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Background: Massive sequencing of genes from different environments has evolved metagenomics as central to
enhancing the understanding of the wide diversity of micro-organisms and their roles in driving ecological processes.
Reduced cost and high throughput sequencing has made large-scale projects achievable to a wider group of
researchers, though complete metagenome sequencing is still a daunting task in terms of sequencing as well as the
downstream bioinformatics analyses. Alternative approaches such as targeted amplicon sequencing requires custom
PCR primer generation, and is not scalable to thousands of genes or gene families.

Results: In this study, we are presenting a web-based tool called MetCap that circumvents the limitations of amplicon
sequencing of multiple genes by designing probes that are suitable for large-scale targeted metagenomics sequencing
studies. MetCap provides a novel approach to target thousands of genes and genomic regions that could be used in
targeted metagenomics studies. Automatic analysis of user-defined sequences is performed, and probes specifically
designed for metagenome studies are generated. To illustrate the advantage of a targeted metagenome approach, we
have generated more than 300,000 probes that match more than 400,000 publicly available sequences related to carbon
degradation, and used these probes for target sequencing in a soil metagenome study. The results show high
enrichment of target genes and a successful capturing of the majority of gene families. MetCap is freely available to users

Conclusion: MetCap is facilitating probe-based target enrichment as an easy and efficient alternative tool compared to
complex primer-based enrichment for large-scale investigations of metagenomes. Our results have shown efficient
large-scale target enrichment through MetCap-designed probes for a soil metagenome. The web service is suitable for
any targeted metagenomics project that aims to study several genes simultaneously. The novel bioinformatics approach
taken by the web service will enable researchers in microbial ecology to tap into the vast diversity of microbial
communities using targeted metagenomics as a cost-effective alternative to whole metagenome sequencing.
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Background

Microbial functional diversity is an area of interest and devel-
opment due to their wide diversity and functioning in eco-
logical processes [1,2]. Current knowledge of the key
organisms behind the biological processes is scarce for the
understanding of environment and climatic changes, bio-
remediation, symbiosis, biofuel production, medicine and
agriculture productivity [3,4]. The high functional diversity is
due to an extremely high diversity of microorganisms in our
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environment and it has been estimated that 16,000 to 8.3
million bacterial species can be found in one gram of non-
contaminated soil [5]. To understand the contribution of
different species in soil communities, next generation se-
quencing (NGS) enables us to sequence a larger part of a
metagenome than traditional sequencing like Sanger sequen-
cing. Nowadays, NGS is widely used in metagenomics due to
more possibilities to identifying novel sequence with high-
throughput yield, high molecular precision among individual
sequences and cost effective [6]. Whole metagenome se-
quencing can be important for functional and taxonomical
assessment of unexplored metagenomes. However, the
amount of sequencing required for adequate coverage of a

© 2015 Kushwaha et al,; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


http://soilecology.biol.lu.se/metcap/
mailto:sandeep.kushwaha@biol.lu.se
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Kushwaha et al. BMIC Bioinformatics (2015) 16:65

whole metagenome for analyzing a subset of genes is cum-
bersome in research studies [7,8]. Furthermore, downstream
bioinformatics analyses can have difficulties in segregating
large amount of non-target sequences from the targeted
ones. Targeted metagenomics thus provide an alternative
when studying specific gene families in metagenome com-
munities [9]. Among the available techniques, amplicon se-
quencing based on PCR primers for target enrichment is an
alternative approach to enrich certain genes of interest before
sequencing. However, in contrast to targeting highly con-
served regions such as 16S RNA, primer design for amplifi-
cation of more variable genes in a metagenome, such as
enzymes, is an intractable approach as it suffers from other
difficulties such as PCR inhibitor and chimeras, amplicon
length, cycle-numbers, specific amplification conditions
[10,11]. In this context, sequence capture technique can
make it possible to target regions of interest, while minimiz-
ing the fraction of off-targets on a large-scale. The sequence
capture technique picks up DNA fragments of interest from
a metagenomic DNA fragment pool through a user-designed
set of probes [12]. This method has been utilized successfully
in the field of medicine to preferentially sequence a targeted
region of a genome [13]. The identification of potential
probes is the primary requirement of sequence capture tech-
nique. There are several tools available for the generation of
functional gene arrays (FGA) that have been used for various
studies. Probes can be designed for a genome or specific set
of genes through OligoArray [14], OligoWiz2.0 [15], Oligo-
Picker [16], and YODA [17]. Hierarchical-Probe Design [18],
PhylArray [19], ProDesign [20], CommOligo [21], Metabolic
Design [22] and HiSpOD [23] were used in various metage-
nomic environmental studies. However, currently there is no
publicly available probe generation pipeline for targeting
multiple regions in metagenomic analyses. We are suggesting
here that designing of multiple probes suitable for the se-
quence capture technique will open the doors for large-scale
targeted metagenomic functional studies.

