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Abstract

Background: Workflows, or computational pipelines, consisting of collections of multiple linked tasks are becoming
more and more popular in many scientific fields, including computational biology. For example, simulation studies,
which are now a must for statistical validation of new bioinformatics methods and software, are frequently carried
out using the available workflow platforms. Workflows are typically organized to minimize the total execution time
and to maximize the efficiency of the included operations. Clustering algorithms can be applied either for regrouping
similar workflows for their simultaneous execution on a server, or for dispatching some lengthy workflows to different
servers, or for classifying the available workflows with a view to performing a specific keyword search.

Results: In this study, we consider four different workflow encoding and clustering schemes which are representative
for bioinformatics projects. Some of them allow for clustering workflows with similar topological features, while
the others regroup workflows according to their specific attributes (e.g. associated keywords) or execution time.
The four types of workflow encoding examined in this study were compared using the weighted versions of k-means
and k-medoids partitioning algorithms. The Calinski-Harabasz, Silhouette and logSS clustering indices were considered.
Hierarchical classification methods, including the UPGMA, Neighbor Joining, Fitch and Kitsch algorithms, were also
applied to classify bioinformatics workflows. Moreover, a novel pairwise measure of clustering solution stability,
which can be computed in situations when a series of independent program runs is carried out, was introduced.

Conclusions: Our findings based on the analysis of 220 real-life bioinformatics workflows suggest that the weighted
clustering models based on keywords information or tasks execution times provide the most appropriate clustering
solutions. Using datasets generated by the Armadillo and Taverna scientific workflow management system, we found
that the weighted cosine distance in association with the k-medoids partitioning algorithm and the presence-absence
workflow encoding provided the highest values of the Rand index among all compared clustering strategies. The
introduced clustering stability indices, PS and PSG, can be effectively used to identify elements with a low clustering
support.
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Background

Introduction

A typical workflow entails a series of interconnected
tasks, the first of which is called an input and the last an
output. Such pipelines of tasks can be used to model any
sequence of interrelated processes [1]. Workflow com-
plexity can extend from simple execution charts to
sophisticated systems allowing for conditional dataflow
scheduling and task distribution [2,3]. The primary use
of workflows was related to their applications in the
business and financial environments [4,5]. Nowadays,
workflows are widely applied in many scientific fields,
including bioinformatics, for conducting complex scien-
tific analyses as well as for carrying out simulation studies
required for testing and validating new statistical methods
and software [6]. Scientific workflow management systems
(WEMS) created by some research groups have been
designed to simplify the workflow generation process,
including data refactoring, data processing and results
visualization [4,7]. The two best known scientific W{MS
dedicated to the field of computational biology are the
web-based platform Galaxy [2] and the desktop-based
platform Taverna [4]. These platforms rely on a specific
internal programming language and computational
model supporting automation. We have recently de-
veloped a novel desktop-based bioinformatics W{MS,
called Armadillo [8], which is primary dedicated to
phylogenetic analysis. The Armadillo platform, which
allows the users to determine execution times of the
available tasks, was used here for generating real-life
bioinformatics workflows tested in our simulations (see
Figure 1 for an example of five bioinformatics work-
flows created using Armadillo).

The most common objectives of workflow clustering
consist in discovering, reusing and repurposing existing
workflows to achieve a defined goal [9]. One of these
goals concerns the optimization of the overall execution
time of the given set of workflows by reducing the im-
pact of queue wait times [10]. For instance, Vairava-
nathan and colleagues [11] have recently developed an
optimized workflow file system for cloud computing
which, given the structural workflow information, can
decrease the workflow execution time by a factor of
seven. Furthermore, the problem of identification of
similar sub-workflows is central to many tasks scheduling
problems [12]. By labeling and dividing large workflows
into sub-workflows, Singh and colleagues [13] were able
to minimize overall workflow execution time by up to
97%. The latter authors carried out their experiments with
large astronomy workflows using the NCSA TeraGrid
cluster. Tsai and colleagues [12] reported that an effective
use of idle time slots between scheduled tasks is a promis-
ing direction for efficient multiple workflow scheduling.
They developed a new approach, providing an average
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execution time gain of 51%, to further improve multiple
workflow scheduling performance by clustering certain
workflow tasks into groups before the allocation of com-
putational resources. Likewise, Chen et al. [14] addressed
the problem of merging multiple short tasks into a single
one in order to reduce the scheduling overhead and im-
prove the overall runtime performance. The latter authors
presented three balancing methods to quantitatively
measure workflow characteristics based on task runtime
variation, task impact factor, and task distance variance.

In this study, we define and evaluate four workflow
encoding schemes which can be used for regrouping
workflows either containing similar tasks, or having
similar execution times, or using similar keywords (or
meta-data), or having similar workflow structures. Note
that here we address the problem of clustering the entire
workflows without considering the sub-clustering of
individual workflow tasks. First, we briefly review the
existing works on workflow classification. The partition-
ing methods used for workflow clustering are discussed
afterwards, followed by the description of hierarchical
classification methods. We then present four workflow
encoding schemes suitable for bioinformatics projects,
which were tested in our study using the weighted
versions of the k-means [15] and k-medoids [16] parti-
tioning algorithms in conjunction with three well-
known clustering criteria: Calinski-Harabasz [17], logSS
[18] and Silhouette [19] indices. The detailed results of
hierarchical clustering are presented as well. Finally, a
novel cluster stability validation measure is discussed
and evaluated in the context of workflow classification,
followed by a conclusion section.

Literature review on workflow clustering

A number of recent studies have addressed the problem
of workflow classification [20]. Generation of workflow
clusters can be categorized either into language-based
approaches or into structure-based approaches [21]. In
language-based approaches, string distance measures,
such as the Hamming or Levenshtein distances, can be
applied to assess dissimilarities between workflows [22].
Language-based methods rely on the text mining of
workflow metadata and the use of keyword similarity
measures [6,23]. For example, by considering the occur-
rence matrix of natural language terms found in work-
flow directories, Costa et al. [6] found that in more than
90% of cases the workflow clustering method they pro-
posed was able to partition a coherently set of 53 hetero-
geneous workflows. The latter authors determined,
however, that the considered metadata were sparse and
not evenly distributed in the different evaluated work-
flow formats and repositories. In structure-based
workflow clustering, dissimilarities between workflows
depend on the adopted workflow graph representation.
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Figure 1 Five bioinformatics workflows created using the Armadillo WfMS. These workflows were used to illustrate the workflow encoding
strategies discussed in the article. The four workflow encoding types discussed and tested in this study are presented in Table 1

