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Abstract

Background: Controlled vocabularies such as the Unified Medical Language System (UMLS®) and Medical Subject
Headings (MeSH®) are widely used for biomedical natural language processing (NLP) tasks. However, the standard
terminology in such collections suffers from low usage in biomedical literature, e.g. only 13% of UMLS terms appear in
MEDLINE®.

Results: We here propose an efficient and effective method for extracting noun phrases for biomedical semantic
categories. The proposed approach utilizes simple linguistic patterns to select candidate noun phrases based on
headwords, and a machine learning classifier is used to filter out noisy phrases. For experiments, three NLP rules were
tested and manually evaluated by three annotators. Our approaches showed over 93% precision on average for the
headwords, “gene”, “protein”, “disease”, “cell” and “cells”.

Conclusions: Although biomedical terms in knowledge-rich resources may define semantic categories, variations of
the controlled terms in literature are still difficult to identify. The method proposed here is an effort to narrow the gap
between controlled vocabularies and the entities used in text. Our extraction method cannot completely eliminate
manual evaluation, however a simple and automated solution with high precision performance provides a
convenient way for enriching semantic categories by incorporating terms obtained from the literature.
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Background
Due to the rapid growth of biomedical literature, machine
learning and natural language processing (NLP) tech-
niques have gained in popularity for (semi-)automatically
extracting useful information [1]. A fundamental step in
biomedical language processing is to identify terms repre-
senting entities, e.g. genes, organisms, diseases and chem-
icals [2]. High-level information extraction such as event
extraction and biological network discovery comes next
after necessary terms are correctly identified [3].
A term represents a particular concept an author

intends to discuss, and the goal of term identification is
to recognize the term and capture its underlying mean-
ing [4]. Hence, term identification and concept extraction
are often used interchangeably [5,6]. Approaches for term
identification fall into three categories [1,4,7]: dictionary-
based, rule-based and statistical-based. Dictionary-based
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approaches utilize existing terminological resources in
order to identify term occurrences in text [4]. Since sim-
ple dictionary look-up has limited effectiveness, lexical
knowledge of target terminologies is often employed as
well [8-10]. Rule-based approaches find terms by building
rules that describe naming structures for a certain con-
cept [11-13]. These methods accurately identify known
patterns, however manual rule construction is costly and
time-consuming. The rules designed for a concept nor-
mally cannot be applied to other concepts. Statistical (or
machine learning) approaches rely on word distribution
for discriminating term and non-term features [14-16].
The key to successfully train a statistical model is anno-
tated corpora [17-20], and the limited availability of such
gold-standard sets is one of the main difficulties. It is also
challenging to choose a set of discriminating features in
statistical approaches.
Although there are a plethora of works addressing the

term identification problem, most of them focus on only
one or a few biological concepts [5]. This is because
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rule- and statistical-based approaches usually depend
on special naming conventions or patterns specific to
terms of interest. Many biomedical applications, how-
ever, require recognizing numerous classes of terms rather
than recognizing only a few term classes [5,21]. The
use of existing terminologies through dictionary-based
or hybrid approaches has advantages in this regard. The
UnifiedMedical Language System (UMLS) [22], for exam-
ple, comprises more than two million concepts obtained
from over 100 resources. While UMLS was not pri-
marily created for natural language processing and text
mining, it has been shown that UMLS can be success-
fully applied to certain biomedical and clinical problems
[23-26].
A major pitfall of using controlled vocabularies such

as UMLS and Medical Subject Headings (MeSH) for text
mining is their low usage in biomedical literature [21].
UMLS aims at representing biological concepts and rela-
tionships and MeSH is for indexing articles and books in
the life sciences. Thus, it is understandable to have little
overlap between standard terminologies and terms used
in written communication. McCray et al. [27] found 10%
of the UMLS terms appeared in a set of 439,741 MED-
LINE abstracts. Using flexible stringmatching techniques,
Srinivasan et al. [28] reported that 34% of the UMLS
terms were found in titles and abstracts in MEDLINE.
A recent study [29] also showed only 518,835 UMLS
terms (13%) appeared in MEDLINE. SemCat [30,31] is
a database containing semantically categorized entities
for genomics. More than 10 knowledge resources includ-
ing UMLS, GENIA [18], Entrez Gene [32] and UniProt
[33] were used and it contains over 10 million entries.
We tested how many SemCat terms are consistent with
PubMed text in the following sense. A SemCat term was
represented by all contiguous word bigrams appearing in
it. A SemCat term was rated consistent with PubMed text
if all its bigrams appeared in PubMed text. Our analysis
revealed that 41% of SemCat terms were compatible with
PubMed abstract text.
The low overlap between UMLS and PubMed text has

