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Abstract

Background: Somatically acquired structure variations (SVs) and copy number variations (CNVs) can induce genetic
changes that are directly related to tumor genesis. Somatic SV/CNV detection using next-generation sequencing
(NGS) data still faces major challenges introduced by tumor sample characteristics, such as ploidy, heterogeneity,
and purity. A simulated cancer genome with known SVs and CNVs can serve as a benchmark for evaluating the
performance of existing somatic SV/CNV detection tools and developing new methods.

Results: SCNVSim is a tool for simulating somatic CNVs and structure variations SVs. Other than multiple types of
SV and CNV events, the tool is capable of simulating important features related to tumor samples including
aneuploidy, heterogeneity and purity.

Conclusions: SCNVSim generates the genomes of a cancer cell population with detailed information of copy
number status, loss of heterozygosity (LOH), and event break points, which is essential for developing and
evaluating somatic CNV and SV detection methods in cancer genomics studies.
Background
Somatically acquired SVs and CNVs can introduce gen-
etic changes that are directly related to tumor genesis
[1,2]. SVs, including insertion, deletion, tandem dupli-
cation, inter- and intra-chromosome translocation, are
changes of chromosome structure [3,4]. The size of a
typical SV is usually greater than 1 kb. CNV, often
regarded as a type of SV, was initially classified as gain
or loss of a chromosome segment with a length greater
than 1 kb, and then widened to include much smaller
events (>50 bp) on accommodating the improved reso-
lution of detection methods. Next-generation sequencing
(NGS) has greatly improved the detection of somatic
changes including SVs and CNVs [5,6]. A number of
computational methods for detection of somatic SV/
CNV have been developed [7,8]. However, accurate
somatic SV detection for SVs mediated by long re-
peats, involving foreign insertion, or from minor clone in
tumor cell population remains challenging. Similarly,
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factors such as tumor heterogeneity, purity, and aneu-
ploidy impose major difficulties for somatic CNV detec-
tion [9].
A simulated cancer genome with known SVs and

CNVs can serve as a benchmark for evaluating the per-
formance of existing somatic SV/CNV detection tools
and developing new methods. Currently, the SV/CNV
simulations in literature mostly restrict to basic types
such as insertions and deletions and often implement a
known set of events (e.g., obtained from 1000 Genome
Project) into the reference genome [10,11]. FUSIM is a
sophisticated tool specialized on the simulation of fusion
transcripts [12]. RSVSim is a more recent tool capable of
simulating a wide ranges of SVs [13]. While they are
excellent resource for simulating SV events in germline
studies, they are not designed to simulate SV/CNV
events in the context of commonly observed tumor sam-
ple characteristics such as aneuploidy, heterogeneity and
purity. Moreover, B allele frequency (BAF) and LOH in-
formation, essential for CNV detection, are not provided
by exiting tools.
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Here, we describe a new simulation tool, SCNVSim,
which focuses on generating a set of somatic SV and
CNV events with caner related features such as tumor
aneuploidy, heterogeneity and purity. The tool starts
with the generation of a personalized genome with nor-
mal diploid status followed by simulation of somatic SVs
and CNVs during tumor evolution.

Implementation
As shown in Figure 1, SCNVsim consists of the fol-
lowing modules: 1) germline polymorphism simulation
to generate a personal genome, 2) aneuploidy simu-
lation to set the base ploidy, 3) SV/CNV simulation
to generate different somatic events, 4) tumor hetero-
geneity simulation to generate multiple tumor clones,
and 5) combining above simulations to generate complete
tumor genomes with complex somatic SV and CNV
events and varying levels of tumor heterogeneity and
purity.