In the present study, the targeted metagenomics ap-
proach was applied to a soil metagenome to illustrate
both the efficiency of this novel technique and the devel-
opment of the open access probe design tool (MetCap).
MetCap aims at achieving high probe coverage over a
large amount of sequence data for targeted metagenomic
studies. This web resource enables automatic probe de-
sign for sequencing of a large number of genes and gene
families in a targeted metagenome using the sequence
capture technology.

Implementation

Probe designing scheme

Probe design is an important step in the sequence cap-
ture analysis, and the primary goal of the proposed tool
is to design a set of probes for the majority of clusters
from the input dataset. To achieve the objective, we test
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and used CD-HIT [24], ProDesign [20], Perl [25] and
Bioperl [26] to develop MetCap. The probe design pipe-
line involved an extraction of a large amount of data
from the National Center for Biotechnology Information
(NCBI) based on user input, filtering of extracted data
and intense processing for optimal probes with criteria
adjusted specifically to fit metagenomic studies. The
MetCap pipeline has five sequential steps of data pro-
cessing (Figure 1).

Step-I nucleotide sequence extraction and submission

The first phase of the pipeline is involved in the extraction
and submission of sequences. MetCap provides four dif-
ferent options for nucleotide sequence extraction from
NCBI identifiers: The NCBI accession number (either as
nucleotide id or as protein id) or GI number (nucleotide
or protein). The nucleotide sequence extraction process
uses Perl and Bioperl coupled with NCBI E-utilities [27].
MetCap is facilitating the single gene nucleotide sequence
extraction from accession and GI numbers while long se-
quences that are likely to be genomic sequences such as
contigs or scaffolds will be removed. MetCap provides an
option to download the nucleotide sequences that was re-
trieved by the extraction process. MetCap provides two
different options of sequence submission; firstly to execute
the pipeline by the submission of the extracted nucleotide
sequence through accession, or GI numbers from the ex-
traction process as described above. Secondly to start the
execution of the pipeline by direct submission of user-
collected nucleotide sequences that can be processed dir-
ectly in Step-II. This is the recommended approach when-
ever possible.

Step-Il data clustering

The CD-HIT clustering software has been used for clus-
ter identification on the basis of a given sequence iden-
tity threshold. CD-HIT clustering parameters (identity
threshold, word-size, comparing stands (-r), global se-
quence identity (-G), best cluster identification (-g) and
bandwidth of alignment (-b)) are interactive in the pipe-
line [24]. User can change these values in pipeline in
order to explore the clustering. Default values for clus-
tering in MetCap pipeline is set same as CD-HIT de-
faults values. This phase is computationally intense and
critical for the probe design because each cluster will be-
have like an individual group, and each cluster can have
hundreds of sequences.

Step-lll probe design

The third phase designs the initial probes through Pro-
Design. ProDesign generates keywords from sequences
then it matches the keywords with cluster sequences to
find out the probe candidates for each cluster. ProDesign
[20] was selected as the design tool since it is fast for a
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Figure 1 Flowchart of the MetCap probe designing pipeline.
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large number of sequences, easy to integrate into the
pipeline, and highly efficient among sequences with
moderate similarity between sequences that were used
to design the probes.