\

Graph-based distances, such as the edit, subgraph iso-  cosine, Euclidean or squared Euclidean distances can
morphism and maximum common induced subgraph  be employed to estimate the distances between the
distances, have been actively used in this context observed workflows [20,26]. However, using only the
[21,24]. This means that structure-based workflow presence-absence data in the workflow representation
clustering methods usually have higher algorithmic  discards structural information characterizing the da-
complexities [25]. Workflows can also be converted taflow. To circumvent this representation bias, one can
into binary vector representations, where each avail- apply a multiple vector encoding strategy, such as a
able workflow task (i.e. method, element or activity) is  transition vector or a process vector encoding [24].
either present (1) or absent (0). If a vector represen-  Transition vector encoding strategies were tested by
tation is considered, similarity metrics such as the Kastner et al [23] by using several clustering algorithms.
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Furthermore, Wombacher and Li [21] adopted an N-gram
representation of workflows in which adjacent tasks linked
together were used to define a specific alphabet. This
alphabet was then considered as a base either to encode a
vector-like workflow representation or to define an edit
distance between workflows.

Some other useful clustering information can be
extracted from workflows beside the number or type of
tasks, input and output port of tasks and connections
between tasks. Statistics such as the average task execu-
tion time, the size of transmitted data, the success or
failure of each task as well as the selected tasks’ parame-
ters can be also taken into account when clustering
workflows [23,27]. For example, Silva et al. [27] devel-
oped the SimiFlow program which accepts as input
different workflow formats and takes into account the
workflow structure, activity type, input-output ports
and relationships between the supplied activities (e.g
distance between two activities in the graph) in the
workflow clustering process.

Methods

Partitioning methods for workflow clustering

The use of partitioning methods for workflow clustering
was first considered by Santos et al. [20] and Kastner
et al. [23]. To account for workflow structural informa-
tion, Santos and colleagues used as workflow similarity
measures the maximum common induced subgraph dis-
tance as well as the cosine distance between workflow
binary vector representations. They then carried out the
k-means partitioning algorithm for vector-based repre-
sentation of workflows and the k-medoids partitioning
algorithm for graph-based representations. Kastner et al.
[23] encoded the transitions between two separated
tasks and used the cosine distance in conjunction with
k-means in their simulations.

The k-means algorithm [15,28] is a partitioning classi-
fication algorithm which iteratively regroups into K clus-
ters a set of n elements (i.e. objects, taxa, or workflows
in our study) characterized by m variables (i.e. tasks, or
bioinformatics methods in our study), while the cluster
centers are chosen to minimize the intra-cluster distances.
The most commonly used distances in the framework
of k-means partitioning are the Euclidean distance,
Manhattan distance and Minkowski distance. Each cluster
is centered around a point, called the cluster centroid,
which represents the average coordinate of the cluster’s
elements. One of the drawbacks of k-means is that this
centroid has no real meaning and must be recalculated
at each iteration. While a general problem of k-means
partitioning is NP-hard, several proposed polynomial-
time heuristics require O(K x n x m x i) operations to
find a clustering solution, where i is the number of the
algorithm’s iterations.
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The k-medoids algorithm [16] is a modification of
k-means in which the centroids, named medoids, are
representative elements of the cluster. The medoids are
chosen at each iteration in order to minimize the intra-
cluster distances. The main advantage of this method is
that it is more robust than k-means in the presence of
noise and outliers [29]. The k-medoids algorithm has,
however, a higher complexity of O(K x (n — K)? x m x i).

In 2001, Makarenkov and Legendre [30] described a
weighted version of the k-means partitioning algorithm.
The following optimization problem was considered
when adding weights to the algorithm. Let W be a two-
way matrix containing measures for n elements (ie.
workflows; they are represented by the matrix columns)
and m variables (i.e. individual workflow tasks, or pairs
of tasks; they are represented by the matrix rows). Let
Y=1 .., ¥ms be the vector of weights assigned to
the variables. In the workflow clustering context the
weights can reflect the tasks execution times. Following
Makarenkov and Legendre [30], we used Equations 1
and 2 to define the Euclidean distance d between work-
flows and the related optimization problem:

(1)

Z [i di] /nxg— min, (2)

where K denotes the total number of clusters and 7
the number of elements in cluster k.

We also consider the cosine distance, which can be rep-
resented under the following weighting form (Equation 3):

m
Zyp (Wip x W)
p=1
\/Zypw?p X \/Zypwfv
p=1 p=1

In their pioneering work, Santos et al. [20] were first
to use the traditional (i.e. unweighted) cosine distance
in the framework of workflow clustering. This distance
is particularly useful in case of sparse binary matrices.
One of the disadvantages of the k-means and k-medoids
partitioning algorithms is the need to select the number
of clusters prior to performing the clustering. This issue
has been rarely addressed in the context of workflow
classification [20]. Here, we will carry out the evaluation
of the optimal number of clusters using the three
following criteria: Calinski-Harabasz [17], logSS [18]
and Silhouette [19] indices. We will determine which of
them is better suited for classification of bioinformatics
workflows under different simulation conditions. The

dij = 1-cosf = 1- (3)
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Calinski-Harabasz and logSS indices were considered
based on their superior clustering performances as de-
scribed in Milligan and Cooper [31], while the Silhouette
index was selected following the evaluation of Arbelaitz
et al. [32].

The Calinski-Harabasz (CH) criterion is a ratio-type
index considering both the inter-cluster and intra-cluster
variances (Equation 4). Here, SSp is the overall inter-
cluster variance, SSyy is the overall intra-cluster variance,
K the total number of clusters and # the number of
workflows:

SSB

CH(K) = g

“K-1)” )

The SSp coefficient (Equation 5) is evaluated by calcu-
lating the L2 norm (Euclidean distance) between the
vectors meany (k =1 ... K; mean represents the centroid
or medoids of cluster k) and the vector mean, represent-
ing the overall mean of the sample data; here, ny is the
number of elements in cluster k. The SSy, coefficient
(Equation 6) can be calculated in a similar fashion; here,
wic is the vector representing workflow i in cluster k.
When the Calinski-Harabasz criterion is considered, the
number of clusters corresponding to its highest value is
selected as the optimal one.