led to a few efforts for enriching controlled vocabularies.
Mostly, it has been done by either filtering UMLS terms
[21,27,29,34] or reclassifying UMLS concepts [35,36] for
NLP problems. Bodenreider et al. [37], however, sug-
gested an idea of using adjectival modifiers and demod-
ified terms to extend the UMLS Metathesaurus. In this
approach, terms were extracted fromMEDLINE with 83%
accuracy. Here, we address the same task, i.e. to extend
a controlled vocabulary by adding new terms found in
biomedical articles. The method we propose is based on
how sentences are constructed in English, and does not
require complicated NLP techniques. If a headword rep-
resents a unique concept, noun phrases that employ the
headword become candidate terms. Since our goal is to

extend existing terminologies, we apply three linguistic
patterns to find new terms related to these candidates.
The first pattern gives conditions which allow one to
remove the headword. The second and third patterns find
terms that are defined by headwords. After these pro-
cedures, a support vector machine (SVM) classifier is
used to filter out noisy phrases. For experiments, Sem-
Cat [31] was used for training the classifier, and the
extracted terms were manually evaluated by three annota-
tors. The headwords used for the experiments were “gene”,
“protein”, “disease”, “cell” and “cells”. The results showed
over 93% precision on average for the three extraction
patterns.
The paper is organized as follows. In the next section,

we describe our approach that uses linguistic patterns
and machine learning classifiers for extending a con-
trolled vocabulary. This is followed by results and dis-
cussion for the experiments performed on SemCat and
PubMed abstracts. Conclusions are drawn in the last
section.

Methods
Our approach consists of three steps to identify semantic
terms from PubMed. The first step is to obtain head-
words uniquely corresponding to concepts. The concept
of a phrase is mostly determined by the headword. Hence,
this procedure guarantees that we always examine the
same concept phrases. The next step is to extract candi-
date terms using linguistic patterns. This process either
removes the headword or finds neighboring terms that are
semantically linked to the headword. However, the terms
extracted from the linguistic patterns may be noisy, thus a
SVM classifier is applied to eliminate irrelevant terms in
the last step.

Ambiguity of headwords
In a named entity, a word to the right is more likely
to be the headword or the word determining the nature
of the entity than a word to the left [38]. Therefore,
if a headword represents a unique concept, the named
entity with the headword most likely conveys the same
concept.
Table 1 shows our analysis on the headwords for the

gene/protein category in SemCat. For each term, either
the last word or if a preposition is present, the last word
before the preposition was considered as a headword.
We first chose the headwords that appeared more than
20 times in this SemCat category. Second, the SemCat
terms with these headwords were filtered by SVM clas-
sifiers. These SVM classifiers were built in the same way
described in the following subsections. A reviewer judged
the ambiguity of the selected headwords. In the table,
“gene” and “protein” are always used for gene/protein
names. “regulator” and “antigen” are often used for
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Table 1 Ambiguity of headwords for gene/protein names in SemCat

Gene/protein Ambiguity Headwords

Yes No gene, protein, kinase, receptor, transporter, pseudogene, enzyme, peptide, polypeptide, glycoprotein, lipoprotein,
symporter, antiporter, collagen, polyprotein, cotransporter, crystallin, lectin, globin, tubulin, oncogene,
phosphoprotein, ferredoxin, opsin, antibody, porin, flavoprotein, homeobox, actin, adhesin, isoenzyme, integrin,
lysozyme, chaperonin, globulin, ribonucleoprotein, immunoglobulin, isozyme, cadherin, transcript, myosin,
apoprotein, cyclin, autoantigen, hemoglobin, spectrin, cytochrome, flagellin, tropomyosin, kinesin, adaptin, keratin,
peroxiredoxin, pilin, chemokine, casein, catenin, ferritin, enkephalin, histone, giardin, interferon, albumin, trypsin,
glutaredoxin, metallothionein, cyclophilin, proteolipid, mucin, vasopressin, proteoglycan