Step-1V probe redesign

The fourth phase designs the probes for those clusters
which were without probes after Step-III. MetCap can
identify and separate the clusters for which the probe
has not been designed by ProDesign, and will then check
the number of sequences in each cluster. If a cluster has
more than one sequence, a conventional probe design
approach will be used. First, all the sequences of clusters

will be aligned (multiple sequence alignment) and then a
consensus sequence will be generated from the aligned
sequences for each cluster at 90% sequence identity.
Probe tiling will then be performed through a given
length of probe over consensus sequences. Probe will be
filtered through a given melting temperature and GC-
content [28]. To increase the number of clusters with
probes, direct sequence tiling and filtering on user-
defined parameters was used for those clusters which
have a single sequence because every cluster has its own
relevance in targeted functional studies. All the gener-
ated probes will be added to the probes generated in
Step-III. The MetCap pipeline also provides options to
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change the parameters for redesigning at step IV. Step-
IV uses the same four parameters as in step-III; max-
imum expected number of probes per cluster, probe
length, melting temperature and GC content. While, the
same settings as in step-IIl are supposed to be used,
there are some cases when probes are not generated at
this step because there are no regions in the clusters that
fulfill the criteria. Therefore, users can change the values
of these parameters (increase/decrease) in step-IV to
produce additional probes at the probe redesign step.
Thus, the chance of designing probes for the clusters is
significantly increased.

Step-V output and summary

MetCap generates output for each step, and the gener-
ated output was stored and summarized in a zip-
compressed folder containing 6 files. Detailed descrip-
tions of the file names and a summary of the file
contents are given in Table 1.

Web implementation

The MetCap tool was installed on a Dell PowerEdge
T320 Server E5-2430 with 6 Core processors of 2.20
GHz, and running on CentOS 6.5, 64 bits. The applica-
tion is freely accessible from a web-interface which has
been developed in PHP version 5.5.10 [29] and other
freely available software such as CD-HIT [24] and Pro-
Design [20]. MetCap has two modes as web-interface.
First is an interactive mode, where user can test and
evaluate the results multiple times for small fraction of
data from large dataset. Later, the user can submit all se-
quences together through non-interactive batch submis-
sion option and user notification via email. User can
upload upto 100 MB file size through batch submission,
which is large enough to upload all the sequences of par-
ticular gene family (approx. 50,000) like sequences of
CAZy database. MetCap is using NCBI fasta format and
other pseudo fasta format which is written in the help
section of website. MetCap running time may be differ
due to variable NCBI response time for sequence

Table 1 List of MetCap generated files and their
descriptions

S.N. File Name

1. probe_run1_summary

File Description

Summary of initial probe generation

2. probe_run2_summary Summary of final probe generation

3. probe_file1 Contains the initially (first) generated
probes

4. probe_file2 Contains all probes from both
generations

5. core_cluster.txt Clustering file of submitted sequences

6. probe_non_redundant.ixt Non-redundant set of generated

probes
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extraction. Running time of MetCap for probe gener-
ation may be significantly reduced through direct se-
quence submission.

Sample and library preparation for sequence capture
experiment

An agricultural soil sample was taken from a farm in
Scania, South Sweden and DNA was extracted using a
Nucleospin soil DNA isolation kit [30]. A DNA rapid li-
brary for sequence capture was prepared using Roche’s
GS FLX rapid library preparation method. Probe-target
hybridization was carried out through normal capture
protocol according to the probe’s manufacturer (SeqCap
EZ from NimbleGen) at 47°C and used with a slightly
modified hybridization time of 24 hours instead of 72
hours (optimized for genomic regions with denser
probes for targets) to reduce the stringency level of
probes hybridizing to the DNA fragments [31]. Captured
DNA reads were sequenced using the GS FLX Titanium
system at the in-house 454 sequencing facility at the De-
partment of Biology, Lund University.