K
SSp = Z ni||meany-mean||?, (5)
k=1

and

K 173
SSw =Y |lwix-mean|*. (6)
k=1 i=1

The 1ogSS index (Equation 7) relies on the same inter-
cluster and intra-cluster variances to suggest the optimal
number of clusters. When the logSS criterion is consid-
ered, the optimal number of clusters, K, corresponds to
the smallest difference between two subsequent logSS
scores (logSS(K) and logSS(K + 1)).

SSp
logSS(K) = logSSW. (7)

On the other side, the Silhouette index estimates how
strongly an element belongs to its current cluster rather
than to the nearest one. For each workflow i in the given
workflow set W= {w, ..., w,,}, a(i) denotes the average
distance between i and all other elements (i.e. work-
flows) in the cluster ¢; to which i belongs. For any clus-
ter ¢, apart from ¢, d(i, ¢) is defined as the average
distance between i and all other workflows in c. Then, b
(i) represents the smallest of these distances among all
such clusters different from c;. The cluster ¢, for which 4
(i, ¢) =b(i) can be considered the neighbor of i. Thus,
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the mean of the Silhouette widths for a given cluster ¢
can be computed as follows (Equation 8):

[ bo-at) ],
0= [Z max(a(d), b<>>1/ g ¥

1

Using s(k)’s from Equation 8, the optimal number of
clusters K is defined as that having the maximum aver-
age Silhouette width, s(K) (Equation 9):

K

s(K) =) _[s(k)]/K. ©)

k=1

Hierarchical classification methods for workflow clustering
In this study, four different hierarchical classification
methods were considered: Unweighted Pair Group Method
with Arithmetic Mean (UPGMA) [33], the Neighbor-
Joining (NJ) method of Saitou and Nei [34], and the Fitch
and Kitsch methods implemented by Felsenstein [35,36].
These hierarchical classification methods can be applied
directly to distance matrices calculated using the four en-
coding schemes discussed below. The UPGMA and Kitsch
methods provide an ultrametric classification (i.e. ultra-
metric tree), in which the tree edges cannot be of arbitrary
length; they are constrained so that the total length of a
unique path from the root of the tree to any tree leave is
the same. The NJ and Fitch methods returns a more gen-
eral tree classification corresponding to an additive, or
phylogenetic, tree (i.e. the corresponding tree distance sat-
isfies the four-point condition [37]).

The Fitch and Kitsch algorithms rely on the objective
least-square function aiming at minimizing the sum of the
squared differences between the observed and predicted
distances between the elements [37]. Equation 10 describes
such a minimization process, where dj; is the observed dis-
tance between elements i and j, and J;; is the estimated tree
distance equal to the length of the path between i and j in
the obtained ultrametric or additive tree. The exponent p
equals 2 in the case of the Fitch and Kitsch algorithm [38]:

(10)

The NJ algorithm follows the principle of minimum
evolution, aiming at minimizing the total length of the
obtained additive tree, whereas the UPGMA is a simple
and widely-used bottom-up agglomerative clustering
algorithm. The time complexity of the Fitch and Kitsch
algorithms is O(n*), while that of NJ is O(#°), and that of
UPGMA is O(?) for an input dissimilarity matrix of size
(nxn). We used these hierarchical clustering algorithms
to compare the four workflow encoding schemes and
their different variants presented in the next section.
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Workflow encoding schemes

In this section, we discuss four general types of workflow
encoding. The workflows need to be encoded in a matrix
form prior to the application of clustering algorithms. In
addition, a vector of the tasks weights can be provided
to characterize the workflow tasks. The variable weights
are often used to indicate the importance of some vari-
ables or to reduce the data dimension [30]. For example,
the weights can be considered to account for inverse
term-frequencies when clustering textual data [26]. Unlike
the approach of Makarenkov and Legendre [30], which
considers that all weights are non-negative and their sum
equals 1, we assume in this study that the weights are
user-defined and are only subject to the non-negativity
constraint. An example of the four discussed types of
workflow encoding is given in Table 1. It concerns the five
bioinformatics workflows depicted in Figure 1.

Workflow encoding of Type |

The simplest way of workflow encoding is the data
presentation in the form of a binary matrix accounting
for the presence and absence of the available tasks. In
the example of the five bioinformatics workflows
(Figure 1), the presence and absence of 10 phylogenetic
methods encountered in these workflows was first
encoded (Table 1). Such an encoding was suggested by
many researchers, including Kastner et al. [23] and
Costa et al. [6]. Moreover, as an extension of the work
of Costa et al. [6], here we use weights representing
average execution times of the tasks. The average
execution times of the 10 considered phylogenetic
methods (for the selected type of input) are indicated
in Table 1. This general encoding type can be employed
to regroup some similar workflows either to execute
them together on a dedicated server or to dispatch
some of the lengthy workflows to different servers in
order minimize the total execution time of the given
workflow set [11,13,14].

Workflow encoding of Type Il

The workflow encoding of Type II is based on the tasks
occurrence information. Here we also consider weights
for each of the available phylogenetics methods (see
Figure 1). These weights can be user-defined and not
necessarily related to the tasks execution times. For
instance, in the example shown in Table 1 (see encoding
of Type 1II), the method called HGT Detector 3.2
received the weight of 1.0, whereas the nine remaining
tasks received the weight of 0.1. The applied weights can
be defined by the user through the introduction of
specific keywords characterizing certain tasks; the corre-
sponding task’s weight can be given following the pres-
ence or absence of these keywords in the method’s
annotations. This type of encoding could be particularly
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useful for searching and selecting the appropriate work-
flows in a large databank of available workflows charac-
terized by their metadata.

Workflow encoding of Type llI

To investigate whether the workflow structural informa-
tion can provide a better workflow classification compared
to the presence-absence and occurrence encodings, we
represented the five workflows from Figure 1 as connected
directed graphs and encoded them into a pair-of-tasks
format (see encoding of type III in Table 1). This type
of workflow encoding, which is similar to the N-gram
encoding of Wombacher and Li [21], preserves the es-
sential structural information without carrying out
lengthy graph theory methods aimed at the determining
the distance matrix between workflows. The average
execution time vector characterizing each available
pair-of-tasks is used to define weights in this type of clus-
tering. Vairavanathan et al [11] described a workflow-
aware file system which, provided the workflow structural
information, allows for a faster execution in cloud com-
puting. The structure-dependent workflow clustering
was also discussed by Kastner et al. [23].