Ambiguous Low -ase (i.e. terms ending in “ase”), regulator, antigen, isoform, inhibitor, repressor, hormone, toxin, ras, carrier, suppressor,
ligand, translocator, phosphate, thioredoxin, neurotoxin

High Greek letters (e.g. alpha, beta, ...), Roman numerals, short strings (e.g. psi, orf, ib, ...), precursor, subunit, homolog,
chain, factor, component, family, product, channel, activator, system, variant, chaperone, superfamily, molecule,
pump, exchanger, element, sequence, resistance, construct, allergen, exporter, transducer, sensor, finger, modulator,
effector, antiterminator, fusion, defective, antagonist, locus, wing, acid, receiver, para, cofactor, spot, tail, pigment,
class, coma, exon, interactor, coactivator

Rarely used content, percentage, gain, frame, length, ratio, response, yield, defect, fiber, resistant

No No region, domain, complex, form, fragment, binding, weight, transport, member, cell, containing, fluid, related,
associated, syndrome, putative, biosynthesis, repeat, activity, segment, preparation, smear, subfamily, dependent,
terminus, substrate, determinant, site, level, motif, specific, subtype, mrna, dna, synthesis, fibroblast, cdna, cluster,
assembly, membrane, mutant, transmembrane, virus, terminal, group, hybrid, flip, urine, function, number,
periplasmic, yield, rich, plasmid, rate, metabolism, fold

For each term, either the last word or the word before a preposition was considered as a headword. The uniqueness and the ambiguity for being a gene/protein name
were judged by an annotator.

gene/protein names, but it is difficult to determine the
correct category without considering the context. Some
headwords such as “region” and “domain” are labeled as
“No”. This is due to incorrect terms appearing in Sem-
Cat. Most of these cases represent terms where a protein
name is followed by the headword, “region” or “domain”,
placing these terms in a different category. Our analy-
sis of these headwords may in some cases be debatable.
However, it suggests that there are many unambiguous
headwords.

For our study, we chose “gene”, “protein”, “disease”, “cell”
and “cells” for unique concept headwords. “gene”, “protein”
and “disease” are frequently used as singular in PubMed,
whereas the plural is more common for “cell”. Hence, we
examined “cells” in addition to the singular, “cell”.

Linguistic patterns for term extraction
The phrases that have unique concept headwords do not
require further investigation as semantic categories are
already determined by the headwords. For example, any

Figure 1 An example for Linguistic Pattern 1. This pattern evaluates whether a term without a keyword appears in the same abstract. For
“infantile autism disease”, “infantile autism” is extracted and checked if it appears in the same abstract (See the red box in the title).
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Figure 2 An example for Linguistic Pattern 2. This pattern utilizes the pattern, where a term is defined and explained after a “, (appositive)”.
“Coflin” and “ArhGAP9” are obtained from the headword, “protein” using this pattern.

phrases ending with “protein” always represent the con-
cept, “protein” in PubMed. One way to identify other
phrases with the same concept is to find phrases that share
the same semantic property. Thus, we propose three lin-
guistic patterns that find candidate phrases within or near
unique concept phrases.

Linguistic Pattern 1
The first linguistic pattern extracts a candidate phrase by
discarding the headword. The candidate phrase is then
verified by checking whether the same abstract contains
the candidate as a noun phrase without the headword.
Figure 1 shows an example of Linguistic Pattern 1. The
method first finds the candidate, “infantile autism”, by
removing the unique concept headword, “disease”. Next,
it searches the abstract whether “infantile autism” is used
elsewhere in the same abstract. In this example, “infan-
tile autism” appears in the title, hence it is retained as a
candidate phrase. This second step is crucial because it
ensures that the candidate is used for a named entity in
the abstract.