Similarity search and CAZy domain assignment

BLASTX similarity searches for sequenced reads were
performed through mpiBLAST on resources provided by
SNIC of UPPMAX ([32]. BLASTX searches were used
against a local targeted database, NCBI-NR and Uniprot
databases [33]. A CAZymes Analysis Toolkit (CAT) was
used for CAZy gene families assignment of the reads
[34].

Read assembly and mapping

GS de novo assembler was used for assembly of the se-
quenced reads whereas GS mapper was used for map-
ping of bacterial genomes and assembled reads [35].
BLAST Ring Image Generator (BRIG) was used for
graphical representation of reads mapping to bacterial
genomes [36].

Results and discussion

MetCap is a web tool with open access that can generate
thousands of targeted probes for large-scale metage-
nomic studies. Before designing MetCap, different avail-
able functional gene arrays generating software for
environmental studies were compared and evaluated
with parameters such as approaches used, types applied,
capacity of the software, probe specificity checking cri-
teria, platform and interface, current availability, and
run-time for large datasets. In the evaluation, low probe
coverage (i.e. number of clusters without probes) was
the major problem in most of the large-scale probe de-
signs. Short metagenomic sequences those with length
shorter than 100-200 bases may be a reason for low
probe coverage in some software, whereas extremely
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high and very low overlapping regions among the se-
quences of cluster could also be another reason for low
probe coverage, because it might be difficult to extract
the individual and group-specific seeds from sequences
from these regions. The results of the evaluation are
given in Additional file 1: Table S1. The comparison of
FGA generating software showed that ProDesign [20]
was the most efficient at generating probes that could
match the target sequences as well as capture the func-
tional diversity of highly similar genes from other organ-
isms (i.e. paralogs and orthologs). ProDesign uses a
spaced seed algorithm coupled with clustering, which is
excellent for reducing the sequence data load and poten-
tial probe generation for a group of sequences. Probe
specificity checking through input sequences makes it
highly time efficient as well. Moreover, it generates
group-specific probes with gaps less than 3 bases be-
tween seed words for the exploration of other sequences
of a group [20]. Generated probes were found efficient
for capturing of conserved and variable regions of a
group, which was further verified through multiple se-
quence alignment. The downside of ProDesign is low
probe coverage for clusters in metagenomic sequence
dataset because ProDesign is not very efficient to gener-
ate probe when groups contain highly divergent se-
quences, or when there are highly similar sequences
found in between groups [20]. As in many metagenome
studies, the number of sequences for each target was
very large and the diversity between the sequences was
very high. Consequently, high probe coverage is a major
challenge for large-scale metagenomics data sets.
MetCap uses a hybrid approach for large-scale data set
processing and can be used for probe design with any
set of user-defined sequences that are targeted in envir-
onmental metagenomics samples. In MetCap, initial
probes are designed through ProDesign software. In
order to increase the probe coverage for clusters, Met-
Cap identifies the clusters without probes, and collects
all the sequences of each cluster separately from user-
defined sequences for probe regeneration (Step-1V,
above). MetCap approach is producing higher number
of cluster with probes (Additional file 2: Table S2). The
probes generated through MetCap are not affected by
differences in abundance, since MetCap uses a clustering
and probe selection approach. Any highly abundant set
of sequences will be clustered and treated as one se-
quence. Probe selection is focused on maximizing the
coverage of a cluster to enhance the hybridization
chances. All the generated clusters will produce the
same number of probes with similar properties as de-
fined by the user. The optimal number of probes is also
an important factor for large-scale sequence capture, but
it is very hard to speculate on the exact number of
probes for the capturing of a whole cluster. MetCap can
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Table 2 Quality control results
Number of sequenced reads 138,970
Number of sequenced reads after filtering 129,198
Number of reads failed in quality control 9,772
Base count among filtered reads (bps) 44,281,009
Mean sequence length (bps) 3424212
Mean GC percent 63+ 5%

generate different numbers of probes for each cluster
from different regions to facilitate efficient capturing.
The MetCap pipeline generates the probes in two steps
and provides a summary of each step. MetCap Gener-
ated output (Table 1) can be downloaded when the ana-
lysis is finished.