Workflow encoding of Type IV

Finally, we also considered the addition of input and out-
put port information to the pair-of-tasks matrix. This type
of encoding, which takes into account the starting and
ending points of each workflow, emphasizes the import-
ance of input and output data types. Such an encoding
can be particularly useful in situations in which the user
can take advantage of the complex workflows which have
been already executed with the input and output data
similar to those specified by the user. This type of work-
flows includes lengthy and sophisticated bioinformatics
workflows intended for extracting, scanning or processing
high-volume genomic data [3]. The weight vector for this
type of workflow encoding is defined as follows: the
weight of 1 is assigned to the variables encoding input and
output ports as well as to the variables associated with the
selected tasks (e.g. computational methods corresponding
to specific keywords); the weight of 0.1 is given to the vari-
ables corresponding to the remaining tasks.

Depending on the encoding scheme, the five work-
flows illustrated in Figure 1 were regrouped into the fol-
lowing optimal subsets of clusters, while using the
weighted version of the k-means partitioning algorithm
and the Calinski-Harabasz optimization criterion. Here,
K denotes the obtained optimal number of clusters. For
encoding of Type I: K=4 - {W1}, {W2}, {W3, W4} and
{W5}, encoding of Type II: K=3 - {W1,W3,W5}, {W2}
and {W4}, encoding of Type III: K=4 - {W1}, {W2,W4j},
{W3} and {W5}, and encoding of Type IV: K=4 - {W1},
{W2, W3}, {W4} and {W5}.
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Table 1 The four proposed workflow encoding schemes and their associated weight vectors for the five real-life

bioinformatics workflows depicted in Figure 1

Encoding of type | w1 w2 w3 w4 w5 Weights for encoding of type |
Blast (NCBI) 0 0 0 1 0 035
Clustalw2 0 1 0 0 1 049
HGT Detector 3.2 1 1 1 0 1 0.88
Muscle 1 0 0 0 1 041
PROTML (Phylip) 1 0 0 0 0 0.68
PhyML (1) 0 1 1 0 1 1.13
PhyML (2) 0 0 0 0 T 1.13
Probcons 0 0 1 0 0 0.55
Robinson & Foulds distance 0 0 0 1 0 0.25
SEQBOOT 1 0 0 0 0 0.14
Seq-Gen 0 1 0 1 0 043
Encoding of type I wi w2 w3 w4 ws Weights for encoding of type I
Blast (NCBI) 0 0 0 1 0 0.10
Clustalw2 0 1 0 0 1 0.10
HGT Detector 3.2 1 1 1 0 1 1.00
Muscle 1 0 0 0 1 0.10
PROTML (Phylip) 1 0 0 0 0 0.10
PhyML 0 1 1 0 2 0.10
Probcons 0 0 1 0 0 0.10
Robinson&Foulds distance 0 0 0 1 0 0.10
SEQBOQOT 1 0 0 0 0 0.10
Seg-Gen 0 1 0 1 0 0.10
Encoding of type Il w1 w2 w3 w4 w5 Weights for encoding of type Il
Blast (NCBI) 0 0 0 1 0 035
HGT Detector 3.2 1 1 1 0 1 0.88
Robinson & Foulds distance 0 0 0 1 0 0.25
ClustalWw2 — PhyML 0 1 0 0 1 1.62
Muscle — PhyML 0 0 0 0 1 1.54
Muscle — SEQBOOT (Phylip) 1 0 0 0 0 0.55
PROTML (Phylip) — HGT Detector 3.2 1 0 0 0 0 156
PhyML — HGT Detector 3.2 0 1 1 0 2 201
Probcons — PhyML 0 0 1 1 0 1.68
SEQBOOT (Phylip) — PROTML (Phylip 1 0 0 0 0 0.82
Seq-Gen — Blast (NCBI) 0 0 0 1 0 0.78
Seg-Gen — ClustalW2 0 1 0 0 0 0.92
Encoding of type IV w1 w2 w3 w4 w5 Weights for encoding of type IV
Blast (NCBI) 0 0 0 1 0 0.10
HGT Detector 3.2 1 1 1 0 1 1.00
Robinson & Foulds distance 0 0 0 1 0 0.10
ClustalW2 — PhyM 0 1 0 0 1 0.10
Muscle — PhyML 0 0 0 0 1 0.10
Muscle — SEQBOQT (Phylip) 1 0 0 0 0 0.10
PROTML (Phylip) — HGT Detector 3.2 1 0 0 0 0 1.00
PhyML — HGT Detector 3.2 0 1 1 0 2 1.00
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Table 1 The four proposed workflow encoding schemes and their associated weight vectors for the five real-life

bioinformatics workflows depicted in Figure 1 (Continued)

Probcons — PhyML 0 0
SEQBOOT (Phylip) — PROTML (Phylip) 1 0
Seq-Gen — Blast (NCBI) 0 0
Seg-Gen — ClustalW2 0 1
INPUT_Sequences 1 0
INPUT_Tree 1 1
OUTPUT_Blast (NCBI) 0 0
OUTPUT_Matrix 1 1
OUTPUT_MultipleTrees 0 0

OUTPUT_OutputText 1 1
OUTPUT_Results 1 1

o O O

1
1

0.10
0.10
0.10
0.10
1.00
1.00
1.00
1.00
1.00
1.00

o
o O o o

NSO O

o O

2 1

1 1 1.00

The two instances of the PhyML method used in workflow W5 are indicated as PhyML (1) and PhyML (2) in the encoding of Type 1.

Results and discussion

Experimental study for partitioning methods

To evaluate the four workflow encoding schemes de-
fined above, we considered a set of 120 bioinformatics
workflows created and executed using the Armadillo
phylogenetic WMS [8] as well as 100 workflows created
using Taverna [4] and extracted from the myExperiment
workflow repository [39] (Table 2). The Armadillo data-
set contained four original workflow classes (K =4) and
17 different types of tasks for encodings of Type I and
II, 30 different types of tasks for encoding of type III,
and 47 different types of tasks for encoding of type IV
(see Additional file 1: Table S1A). Each workflow from
the Armadillo dataset was composed of up to eight tasks
chosen from a pool of 17 commonly used bioinformatics
applications divided into four classes: (1) Multiple se-
quence alignment methods: Alignment information,
ClustalW2, Baliphy, Muscle, Probcons and Kalign; (2)
Phylogenetic tree inference methods: Garly, Neighbor,
PhyML, ProtML, Segboot and ProtPars; (3) Horizontal
gene transfer detection and tree comparison methods:
HGT Detector, Riata, BLAST, Robinson and Foulds dis-
tance, and Random tree; and, finally, (4) A mixed sample
that entailed the methods from the three above-
mentioned classes. The keyword used for encodings of
types II and IV was “HGT” (standing for horizontal gene
transfer). Thus, the tasks annotated with the word
“HGT” received the weight of 1.0, whereas all the other

tasks received the weight of 0.1. The 100 workflows
forming the myExperiment dataset were retrieved from
the myExperiment web repository using the keywords
“phylogenetics” and “bioinformatics”. Among the extracted
workflows, we selected those generated using the Taverna
WIEMS [4] (versions 1 and 2). Since the experimental exe-
cution was not possible for all workflows in this dataset,
the approximate running time of each of the 318 available
methods was established based on our knowledge.