Linguistic Pattern 2
The second and the third patterns utilize the written
forms, where headwords are used to define other phrases.
The second linguistic pattern is, “X, a/the ... Y ”, where
X is a noun phrase and Y is a headword. Since X is
defined by the phrase that includes the headword Y , X
and Y may indicate the same concept. Figure 2 presents
an example for Linguistic Pattern 2. “Coflin” is defined as
“a 21kDa actin-binding protein”. “ArhGAP9” is defined as
“a novel MAP kinase docking protein”. Thus, “Coflin” and
“ArhGAP9” are reasonable candidates in this example.

Linguistic Pattern 3
The last pattern uses the same idea as Linguistic Pattern
2, however it generalizes “is a” relations found in Yeganova
et al. [39]. Yeganova et al. proposed an alignment-based
method to learn frequent generic patterns that indicate
a hyponymy/hypernymy relationship between a pair of
noun phrases. Table 2 lists 40 patterns generated by the
alignment-based technique.We summarize these patterns
as “X is/are/as DT ... Y ”, where X is a noun phrase, DT
is a determiner and Y is a headword. Figure 3 depicts

an example for Linguistic Pattern 3. “TBCE” is described
as “a tubulin polymerizing protein” and “Cholangiocytes”
are described as “the epithelial cells”. Hence, “TBCE” and
“Cholangiocytes” become candidate phrases.
The linguistic patterns proposed here are limited to

three cases, but they might be extended to include
more patterns using automatic knowledge acquisition
methods [40,41]. Our study, however, focuses on the over-
all framework to extract and identify candidate terms
from PubMed. An attempt to use automatic knowledge
acquisition methods remains as future work.

Candidate term classification
Candidate phrases obtained from the linguistic patterns
may be of good quality already since they are identified

Table 2 List of “is a” relations identified in Yeganova et al.
[39]

X is a Y X is a potent Y

X are Y X is the most common Y

X and other Y X are rare Y

X as a Y X is a widely used Y

X such as Y X is an uncommon Y

X is an Y X is an autosomal dominant Y

X as an Y X is a form of Y

X is an important Y X is one of the major Y

X a new Y X is a chronic Y

X are the most common Y X and other forms of Y

X is a rare Y X is a broad spectrum Y

X is a novel Y X is the primary Y

X is a major Y X is a rare autosomal recessive Y

X is an essential Y X is the most common type of Y

X was the only Y X is the second most common Y

X was the most common Y X are the most frequent Y

X is a common Y X is the most widely used Y

X is a new Y X is the most frequent Y

X is a complex Y X is the most common primary Y

X is an effective Y X is one of the major Y

These patterns are summarized as “X is/are/as DT ... Y” in our method, where X is
a phrase, DT is a determiner and Y is a headword.
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Figure 3 An example for Linguistic Pattern 3. This pattern utilizes the pattern, where a term is defined or explained using “is”, “are” or “as”. “TBCE”
and “Cholangiocytes” are defined as “a tubulin polymerizing protein” and “the epithelial cells”, respectively.

from headwords with unique concepts. This is particularly
true for Linguistic Patterns 2 and 3. But, Linguistic Pat-
tern 1may havemore noisy terms because it only validates
whether candidate phrases are used as named entities.
For term extraction, precision is also more important
than recall. Therefore, we apply a machine learning clas-
sifier to eliminate noisy candidate terms. For this machine
learning approach, we first obtain features from training
data, i.e. a controlled vocabulary, and an SVM classifier is
trained using the extracted features.