Clustering (Step-1I) and probe designing (Step-III and
Step-IV) can be setup different because each step of
pipeline is independent from each other. Initially, Met-
Cap is performing clustering over thousands of se-
quences for probe generation. So, clustering threshold is
crucial step because it can affect the number of cluster
with probes. Therefore, we recommend using pipeline
on default settings and evaluate (number of clusters with
probes, number of probe per cluster) the output for each
change setting from default settings. So, user can
optimize the probe designing parameters to achieve
maximum clusters with probes. MetCap also calculates
the number of NimbleGen probe synthetic cycles for
synthesis of each of the generated probes for cost esti-
mation [37]. It should be noted that MetCap is inde-
pendent from the sequencing platform, and that the
sequence capture protocols are available for other se-
quencing platforms [38]. We demonstrated the effective-
ness of the MetCap approach through a large-scale
probe generation for an important and relatively well
studied biological process: carbohydrate decomposition.
To do this, three major public databases CAZy [39],
FOLy (now part of the CAZy database as class: Auxiliary
activities) [40] and Merops [41] were selected, and a
local database was created. This contained the four en-
zyme classes and one associated module of the CAZy
database, 10 families of the FOLy database, and secretory

Table 3 Comparative table of BLAST hits and capture
efficiency against different databases on the e-value 1e-10

S.N. Databases BLAST BLAST Read Matching
Hits (%)

1. Targeted Nucleotide Database BLASTN 27,131 20.99

2. Targeted Protein Database BLASTX 37,329 2889

3. NCBI-NR BLASTX 66,822 51.72

4. Uniprot BLASTX 65903 51.00
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sequences through the signalP tool [42] from nine
classes of proteolytic enzymes of the Merops database
(Additional file 3: Table S3). To facilitate the time con-
suming tasks of sequence collection in large-scale meta-
genomic studies, MetCap allows users to extract
nucleotide sequence through accession number and GI
number of nucleotide and protein and also provides the
facility to download nucleotide sequences for user verifi-
cation. In this study, 396,297 nucleotide sequences were
extracted through the pipeline and used as a proof of
concept. A list of group-wise collected sequences and
generated probes from databases are given as Additional
file 3: Table S3. In total, 316,617 probes were produced
from these extracted nucleotide sequences in this study
with the following criteria: length (50mer), GC contents
(35-65), melting temperature (55—65), and 3 probes per
cluster on 90% cluster similarity.

The next important step of the sequence-capture tech-
nique is the hybridization between designed probes and
DNA fragments. DNA was extracted from agricultural
soil and a DNA library was prepared for probe-target
hybridization. 138,970 captured reads were sequenced
from the 454 sequencing platform. 9,772 sequences
failed in quality control. 129,189 reads were used in fur-
ther analysis (Table 2). Sequenced reads are publicly
available through metagenomic sequence repository
MGRAST [43] with metagenome id 4529373.3. The read
assignment was done through BLASTX searches against
the different databases (Targeted databases, NCBI-NR

and Uniprot) and capture efficiency was calculated
(Table 3). The capture efficiency was defined as the frac-
tion (%) of on target reads that matched to the target
database sequences (proteins) which were used for de-
signing the capture probes. The reads were decided as
on-target when they had e-values lower than 1le-10.
Metagenomic sequence capture efficiency was estimated
29.86% for the sample. The number of BLASTX hits

.Metabolism 28642

.Genetic Information Processing 2440
.Environmental Information Processing 4382
.Cellular Processes 1326