Classification of these workflows into 15 classes (K = 15)
was based on workflow metadata accessible via the myEx-
periment website (see Additional file 1: Table S1B). For
this dataset, the keyword used for encodings of types II
and IV was “BLAST”.

In our first simulation, we considered only the Arma-
dillo dataset, the k-means partitioning algorithm and the
Euclidean distance. For each of the four data encodings
discussed in the previous section, the weighted k-means
algorithm was carried out with an option of 1000 ran-
dom starts for starting cluster partition and the max-
imum number of clusters equal to 40. Evaluation of the
quality of encoding strategies was done by calculating
the Rand index (RI) [40]. The Rand index was calculated
by comparing the obtained partition of the set of 120
workflows with the Armadillo reference data partition
into four classes (see Additional file 1: Table S1A). The
Rand index was computed separately for workflows with
different numbers of tasks (this number varied from 1 to

Table 2 Main characteristics of the real-life workflows from the Armadillo and myExperiment datasets explored in our

simulation study

Dataset Number of Tasks of Tasks Tasks of Number of Keyword used for encodings
workflows (N) types | and Il of type llI type IV classes (K) of types Il and IV

Armadillo 120 17 30 47 4 HGT

myExperiment 100 318 345 497 15 BLAST
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8 in the Armadillo dataset). Clustering results were pre-
sented as a function of the number of methods included
in the workflow (Figure 2). The Calinski-Harabasz (CH),
Silhouette (SI) and logSS indices were used in turn for
determining the optimal number of clusters.

We first evaluated the performances of the basic
encoding scheme (Type I, see Figure 2a), consisting
of a binary presence-absence matrix accompanied by
the weights proportional to the tasks running times.
The obtained results suggest that according to the
Rand index, SI was superior to the CH and logSS in-
dices for encoding of Type I. The other tendency that
can be observed is that the increase in the number of
workflow tasks led to the increase in the clustering
quality regardless of the selected optimization index
(CH, SI or logSS).

Second, we evaluated the encoding scheme of Type II
(Figure 2b). The tasks occurrence matrix and the vector
of weights corresponding to the keyword “HGT” were
considered here. The obtained results suggest that ac-
cording to the Rand index the CH criterion was superior
to SI and logSS for encoding of Type II. The other trend
that can be observed is that the increase in the number
of the workflow tasks increases the value of RI for all the
three optimization criteria.

The third encoding scheme (Figure 2c) consists of
the workflow structure representation under the pair-
of-tasks format. This type of encoding allows one to
take into account structural elements of workflows in
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contrast to the binary tasks matrices. As in the encod-
ing of Type I, the weights here represented the average
execution times of the selected bioinformatics applica-
tions. The logSS index here was far from providing the
optimal number of clusters in spite of a relatively good
performance in terms of RI.

Encoding of Type IV (Figure 2d) puts an emphasis
on the input and output types of data. This type of
clustering was recommended by Grigori et al. [9]
and by Wombacher and Li [21]. Unlike the above-
mentioned studies, we considered in our encoding
only the primary inputs and outputs of workflows,
ignoring those of intermediate workflow tasks. This
encoding type is in agreement with specifications
used in a popular scientific WEMS Taverna [4]. We
used the weight of 1 for the input and output tasks
and for the pairs of tasks related to the HGT De-
tector method, and the weight of 0.1 for all other
available pairs of tasks. Once again, the logSS index
was far from providing the optimal number of clus-
ters for this type of data encoding.

The general trend which can be observed in this simu-
lation for all four encoding schemes is that the increase
in the number of workflow tasks leads to the increase in
the value of RI in the case of the Calinski-Harabasz and
Silhouette indices and, in a slighter extent, in the case of
logSS.

Our second simulation was carried out using both the
Armadillo and myExperiment datasets, the weighted
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Figure 2 Simulation results obtained for the four workflow encoding schemes discussed in this article. The abscissa axis indicates the
number of tasks in the workflow; the ordinate axis indicates the corresponding value of the Rand index. The results obtained using encodings of
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k-means and k-medoids partitioning algorithms and the
cosine and Euclidean distances. In this simulation, the
options of 100 random starts and of maximum number
of clusters equal to 20 were selected. Each data point
represented in Figures 3 and 4 is the average taken over
all of the parameters combinations except the fixed pa-
rameters of interest (e.g. in Figure 3a the average is taken
over the results obtained by using the k-means and
k-medoids algorithms, the cosine and Euclidean distances
and all the four discussed encoding types). Still consider-
ing the Rand index as a measure of classification effect-
iveness, we confirmed that for the Armadillo dataset,
having more tasks in the workflow generally leads to
better classification results regardless of the criterion
(CH, Silhouette or logSS) used to select the optimal
number of clusters (p < 0.01; Figure 3a). The Student-
Newman-Keuls test was used here to identify the sample
means that were significantly different from each other
and the Kolmogorov-Smirnov test to verify the data nor-
mality. All statistical tests were carried out using the
InStat v3.0 program. However, in the simulations con-
ducted with the myExperiment dataset (Figure 4a), after
a certain point (i.e. the 40-50 task interval for this data),
having more tasks in the workflow did not result in a
better clustering. Such a result can be related to the
noise which accumulates with the addition of multiple
classification features [30]. Globally, the application of a
particular optimization criterion did not have a significant
impact on the clustering performance (see Figures 3a, 4a
and 5a) in regards to the Rand index (p > 0.05).
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No significant effect was found when the relation be-
tween the workflow encoding type and the number of
workflow tasks was considered (Figures 3b and 4b).
However, when we combined the results obtained for
both of our benchmark datasets (Figure 5a) and consid-
ered unweighted encodings, we found significant differ-
ences in the average Rand index estimates for encodings
of Type I (» < 0.01) and Type II (p < 0.05), compared to
the aggregate unweighted results for these two types of
encoding (they are denoted as Unw LII in Figure 5a). In
contrast, no significant difference (p >0.05) was found
between the results corresponding to the weighted and
unweighted pair-of-tasks matrix encodings (see the
diagrams denoted as Unw IILIV, Type III and Type IV
in Figure 5a). No significant difference was observed as
well when comparing the results obtained using the three
considered clustering indices CH, SI and logSS. The SI
criterion yielded the best overall Rand index results for
encodings of Types II and III, while logSS outperformed
the two other clustering indices for encodings of Types I
and IV (Figure 5a).