Features
Our approach uses four feature types: basic, prefix, suffix
and headword features. Basic features are trigrams of let-
ters obtained from a phrase [42]. Prefix features add the
first two and three characters for each word appearing in
a phrase. The headword feature is a special tag for indicat-
ing a headword source. Headwords play an important role
to identify a concept, hence the features extracted from
headwords are handled separately. In addition, suffixes are
sometimes a good indicator to decide the concept. For
instance, the suffix “-ase” (Table 1) is often used to name
enzymes. For this reason, suffix features add the last three,
four and five letters from a headword if the headword
contains more than five characters.
Here are the features obtained from the phrase, “mosaic

virus”:

• Prefix features (“$”): “mo$”, “mos$”
• Common features: “mos”, “osa”, “sai”, “aic”

Table 3 Dataset used for training SVM classifiers

Headwords Positive Negative SemCat catogories

Gene 3532163 1631676 GENE_OR_PROTEIN

DNA_MOLECULE

Protein 3533621 1630690 GENE_OR_PROTEIN

PROTEIN_MOLECULE

Disease 88653 5096888 DISEASE_OR_SYNDROME

INJURY_OR_POISONING

SIGN_OR_SYMPTOM

Cell(s) 14581 5178142 CELL

For each keyword, terms from relevant SemCat categories were merged and
used for the classifiers.

• Prefix features (“$”) from the headword (“!h”) :
“vi$!h”, “vir$!h”

• Common features from the headword (“!h”): “vir!h”,
“iru!h”, “rus!h”

There are no suffix features in this example because the
headword, “virus”, has only 5 characters.

SVM classifiers
We apply an SVM classifier with the modified Huber
loss function [43,44] for filtering noisy terms that are
introduced by the linguistic patterns. This method fol-
lows standard SVM learning, but replaces the hinge loss
function with the modified Huber loss function [43].
Let T denote the size of the training set and −→Xi be the

binary feature vector of the ith example in the training set.
The class indicator yi = 1 if the example is annotated as
positive and yi = −1 otherwise. Let −→w denote a vector of
feature weights for −→Xi . Let θ denote a threshold parame-
ter, and let λ denote a regularization parameter. The cost
function is then given by

C = 1
2
λ|−→w |2 + 1

T

T∑
i=1

h
(
yi

(
θ + −→w · −→Xi

))
, (1)

where the function h is the modified Huber loss function,

h(z) =

⎧⎪⎪⎨
⎪⎪⎩

−4z, if z ≤ −1,

(1 − z)2, if − 1 < z < 1,

0, if 1 ≤ z.

(2)

Table 4 SVM performance using 10-fold cross-validation
on the training set for five keywords, “gene”, “protein”,
“disease” and “cell(s)”

Headwords Precision Recall F1

Gene 0.9721 0.9838 0.9779

Protein 0.9738 0.9846 0.9792

Disease 0.8938 0.7555 0.8188

Cell(s) 0.9233 0.6694 0.7761
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Table 5 Performance for Linguistic Pattern 1

Headwords Total New Evaluated Reviewer 1 Reviewer 2 Reviewer 3

Gene 37678 12461 100 91.0% 91.0% 91.0%

Protein 24000 8630 100 91.0% 91.0% 91.0%

Disease 438 163 163 93.9% 94.5% 93.3%

Cell 50 21 21 95.2% 95.2% 95.2%

Cells 565 380 380 97.1% 97.6% 97.4%

Precisions for each annotator are shown for “gene”, “protein”, “disease”, “cell” and “cells”. “Total” means the total number of obtained terms. “New” and “Evaluated”
mean the number of terms not in SemCat and the number of evaluated terms by reviewers, respectively.

The values of −→w and θ minimizing C are determined
using a gradient descent algorithm. The regularization
parameter λ is computed from the training set as

λ = λ′〈|−→x |〉2, (3)

where 〈|−→x |〉 is the average Euclidean norm of the feature
vectors in the training set. For experiments, the parame-
ter λ′ was adjusted to maximize 10-fold cross-validation
performance on the training set, which yielded 0.0000001.
The modified Huber function was used in our approach
as it has produced good performance in other classifica-
tion problems [31,45]. However, there was no significant
improvement compared to using the hinge loss function
in the proposed term extraction problem.