Simulation of germline polymorphism
Somatic CNVs often demonstrate LOH which can be
detected using BAF of heterozygous loci across the gen-
ome. Germline polymorphism, including SNVs (single
A B

Figure 1 The overall workflow of SCNVSim. A) A personal genome with
against reference genome sequence. SNV/INDEL ratio, transition/transversio
are considered (left). B) For tumor genome simulation, ploidy is first determ
(Non-homology or homology mediated). Heterogeneity is also implemente
normal diploid status in FASTA format, germline SNVs and INDELs in varian
1) simulated SVs in terms of events and breakpoints, 2) copy number statu
4) FASTA format of cancer genome with somatic SV/CNV events as input fo
normal sample and tumor clones into a ratio specified by the user, a realist
tumor heterogeneity and purity can be obtained.
nucleotide variations) and small INDELs (insertions
and/or deletions which are smaller than 50 bp), provides
such information and can be used in CNV detection
[14]. SCNVSim simulates both SNVs and small INDELs
with specified ratios of transition vs. transversion,
heterozygous vs. homozygous, INDELs vs. SNVs, and
distribution of INDEL size. The default setting are
based on observations in publications [15-20], and all
these parameters can be specified by users to change
the behavior of the simulator and better serve a purpose
for the user’s simulation. Combining the reference human
genome (hg18, hg19 or hg38) with simulated germline
SNV/INDELs, a personal genome with normal diploid
status is obtained. BAF and LOH data can be obtained
from the heterozygous SNVs and INDELs in the simulated
personal genome.
Simulation of tumor aneuploidy
Aneuploidy is a condition of abnormal number of chro-
mosomes at the genome level. It is common in many
cancer types and is a hallmark of chromosomal instabil-
ity [21]. Aneuploidy is a major challenge for tumor CNV
detection, as misidentification of base ploidy often causes
normal diploid status is generated by simulating SNV and INDEL
n ratio, Heterozygous/Homozygous ratio and INDEL size distribution
ined, followed by SV generations of different types and mechanisms
d (right). The outputs include a simulated personal genome with
t call format (VCF), and the following for each simulated tumor clone:
s for each individual segment, 3) BAF and LOH status of each segment,
r NGS reads simulation. By mixing the simulated genomes from the
ic and complicated cancer genome data set with varying levels of
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the incorrect calling of gain or loss status. Aneuploidy
simulation determines the base ploidy of the genome
which can be specified by the users. The resulting aneu-
ploidy chromosomes are randomly generated from the
normal diploid genome and provide the starting genome
for somatic SV simulation.
The exact aneuploidy status of each genome can be

specified by users. For a monosomy genome (1n), one
copy of the diploid chromosome is randomly deleted; for
trisomy genome (3n), one copy of the diploid chromo-
some is randomly doubled; for tetrasomy (4n) or other
even copy number of chromosomes, the normal genome
is multiplied; and for pentasomy (5n) or odd copy
number of chromosomes, the normal genome is multi-
plied first followed by random doubling of one extra
copy of all chromosomes. By default, the functionality
of large scale chromosome rearrangements is also im-
plemented. Specifically, after aneuploidy simulation, a
certain number of chromosomes will be randomly se-
lected to generate whole or segmental chromosome
duplications or deletions.

Simulation of somatic SVs and CNVs
Types SCNVSim can simulate the following types of SV
events: insertions, inversions, deletions, tandem dupli-
cations, inter- and intra-chromosomal translocations.
Insertion is an event that occurs when the sequence of
one or more nucleotides is added between two adjacent
nucleotides in the genome. Inversion is an event that
occurs when a continuous nucleotide sequence is
inverted in the same position. Deletion is an event that
occurs when a DNA segment is excised from the gen-
ome and the two nucleotides adjacent to the two ends
of the excised segment fuse. Tandem duplication is a
special insertion event, in which a DNA segment is cop-
ied, and then inserted to the position adjacent to itself.
Inter-Chromosomal Translocation is an event that
occurs when a region of nucleotide sequence is translo-
cated to a new position in a different chromosome.
Intra-Chromosomal Translocation is an event that oc-
curs when a region of nucleotide sequence is translo-
cated to a new position in the same chromosome
with inverted orientation. Translocation could be bal-
anced (no loss of genome) or unbalanced (loss of
genome segment). The combinations of these events
could lead to complex events of chromosomal re-
arrangement in cancer genome. Some of these types
may cause CNVs such as deletions, tandem duplica-
tion and un-balanced translocations. The final copy
number status of chromosomal segments is determined
by properly calling tumor aneuploidy and copy number
changing SV events.
Breakpoint simulation Other than types, an import-