.Organismal Systems 521

. Human Diseases 326

Figure 3 Functional profile in sequenced reads through MEGAN.
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against targeted databases differed between the data-
bases (Figure 2) due to the different sizes of the targeted
databases (Additional file 3: Table S3). The CAZy data-
base has the maximum number of BLASTX hit, whereas
the FOLy database has the least number of hits. BLAST
searches have shown that a large number of sequences
were captured during the experimental hybridization
that were not found in our targeted databases or in pub-
lic databases NCBI-NR and Uniprot. The MEGAN
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software [44] analysis has yielded very similar results
compared to BLASTX for functional assignment of
reads, which is verifying the capturing of sequences with
unknown identities. 27,589 no-hits and 76,495 not-
assigned reads (Figure 3) were found in the MEGAN
metabolic analysis based on the NCBI-NR BLASTX re-
sult. The captured reads belong to hundreds of microbial
genomes with highly variable abundance. The genomic
distribution of captured sequenced reads can be
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Figure 4 Mapping of sequenced reads over 10 bacterial genomes and full description of abbreviations along with mapping percentage.
Bradyrhizobium (Bradyrhizobium japonicum USDA 6, 17.8%), Kribbella (Kribbella flavida DSM 17836, 13.9%), Streptomyces (Streptomyces coelicolor
A3(2), 13.4%), Nocardioides (Nocardioides sp. JS614, 10.5%), Sorangium (Sorangium cellulosum So0157-2, 10.0%), Mycobacterium (Mycobacterium
smegmatis JS623, 8.8%), Frankia (Frankia sp. EANT, 7.7%), Myxococcus (Myxococcus xanthus DK 1622, 5.4%), Conexibacter (Conexibacter woesei DSM
14684, 5.3%), Candidatus (Candidatus Solibacter usitatus Ellin6076, 3.2%).
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analyzed among different abundant microbial species.
Mapping of reads against the bacterial genomes showed
that the distribution of reads over individual genome as
well as bacterial genome were similar to each other for
captured reads. A list of the most abundant bacterial
species was generated on the basis of read numbers
through the taxonomic analysis result of the MG-RAST
pipeline [43], and the most abundant species from a
wide range of phyla were selected. The GS de novo as-
sembler [35] of 454 sequencing platform was used for
assembling the sequenced soil metagenome. The assem-
bled reads were mapped to the 10 most abundant bac-
terial genomes found in this experiment. Maximum
mapping (17%) was achieved for Bradyrhizobium japoni-
cum USDA-6 over the assembled reads. The assembled
reads mapped over bacterial genomes were shown in
Figure 4 through BRIG software [36].

In this study, carbohydrate decomposing genes from mi-
croorganisms in soil were targeted as a demonstration of
the potential of designed probes with the MetCap tool.
Among the downloaded sequences (Additional file 3:
Table S3), 348,316 sequences belong to the CAZy database
from four major families: Glycoside Hydrolases (142,724),
Glycosyl Transferases (146,087), Carbohydrate Esterases
(18,286), Polysaccharide Lyases (5,859), and an associated
module, Carbohydrate binding-modules (35,360) and
258,544 probes have been designed from these sequences.
The distribution of sequences of targeted CAZy families
with respect to kingdom was shown in Figure 5, though
only targeted and highly similar sequences related to tar-
gets were considered as on-target in this study. To investi-
gate the effect of sequence similarity cut-off for
identification of on-targets and off-targets on a large-scale,

Page 8 of 11

we used three independent methods for assigning on-
targets. The three methods were CAZy similarity search
through BLASTX against the targeted database, CAZy
Domain matching [34], and CAZy EC number matching
[43] for each read. In the read assignment, reads that hit
with e-values less than 1e-10 were considered for
BLASTX. Domain identification in reads was done
through CAZymes Analysis Toolkit (CAT) when the e-
value was less than le-10. CAT tool uses BLAST similarity
search to identify the best hits for query sequence in the
CAZy database and then finds a link between CAZy fam-
ilies and protein family domain through pfam assignment
[34]. The MG-RAST enzyme class assignment for reads
against the SEED database was used, and the reads having
CAZy EC classes were extracted [43]. In total, 102 CAZy
enzyme classes (ECs) were found among sequenced
reads that were assigned by MG-RAST (Additional file 4:
Table S4). 18,771 reads which were classified as a CAZy
target with all three methods are termed as common
reads, and a total 33,503 CAZy reads were assigned by
three different methods. A majority of reads shared by all
three methods indicate the specificity of sequence capture
from designed probes, whereas unique reads show the
coverage of sequence capture over the CAZy database
(Figure 6) for used agricultural soil. In this study, 331 dif-
ferent families from the CAZy database have been targeted
for the sequence capture experiment. In the mapping re-
sult, captured sequences belong to 203 different CAZy
families and 103 families are found in abundance among
them (Figure 7). In total, 18,771 reads were assigned as
CAZy target among all reads. A text-based search was per-
formed over NCBI-NR BLASTX description of not-
assigned reads which were found in MEGAN metabolic
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Figure 5 Distribution of kingdom for CAZy families in collected sequences.
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Figure 6 Venn diagram of reads assigned by three methods.