Evaluation of the resulting partitioning as a function of
a distance measure, showed that the cosine distance per-
formed significantly better than the Euclidean distance
(the average RI of 0.68 vs 0.61, and p<0.001; see
Figures 3¢, 4c and 5b). The best average clustering results
for the cosine distance were obtained regardless of the
number of workflow tasks (Figures 3c and 4c). This find-
ing is in accordance with the work of Santos et al [20],
who recommended the use of the (unweighted) cosine
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distance in workflows clustering. Although the Silhouette
index provided better average clustering results than CH
and logSS when the cosine distance was considered, the
obtained difference was not significant. The comparison
of the average results returned by the k-medoids and
k-means partitioning algorithms pointed out a significantly
better performances of k-medoids (average RI 0.70 vs 0.61,
p < 0.001; see Figure 5¢). When the k-medoids partitioning
was carried out, the SI and logSS indices significantly out-
performed the CH index with their respective average RI
of 0.71, 0.72 and 0.65, and both p < 0.01.

Experimental study of hierarchical clustering methods

In this section, we discuss the results obtained using the
hierarchical clustering methods in the framework of
workflow clustering. In this simulation, we tested the
four above-defined workflow encoding schemes. Their
weighted and unweighted forms were considered. As in
our previous simulations, the Euclidean or cosine dis-
tances were used to compute distances between work-
flows from the Armadillo and myExperiment datasets.
The Fitch, Kitsch, Neighbor-Joining (NJ) and UPGMA
tree reconstruction algorithms were used to infer
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Figure 5 Combined classification results for the Armadillo and myExperiment datasets obtained using the four encoding types with
and without weights (average Rand index + SEM). The unweighted encoding strategies were respectively denoted as Unw Il (combined results
for unweighted encodings of Types | and Il) and Unw II1IV (combined results for unweighted encodings of Types Il and IV). Panel (a) illustrates the
effect of the optimization criteria for both unweighted (first two sets of bars) and weighted (last four sets of bars) encodings; panel (b) - the effect of
the distance measure; panel (c) - the effect of the applied partitioning algorithm.
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Figure 6 Classification of hierarchical workflow clustering strategies for the Armadillo dataset (n =120). This classification is shown for
four weighted and four unweighted workflow encoding types (|, Il, Il and V) discussed in this article, the cosine and Euclidean distances and four
different hierarchical clustering algorithms (Fitch, Kirsch, NJ and UPGMA). The use of the weighted type of encoding is indicated by the letter “w”
preceding the method’s name, while the encoding type is indicated by the corresponding number. The reference taxon represents the optimal

hierarchical classifications (i.e. additive trees) by running
the Fitch, Kitsch and Neighbor programs from the PHY-
LIP package [36]. Clustering results were evaluated by
means of the Robinson and Foulds (RF) topological dis-
tance [41] between the obtained trees using the T-Rex
website [42]. The resulting trees were compared to the ref-
erence trees constructed based on the known workflow
classifications (see Additional file 1: Tables S1A and S1B).
These reference trees were non-binary as the workflows
belonging to the same class were linked together by a mul-
tifurcation (a node of degree greater than 3).

As it was impossible to represent each additive tree
obtained for each combination of simulation parameters,
we decided to compare these trees by using the RF tree

distance (to measure topological differences between
trees) and the NJ algorithm (NJ was applied to the RF
distance matrix) in order to provide a unique hierarch-
ical classification of the obtained trees for both consid-
ered experimental datasets (see Figures 6 and 7). In the
illustrated classification trees each leave represents an
additive tree obtained using the indicated combination
of simulation parameters. Visualization of the resulting
classifications trees in Figures 6 and 7 was carried out
with the program Mega5 [43].

Using the NJ algorithm and the RF distance as a meas-
ure of tree proximity, we found that for the Armadillo
dataset the weighted cosine distance and encoding of
Type I provided the best hierarchical clustering when
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Figure 7 Classification of hierarchical workflow clustering strategies for the myExperiment dataset (n = 100). This classification is shown
for four weighted and four unweighted workflow encoding types (, Il, il and IV) discussed in this article, the cosine and Euclidean distances and four different
hierarchical clustering algorithms (Fitch, Kirsch, NJ and UPGMA). The use of the weighted type of encoding is indicated by the letter “w" preceding the
method’s name, while the encoding type is indicated by the corresponding number. The reference taxon represents the optimal tree clustering.

compared to the reference workflow classification. The  the related taxa in the tree; see Figure 6). For the myEx-
cluster of four trees obtained using the weighted cosine  periment dataset, we found that the weighted cosine and
distance and encoding of Type I is the closest one to the  weighted Euclidean distances with encodings of Types I
reference tree in terms of the additive distance (i.e. the and III provided the best hierarchical classification re-
sum of branch lengths of the unique path connecting sults (Figure 7).
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Figure 8 Combined classification results obtained for the Armadillo and myExperiment datasets (n = 220) using hierarchical clustering.
The average Robinson and Foulds topological distance (+ SEM) was used to measure clustering performances. The unweighted encoding strategies
were respectively denoted as Unw |, Il (combined results for unweighted encodings of Types I and Il are presented) and as Unw Ill, IV (combined results
for unweighted encodings of Types lll and IV are presented). Panel (a) illustrates the effect of the encoding type for both unweighted (first two bars) and
weighted (last four bars) encodings; panel (b) - the effect of the applied hierarchical clustering algorithm; panel (c) - the effect of the distance measure.
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The aggregated simulation results for both experimen-
tal datasets in terms of the average RF distance between
the reference trees and the obtained classification trees
(Figure 8a) indicate a significant difference between the
results corresponding to the unweighted and weighted
encodings in the case of encoding of Type I (average RF
distance 108.3 vs 102.4; p < 0.05). Note smaller values of
the RF distance correspond to better clustering results.
No significant differences were found for the other types
of workflow encoding. When the performances of the
four hierarchical clustering algorithms were considered,
no significant difference between the corresponding
average RF distances was found (Figure 8b). Neverthe-
less, the Fitch algorithm provided the smallest overall
values of RF. Finally, the results yielded by the methods
using the cosine and Euclidean distances were also com-
pared (Figure 8c). We found that the use of the cosine
distance led to a significantly better cluster recovery in
the framework of hierarchical classification (average RF
for the cosine distance was 101.3 vs. 109.0 for the
Euclidian distance; p < 0.001). Summarizing the results
obtained for the Armadillo and myExperiment datasets,
we can notice that the best hierarchical classification
was found using the Fitch algorithm with the weighted
cosine distance and encoding of Type L