ant perspective of SV/CNV simulation is breakpoint
information. Without loss of generosity, the breakpoints
can be broadly classified into three different groups:
breakpoint without homologous sequence, breakpoint
with homologous sequence, and breakpoint with foreign
insertion [22-25]. Non-homologous or micro-homologous
breakpoints (<= 20 bps) are relatively easy to detect while
homologous breakpoints could impose more challenges.
SCNVSim simulates non-homologous breakpoints by ran-
domly selecting breakpoints on the genome. For homolo-
gous breakpoints, SCNVSim utilizes the UCSC repeat
mask database to identify genomic locations of repeat
families (e.g., transposable elements (TE)). Repeat element
mediating SVs require compatible elements, which are
from the same repeat family and share homologous se-
quences. The types of TE mediated events are illustrated
in Figure 2. Foreign insertion at a breakpoint is a relatively
rare incident compared with the previous two groups.
For SVs with this group of breakpoint, SNCVSim
simulates novel (non-template) sequence that cannot
be mapped to the reference genome but is inserted into
the breakpoint.

Simulation of tumor heterogeneity and purity
Tumor cell populations often display great heterogeneity
with different sub-clones that evolve during tumor pro-
gression and treatment [26]. Such a mixture is one of
the major obstacles for accurate SV/CNV identification
in cancer genome studies. Tumor heterogeneity can be
simulated by SCNVSim through clone evolution model
[27], which hypothesizes that tumor starts from a founder
clone and evolves into different sub-populations. First,
an intermediate founder clone that has common SV/
CNVs shared by all descendant clones is simulated.
Then, several sub-clones are independently generated.
By iterating this strategy, a more complicated tumor
population can also be simulated. In addition, SCNVSim
can simulate tumor heterogeneity through the cancer
stem cell (CSC) model [28-30], which hypothesizes that
only a small population of CSC is tumorigenic and
tumor heterogeneity is due to the different ancestor
CSC. As the different sub-clones in the CSC model do
not necessary share common somatic SVs and CNVs,
they can be obtained by running the independent
SCNVSim simulation multiple times.
By coupling with NGS reads simulator and mixing the

short reads from the aforementioned germline sample
and tumor clones into a ratio specified by the user, a
realistic and complicated cancer genome NGS data set
with varying levels of tumor purity can be obtained for
modeling different scenarios.

Input, output and usage
SCNVSim takes a reference genome as input and outputs
comprehensive information necessary for developing and



Figure 2 Homologous sequence mediated SV simulation. The types of homologous sequence (e.g., transposable elements) medicated SV
simulated by SCNVSIM are: A) TE-mediated deletion; B) TE-mediated tandem duplication; C) TE-mediated inversion (two TEs are on opposite
strands); D) TE-mediated translocation (balanced or unbalanced); and E) TE-mediated insertion (intra- or inter-chromosome). Break points are randomly
picked in homologous sequences shared by compatible repeat elements which are from the same repeat family and overlapping with each other.
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evaluating somatic CNV and SV detection methods using
NGS data.
Input When simulating germline polymorphism,

