 × 10-9
Even though GWAS have successfully identified many
genetic variants for diseases in the past decade, our experi-
ence has revealed that further investigation of the analysis
strategies for reducing false negative findings is necessary.
The significant results from our analysis with simulated
data and real data for obesity indicated that joint analysis
with multiple phenotypes and genotypes may provide a
breakthrough in genetic association analysis.

Conclusion
We proposed a new method for the joint analysis of
multiple phenotypes and genotypes. There is no uni-
formly most powerful method for the joint analysis and
the statistically most efficient method depends on the
unknown disease model. The proposed method assumes
that multiple genes have a causal effect on multiple phe-
notypes, and the genotype-phenotype models are multi-
dimensional, multivariate analyses. In such a scenario,
our method is expected to be an efficient strategy. The
proposed method is implemented with C++ and the
computationally efficient at the genome-wide scale. We
feel the current methods open new ways to identify the
disease susceptibility loci.
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