Results and discussion
Dataset
The proposed method requires a training set for the SVM
classifier. For training, we need a controlled vocabulary
for “gene”, “protein”, “disease” and “cell(s)”, and the Sem-
Cat [31] database is used for creating positive and negative
sets. SemCat is not publicly available due to license issues
for some resources included.
Table 3 presents the number of positive and negative

examples employed for each headword. For positive
sets, the SemCat categories, “GENE_OR_PROTEIN/
DNA_MOLECULE”, “GENE_OR_PROTEIN/PROTEIN_
MOLECULE”, “DISEASE_OR_SYNDROME/INJURY_
OR_POISONING/SIGN_OR_SYMPTOM” and “CELL”
are used for the headwords, “gene”, “protein”, “disease”
and “cell(s)”, respectively. For a given category, all terms

from other SemCat categories are utilized for negative
sets. Moreover, all terms are lemmatized [46], and only
PubMed-compatible terms are included to remove the
terms not compatible with PubMed as well as to reduce
the size of training sets. A SemCat term is called com-
patible if all contiguous bigrams appearing in the SemCat
term also appear in PubMed abstracts. For candidate
term extraction, PubMed abstracts (July, 2014) are used,
and this collection contains more than 24 million records.

Noun phrase detection
In our experiments, MedPost [47] was used for Part-
Of-Speech (POS) tagging, and all programs were imple-
mented in C/C++. To identify a noun phrase for a given
headword, the headword (noun) is first found. If there
is another noun to the right, the phrase is not consid-
ered as a correct noun phrase for extraction. Starting from
the headword found in a sentence, add tokens adjacent to
the left successively as long as they are adjectives, nouns
or numbers. The result is a noun phrase of interest for
further processing.

SVM performance
The SVM classifier is applied in the last step, and filters
candidate phrases to include only correct terms as output.
Therefore, it is important to have high precision perfor-
mance in this stage. Table 4 shows precision, recall and
F1 scores for “gene”, “protein”, “disease” and “cell(s)” using
10-fold cross-validation on the training set. In the table,
both precisions and recalls are higher than 97% for the
headwords, “gene” and “protein”. However, recalls drop to

Table 6 Performance for Linguistic Pattern 2

Headwords Total New Evaluated Reviewer 1 Reviewer 2 Reviewer 3

Gene 1285 386 100 77.0% 77.0% 76.0%

Protein 3484 1048 100 93.0% 93.0% 93.0%

Disease 274 64 64 98.4% 98.4% 96.9%

Cell 77 63 63 98.4% 98.4% 98.4%

Cells 56 30 30 96.7% 96.7% 96.7%

Precisions for each annotator are shown for “gene”, “protein”, “disease”, “cell” and “cells”. “Total” means the total number of obtained terms. “New” and “Evaluated”
mean the number of terms not in SemCat and the number of evaluated terms by reviewers, respectively.
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Table 7 Performance for Linguistic Pattern 3

Headwords Total New Evaluated Reviewer 1 Reviewer 2 Reviewer 3

Gene 5098 1230 100 90.0% 90.0% 90.0%

Protein 10439 3847 100 91.0% 91.0% 91.0%

Disease 4681 2298 100 99.0% 99.0% 99.0%

Cell 147 80 80 95.0% 95.0% 95.0%

Cells 112 69 69 98.6% 98.6% 98.6%

Precisions for each annotator are shown for “gene”, “protein”, “disease”, “cell” and “cells”. “Total” means the total number of obtained terms. “New” and “Evaluated”
mean the number of terms not in SemCat and the number of evaluated terms by reviewers, respectively.

75.55% and 66.94% for “disease” and “cell(s)”, respectively.
This is due to the imbalance between the number of pos-
itive and negative examples. Nevertheless, precisions are
still high, producing 94.08% on average. Thus, we expect
highly accurate terms after the SVM classification even
though we will lose some candidate phrases.
In our study, the modified Huber loss function was

used for the SVM classifier, but the performance improve-
ment was not significant over the standard SVM using the
hinge loss function. The SVM classifier with the modi-
fied Huber loss function produced 97.79%, 97.92%, 81.88%
and 77.61% F1 for “gene”, “protein”, “disease” and “cell(s)”,
respectively (Table 4), whereas the SVM classifier with the
hinge loss function showed 97.47%, 97.41%, 81.94% and
76.75% F1 for the same sets.