New pairwise measure of clustering support
When running our simulations, we could observe
some variability in the assignment of individual work-
flows to their clusters according to the random work-
flow partition used as a starting point in the k-means
and k-medoids algorithms (Figures 9). For example, a
single outlier can influence clustering performances
while using these partitioning algorithms [44,45]. In
many cases the k-means and k-medoids heuristics reach
only a local minimum which is then returned as a clus-
tering solution [30]. We found that some pairs of work-
flows were more prone to be assigned to the same class,
or to different classes, regardless of the number of clas-
ses suggested by the considered clustering index.
Several works have investigated the problem of stabil-
ity of clustering solution [44-49]. Hennig [44] proposed
a method, based on the Jaccard coefficient, for assessing
the support of individual clusters of the obtained parti-
tioning solution using a bootstrap resampling. Among
different investigated strategies, Hennig recommended
the use of Bootstrap, Bootstrap/Jittering or Subsetting
together with one of the considered noise generation
schemes. In the following work, Hennig [45] described how
to estimate the dissolution point and isolation robustness of
individual clusters by adding to them new elements or
outliers in the framework of the k-means or k-medoids
partitioning. Cheng and Milligan [46] also examined how
the addition and removal of elements impacts on the
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robustness of clustering olutions. On the other hand,
Steinley [47] used repeated random restarts of k-means to
compute a co-occurrence matrix, accounting for pairwise
presence-absence of elements in the clustering solution.
Moreover, Wang [48] proposed an estimation of the num-
ber of clusters by dividing a dataset into two parts and by
validating the clustering instability against each of them.
Fang and Wang [49] described another bootstrap-based
strategy for estimating clustering stability allowing one to
select the optimal number of clusters in order to minimize
the clustering instability. However, the problem of stability
of individual elements has not been addressed so far in the
case of partitioning algorithms.

Indeed, a pairwise measure of clustering stability can be
introduced in the case when different random starts (i.e.
different starting partitions) of the partitioning algorithm
are considered. Such a measure will reflect the probability
of each pair of elements (i.e. workflows in our study) to be
assigned to the same class or to different classes.

Let Q be the number of random starts (i.e. iterations, or
program runs) of the selected partitioning algorithm (k-
means or k-medoids in our study). Each random start ¢
generates a resulting partition, P, of non-overlapping clas-
ses in which each of the #n considered workflows (each
element or object in a general case) is assigned to a certain
class. The pairwise support score, PS, between workflows
w; and w; can be defined as follows (Equation 11):

1 Q
PS(wi,wy) = azsq,ij; (11)
g=1

where S, ; equals 1 if workflows w; and w; are assigned
to the same class in the workflow partition P, obtained
at random start g, otherwise, it equals 0. The non-
diagonal elements of the matrix presented in Figure 9a
are the PS scores obtained for the five bioinformatics
workflows from Figure 1 (the following computational
options were used: 100 random starts of k-means, CH
clustering criterion, cosine distance and encoding of
Type I). If a pair of workflows was always assigned to
the same class, the corresponding pairwise support is 1
(e.g see the PS score for workflows W2 and W5 in
Figure 9a).

Then, the individual (singleton) support score of each
workflow w;, accounting for the probability of w; to be a
singleton element in its class, can be defined as follows
(Equation 12; e.g. it defines the diagonal elements of the
support matrix in Figure 9a):

Q
1
PS(w;) = azsqu
g=1

where S,; equals 1 if workflow w; is assigned to a singleton
class in the partition P, obtained at random start g, other-
wise, it equals 0. For instance, a workflow always classified

(12)
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Figure 9 Simulation results reporting the behavior of the individual pairwise support indices defined in this study. Panel (a)
reports the PS matrix computed for the set of the five bioinformatics workflows presented in Figure 1 (a support value of 1.0 in the
diagonal indicates that the corresponding element was always singleton in its class, whereas a support value of 1.0 in a non-diagonal
position indicates that the two corresponding elements were always grouped together); panels (b) and (c) illustrate the distributions of
the global individual PSG index obtained for the 120 workflows from the Armadillo dataset for the k-means and k-medoids partitioning
algorithms, respectively.

as a unique element of a singleton class will have the indi- A global clustering solution support measure, PSG, for
vidual support score of 1 and all of the pairwise support the given set of workflows W={w,, ..., w,} can be de-
scores of 0 (e.g workflow W4 in Figure 9a). fined as follows:
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i=1 j=1

PSG(W) =

2( ; max (PS(w;, w;), 1-PS (w;, w;)) + Z max (PS(w;), l—PS(Wl))>
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i=

" (13)
Finally, an individual global workflow support of the
workflow w; (i =1, ..., n) can be computed as follows:
Z max(PS(w,», wj) , 1—PS(w,-7 w,»)) + max (PS(W,-, w/) , l—PS(wi))
=1 i) (14)

PSG(w;) =
(w) ,

The first of the two main terms in the numerators
of Equations 13 and 14 contains a maximum that
accounts for the proportion of times two workflows
appear, or do not appear, in the same class over
multiple random starts. For instance, two workflows
always appearing in the same class or never appearing
in the same class contribute the same maximum value
of 1, representing maximum possible pairwise cluster-
ing stability, to the sum in Equation 14 or to the double
sum in Equation 13. The second main term in the
numerators of these equations accounts for the stability
of the singleton elements. Each equation is then nor-
malized by the total number of individual terms in its
numerator. It is worth noting that both the global and
individual PSG indices vary from 0.5 to 1. The closer
the PSG index to 1, the higher the robustness of the
associated partitioning solution is.