analysis, with the CAZy description of sequences. It was
found that 59,235 reads belong to CAZy databases, but
these reads don’t have a well-defined metabolic role in the
KEGG database, and some reads had CAZy features yet
were disqualified due to insufficient read length. This shows
that the sequence capture technique has high efficiency in
identifying a wide range of families in a single experiment.
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Tasse et al. performed a clone based targeted meta-
genomic study which used multi-step functional ap-
proach for the investigation of carbohydrate-degrading
functions in human gut metagenome. After multistep
screening, 0.84 Mb of non-redundant metagenomic
DNA was sequenced which correspond to 26 clones.
Target gene enrichment was found to be fivefold
higher than random sequencing of the human gut
metagenome and 73 CAZy enzymes from 35 different
families were found [45]. In our study, 0.13 Mb tar-
geted metagenomic DNA was sequenced through de-
signed probes from the soil metagenome of average
size of 1.5 Mb - 8 Mb [46] and 203 different CAZy
families have been found. Although the type and size
of metagenome as well as the approach, and experi-
mental efforts were different for both the studies, but
both had the same overall goal: to investigate the func-
tional diversity of carbohydrate degradation enzymes.
Sequence capturing with probes can efficiently en-
hance the target enrichment several fold with less
complexity and comparatively low experimental ef-
forts. As an example, the probe design of 5,000 GI
numbers from the NCBI Genbank database [47] used
as input took approximately 8 hours. Probe design
through direct sequence submission is the highly rec-
ommended approach for MetCap processing because
it will reduce the processing time several fold which is
solely depended on dataset (like how many cluster are
without probes, how many sequences are in those
clusters, length of sequences in cluster).

m Targeted CAZy Families
140 -

120 -

100 -

Number of Families

GH GT

Mapping of Reads for CAZy Families

B CAZyCoverage = CAZy Specificity
CBM PL CE
CAZy Families

Figure 7 Mapping of reads for CAZy families through read assignment.
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Conclusions

The probe design tool, MetCap, takes a probe-based tar-
get enrichment approach. Compared to the alternative
of primer-based enrichment, MetCap can handle a much
larger set of target sequences. The probe generation was
applied to a soil metagenome, and proved to be highly
efficient in capturing specific target sequences. About
30% of the reads from a single metagenome matched to
the targets designed by MetCap, which corresponds to
an extremely high enrichment to target genes. MetCap
as a web service can automate high-throughput probe
generation for large datasets specifically designed for tar-
geted metagenome sequencing projects, and ensure open
access of the developed pipeline for the scientific
community.

Availability and requirements

Project name: MetCap

Project home page: http://soilecology.biol.lu.se/metcap/.
Operating system: web-based application (platform
independent).

Any restrictions to use by non-academics: free for aca-
demic and non-academic users.
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Additional file 1: Table S1. Comparative study of FGA probe
generating software. Comparative study of functional gene array
generating software.

Additional file 2: Table S2. A comparative number of clusters with
probe before and after redesigning step (IV) for Merops database. It
contains the list of number of cluster with probe before and after probe
regeneration step.

Additional file 3: Table S3. Summary of extracted sequence from
databases and generated probes. It contains the list of number of
extracted sequences and their corresponding generated probes.

Additional file 4: Table S4. List of CAZy enzyme classes (ECs) found
among sequenced soil metagenome through MG-RAST assignment. It
contains the list of CAZy enzyme classes which were found in sequenced
reads.
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