Performance on term extraction
After applying the linguistic patterns to PubMed
abstracts, and obtaining candidate terms, followed by
applying the SVM classifier to these terms, we obtained
a total of 88,384 unique phrases. Among these phrases,
57,614 terms were already in SemCat. 30,770 terms (35%)
were new, i.e. did not exist in current SemCat. Three
reviewers evaluated new terms, but for the headwords,
“gene”, “protein” (All Linguistic Patterns) and “disease”
(Linguistic Pattern 3), there were many newly discovered
terms. In these cases, 100 terms were randomly selected
and used for evaluation. See “Additional file 1” for all the
terms used for evaluation and their annotation results.
Tables 5, 6 and 7 present the size of evaluated sets

and precisions for the terms evaluated by three reviewers.
“gene” and “protein” are dominant in terms of the number
of extracted entities as PubMed is a major resource cover-
ing molecular biology, and genes and proteins outnumber
diseases and cell types by a wide margin. As shown in
the tables, all the three linguistic patterns achieve over
90% precision for the headwords, “gene”, “protein”, “dis-
ease”, “cell” and “cells”. Overall, Linguistic Patterns 2 and
3 produce more accurate results than Linguistic Pattern
1. This is because Linguistic Patterns 2 and 3 find terms
that are defined by the headwords using “, (appositive)” or
“is/are/as”, whereas Linguistic Pattern 1 encounters more
general terms.

In our study, it is impossible to evaluate recall because
true labels are not available for PubMed terms. However,
a useful estimation is possible by calculating recalls based
on SemCat terms. Table 8 shows the estimated recalls
for PubMed in Linguistic Patterns 1, 2 and 3. Recalls
were evaluated based on number of SemCat terms occur-
ring in PubMed that were discovered by the pattern. The
results are 14.0%, 10.6%, 4.8%, 2.4% and 2.8% recall overall
for “gene”, “protein”, “disease”, “cell” and “cells”, respec-
tively. Linguistic Patterns 1 and 3 describe more general
forms for term extraction, hence these patterns yield
higher recall than Linguistic Pattern 2. Table 9 presents
the estimated recalls for PubMed without applying SVM
classifiers. The recalls increase overall without SVM clas-
sification, discovering 16.3% of terms on average. Note
that the main goal of the proposed framework is to extract
new terms that do not appear in a standard terminology.
Incorporating more patterns [40,41] would increase the
recall.
Although our approach shows high precision overall,

the headword “gene” in Linguistic Pattern 2 (Table 6) pro-
vides only 77% precision. There are two common errors
that lead to incorrectly predicted terms. Here are a few
examples from the first type of error.

• They harbour a class 1 integron with an aadA1 gene
in the 855 bp variable region, a tet(A) gene, ...

• we introduced an oncogenic component of HBV , the
hepatitis B virus X (HBx) gene, ...

Table 8 Estimated recalls for Linguistic Patterns 1, 2 and 3

Headwords Pattern 1 Pattern 2 Pattern 3 Total

Gene 13.5% 0.6% 2.4% 14.0%

Protein 8.7% 1.6% 3.9% 10.6%

Disease 0.5% 0.4% 4.5% 4.8%

Cell 0.7% 0.5% 2.1% 2.4%

Cells 1.8% 0.9% 1.3% 2.8%

Average 5.0% 0.8% 2.8% 6.9%

As no true labels are available for PubMed terms, recalls were evaluated based
on number of SemCat terms occurring in PubMed that were discovered by the
pattern.
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Table 9 Estimated recalls for Linguistic Patterns 1, 2 and 3
without SVM classification

Headwords Pattern 1 Pattern 2 Pattern 3 Total

Gene 17.4% 0.8% 3.1% 18.2%

Protein 11.6% 2.3% 5.4% 14.2%

Disease 1.4% 0.6% 6.1% 6.8%

Cell 8.0% 1.0% 3.5% 10.7%

Cells 29.7% 1.7% 2.7% 31.6%

Average 13.6% 1.3% 4.2% 16.3%

As no true labels are available for PubMed terms, recalls were evaluated based
on number of SemCat terms occurring in PubMed that were discovered by the
pattern.

• Each repeat consists of the 35S rRNA gene, the NTS1
spacer, the 5S rRNA gene, and the NTS2 spacer.