Steinley [47] also considered a measure of pairwise sup-
port representing the proportion of times two objects ap-
pear in the same group, which is similar to the measure
presented in Formula (11). However, Steinley’s work does
not discuss any measure accounting for a global support
of the obtained clustering solution (Equation 13) or for in-
dividual support of the considered objects (Equation 14).
The latter work focuses on the recognition of the strongest
clustering by permuting the rows of the proportion matrix
in order to obtain its block-diagonal form that maximizes
the within-block co-occurrences [47].

We investigated how the support measures defined in
Equations (11-14) vary with respect to the selected parti-
tioning algorithm, clustering criterion and number of
random starts. First, we estimated them for the set of
five bioinformatics workflows presented in Figure 1. The
overall PSG support (Equation 13) for these workflows

was found to be 0.90, while the individual global work-
flow supports (Equation 14) were as follows: PSG(W1) =
0.98, PSG(W2)=0.85 PSG(W3)=0.81, PSG(W4)=1.0
and PSG(W5)=0.85. The k-means partitioning algo-
rithm, 1000 random starts, CH clustering criterion, co-
sine distance and encoding of Type I were the selected
parameters in these computations.

Second, we considered the Armadillo dataset of 120 bio-
informatics workflows (see Additional file 1: Table S1A)
to evaluate the behaviour of the global and individual
PSG indices when the k-means and k-medoids partition-
ing algorithms were executed with the cosine distance
and encoding of Type I (the last two options provided
the best average clustering performances in our simula-
tions discussed above). Both partitioning algorithms
were tested using 1000 program runs. The distributions
of the optimal values of the CH and SI criteria found for
1000 independent runs of the k-means and k-medoids
algorithms are shown in Figures 9b and c, respectively.
Table 3 reports the values of the general clustering sup-
port index, PSG, for the k-means and k-medoids parti-
tioning algorithms and the CH, SI and logSS$ clustering
indices.

Table 3 General workflow clustering support, PSG
(Equation 13), obtained for the Armadillo dataset using
as parameters the cosine distance and encoding of Type |

Clustering index k-means k-medoids
Calinski-Harabasz 0951 0.684
Silhouette 0.659 0.840
logSs 0.659 0.823

Results for the k-means and k-medoids partitioning algorithms and the CH, SI
and logSS clustering criteria are reported. These values were computed over
1000 different program runs for each parameters combination.
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We found that in the case of the k-means clustering,
the CH coefficient produced the highest individual and
global scores of workflow support compared to the
Silhouette and logSS indices (i.e. PSG workflow support
of 0951 for CH vs. 0.659 for both SI and logSS, p <
0.0001; see Table 3 and Figure 9b). In the case of the
k-medoids algorithm, we can observe that the use of CH
provided much lower global support values of individual
workflow as well as of the global PSG index compared
to the SI and logSS indices (i.e. PSG workflow support of
0.68 for CH vs. 0.84 for SI and 0.82 for logSS, p < 0.0001;
see Table 3 and Figure 9c). These results are concordant
with our simulation findings, where we determined that
under the discussed experimental conditions the CH cri-
terion performed better when the k-means classification
was considered, whereas SI and logSS yielded better re-
sults in the framework of the k-medoids partitioning.

Conclusion

In this study, we defined and tested through simulations
four workflow encoding schemes combined with spe-
cific weighting strategies characteristic for bioinformat-
ics projects. Our findings, based on the analysis of 220
real-life bioinformatics workflows generated by the
Armadillo [8] and Taverna [4] WEMS, suggest that the
weighted cosine distance in association with the k-medoids
partitioning algorithm and the presence-absence workflow
encoding provided the highest values of the Rand index
among all compared clustering strategies. In our simu-
lations, the Silhouette (SI) and logSS optimization
criteria generally outperformed the Calinski-Harabasz
(CH) criterion in the framework of k-medoids cluster-
ing, whereas the CH index generated better classifica-
tion results in the case of k-means clustering. The SI
index yielded very steady classification results when
used in conjunction with the weighted cosine distance.
Our analysis also shows that the application of weights
can have a major impact on the clustering solution
obtained by partitioning or hierarchical classification
algorithms. Overall, the consideration of weight vectors
representing either the average execution times of the
tasks or the selected keywords allowed us to improve
clustering results. As we also illustrated, encodings of
Types I and II, based on the presence-absence and
occurrence information, generally outperformed more
sophisticated encodings of Types III and IV, taking into
account structural workflow information and formats
of input and output ports. This is mainly due to a
greater sparseness of data corresponding to encodings
of Types III and IV. The latter conclusion is in accord-
ance with the findings of Wombacher and Li [21], who
argued that the N-gram encoding, including the work-
flow structure information, does not improve the quality
of workflow clustering. This is also in accordance with the
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work of Santos et al. [20], who found that workflow task
connectivity information does not necessarily bring an
additional advantage to the workflow clustering process.

Workflow classification performed using hierarchical
methods also favored encoding of Type I in association
with the weighted cosine distance. In the future, it would
be interesting to compare hierarchical workflow classifi-
cations obtained by means of distance methods with
those built by means of the maximum parsimony (MP)
and maximum-likelihood (ML) approaches. The main
advantage of the MP and ML methods is that they can
be applied directly to the two-way object-variable matri-
ces without averaging the results through calculating
distances between the objects. Moreover, the bootstrap
support of the additive trees inferred by the latter
methods could be calculated as well.

Furthermore, we also introduced and tested through
simulations a novel pairwise measure of clustering solu-
tion stability, PS, which can be applied in situations
when a series of independent program runs is carried
out (e.g when different random seeds are used as input
of a partitioning algorithm). Such a measure evaluated
over multiple random starts reflects the probability of
each pair of elements to be assigned to the same class.
In addition, we also introduced the global pairwise
support index, PSG, allowing one to estimate the global
support of the proposed clustering solution as well as
the global support of individual elements (i.e. workflows
in our case). In this study, we considered workflows
from the field of bioinformatics. It would be important
to investigate the presented encoding schemes and the
introduced PS and PSG indices using workflows from
other domains, such as economics, business and medi-
cine, as they may have different structural and computa-
tional properties.

Additional file

Additional file 1: Table S1A. The Armadillo dataset of 120 workflows
and their respective classes. Table S1B. The myExperiment dataset of 100
workflows (generated using the Taverna workflow platform) and their
respective classes. Here each workflow is represented by a series of tasks
(defined by the users); 2 each of these tasks includes multiple computational
methods (not indicated here).
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