SCNVSim takes chromosome length information and
reference genome sequence file as the input. The inputs
for somatic SV/CNV simulation include 1) the repeat
mask file, 2) the germline SNV and INDEL file generated
from germline simulation, 3) chromosome length file, and
4) the reference sequence file.
Output The output of germline simulation includes a

simulated personal genome with a normal diploid status
in FASTA format and a file containing germline SNVs
and INDELs in variant call format (VCF). The output of
somatic SV/CNV simulation includes the following for
each simulated tumor clone: 1) simulated SVs in terms
of events and breakpoints, 2) copy number status for
each individual segment, 3) BAF and LOH status of each
segment, 4) FASTA format of simulated cancer genome
with somatic SV/CNV events as input for NGS reads
simulation tool [31]. As an example, we use SCNVSim
to simulate 3 tumor clones with specified number of SV
events under the clone evolution model. One ancestor
clone (50 SV events) is generated first as the founder
one, and then the other two clones (with 150 SV events
each) are independently derived from the ancestor clone.
The results are shown in Figure 3.
Usage A typical workflow for the SV/CNV algorithms

assessment consists of SV/CNV event simulation followed
by reads simulation. Once the FASTA-files with the simu-
lated, rearranged cancer genome as well as simulated, nor-
mal germline genome are obtained from SCNVSim, they
can be used as the input of a selected NGS read simula-
tors (e.g., ART [31] to generate various NGS datasets for
algorithm evaluation. A readme file with detailed des-
criptions of the functions, parameters and examples to
combine SCNVSim with ART for tumor purity, hetero-
geneity, and aneuploidy simulation is included in the pro-
ject homepage.
Computing performance
We evaluated the computational efficiency of SCNVSim
with different parameter settings, including the num-
ber of SV events, ploidy status and number of sub-
clones, in both human and mouse reference genomes.
The computing performances, including memory usage
and runtime statistics, are recorded and summarized in
Table 1.
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Figure 3 The Circos plots of three simulated tumor clones. A) The ancestor clone with 50 simulated SVs, B) the first descendant clone with
150 simulated SVs, and C) the second descendant clone with 150 simulated SVs. B and C are independently generated from A. For each Circos
plot, the outer circle plots CNV with gain as red and loss as blue. The middle circle shows LOH status using orange. The inner circle shows SVs
using the following color schema: inversion as red, insertion as blue, ITX as cyan, balanced CTX as magenta, and unbalanced CTX as brown.
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Conclusions
Here we described a somatic CNV and SV simulator
focusing on features related to cancer genome. It can
simulate multiple types of SVs and CNVs in the context
of tumor aneuploidy, tumor heterogeneity and tumor
Table 1 The CPU and memory usage for SCNVsim simulations
of SV events, ploidy status and number of sub-clones, in both

Simulation Simulation parameters
Hum

CPU

Germline simulation Default parameters 3.9

Tumor simulation

single clone with 50 SVs 2.1

single clone with 50 SVs, triploid 2.6

single clone with 50 Svs, tetraploid 3.6

single clone with 200 SVs 2.1

single clone with 300 SVs 2.3

2 clones with 50 and 150 SVs 3.9

3 clones with 50, 150, and 150 SVs 5.9

*Analysis was performed on a Linux computer with two Intel® Xeon(R) E5-2620 v2 C
purity. By providing realistic cancer genomes as bench-
marks, SCNVSim provides an alternative approach to
evaluate the performance of SV/CNV detection algo-
rithms and to help developers improve detection
methods.
with different parameter settings, including the number
human and mouse reference genomes*

an (hg19) Mouse (mm10)

(min) Memory (GB) CPU (min) Memory (GB)

7.9 3.3 7.3

6.2 1.7 5.5

6.3 2.4 5.4

6.8 2.9 5.6

6.3 1.9 5.6

6.6 1.9 5.6

7.9 3.6 6.4

8.0 4.7 7.1

PUs and 32 GB memory.
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Availability and requirements
Project name: SCNVSim
Project home page: http://sourceforge.net/projects/scnvsim
Operating system(s): Windows, Unix-like (Linux, Mac
OSX)
Programming language: Java
Any restrictions to use by non-academics: None
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