As shown in the above, these errors occur because we
ignore some of the syntactic structures (phrase attach-
ment). Currently, we simply match the proposed linguistic
patterns without attention to such detail. Enumerations
could be recognized and excluded at some level of accu-
racy. The errors coming from incorrect parsing are more
complicated. Improvement here may come by either tak-
ing account of detailed syntactic analysis or improving
SVM classifier performance. Unlike the previous case, the
second error type is caused by semantics. The following
are some examples.

• ... were processed and sectioned to localize histone 3
mRNA, a cell cycle specific gene, by in situ
hybridization.

• Expression ofmegsin mRNA, a novel
mesangium-predominant gene, in the renal tissues of
various glomerular diseases.

During the review process, we decided to exclude
terms that were clearly considered as different con-
cepts. The examples here define “histone 3 mRNA” and
“megsin mRNA” as genes. But, there is the category,
“RNA_MOLECULE” in SemCat. It is our convention that
mRNA terms belong to “RNA_MOLECULE”. “mRNA” is

the only semantic case we found from our analysis. This
can be dealt with by building a rule, e.g. {mRNA} −→
{RNA_MOLECULE}.
Another case we found from error analysis is that a

term is valid, but the meaning is too general. For instance,
“fourth cell type” and “single cell type” clearly indicate a
type of cells, but it is uncertain what the cell type means.
Such terms are not useful for enriching SemCat. Thus,
we manually re-evaluated all the candidate terms using a
modified guideline, i.e. a term is marked as incorrect if
the term is too general. Table 10 shows precision results
with and without considering general terms. Precisions do
not change much for most cases, but there is a relatively
big impact on the headword “cell” for Linguistic Patterns 2
and 3. This may be a unique feature of how the headword
“cell” is mentioned in articles. A simple solution for this
problem is to adopt a stopword list for eliminating general
terms, but a careful design is necessary to build and apply
stopwords for candidate terms.

Conclusions
Most of the term identification methods currently avail-
able focus on detecting one or a few entities, hence
dictionary- or hybrid-based approaches have more advan-
tages in this regard. However, the low overlap between
standard terminologies and terms in biomedical liter-
ature is a major difficulty to widely adopt controlled
vocabularies for term identification. In this paper, we
seek a solution by enriching semantic categories using
entities in PubMed. The proposed method first finds
headwords identified with unique concepts, and linguis-
tic patterns are applied to extract candidate terms related
to the headwords. Finally, an SVM classifier is utilized
for removing incorrect terms. For experiments, the SVM
classifier was trained on SemCat terms, and candidate
terms were obtained from PubMed abstracts. The exper-
imental results demonstrate that the proposed method
is promising by achieving 93% precision on average
for the headwords, “gene”, “protein”, “disease”, “cell” and
“cells”.
Although our approach shows good performance, our

analysis suggests that more work needs to be done. Errors

Table 10 Performance comparison with or without including general terms

Headword
Original evaluation General terms excluded

Pattern 1 Pattern 2 Pattern 3 Pattern 1 Pattern 2 Pattern 3

Gene 91.0% 76.7% 90.0% 90.0% 73.0% 88.0%

Protein 91.0% 93.0% 91.0% 90.0% 89.0% 85.0%

Disease 93.9% 97.9% 99.0% 93.9% 96.4% 99.0%

Cell 95.2% 98.4% 95.0% 95.2% 71.4% 88.8%

Cells 97.4% 96.7% 98.6% 96.4% 90.0% 95.7%

“General” indicates a term is valid, but the meaning is too general and not useful for enriching SemCat. Scores are the precisions averaged from three reviewers.
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occur in three different forms: 1) enumeration or syntac-
tic error, 2) semantic error and 3) general term error. As
future work, we plan to address the first and the third
error types. More precise Part-Of-Speech (POS) tagging
and syntactic parsing can decrease enumeration and syn-
tactic errors. General termsmay be reduced by developing
a stopword list for our extraction technique.

Additional file

Additional file 1: Terms evaluated and annotation results. The terms
used for manual evaluation are presented for “gene”, “protein”, “disease”,
“cell” and “cells”. Annotated results for three reviewers are also listed
together.
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