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Abstract

Background: Semantic approaches such as concept-based information retrieval rely on a corpus in which resources
are indexed by concepts belonging to a domain ontology. In order to keep such applications up-to-date, new entities
need to be frequently annotated to enrich the corpus. However, this task is time-consuming and requires a high-level
of expertise in both the domain and the related ontology. Different strategies have thus been proposed to ease this
indexing process, each one taking advantage from the features of the document.

Results: In this paper we present USI (User-oriented Semantic Indexer), a fast and intuitive method for indexing tasks.
We introduce a solution to suggest a conceptual annotation for new entities based on related already indexed
documents. Our results, compared to those obtained by previous authors using the MeSH thesaurus and a dataset of
biomedical papers, show that the method surpasses text-specific methods in terms of both quality and speed.
Evaluations are done via usual metrics and semantic similarity.

Conclusions: By only relying on neighbor documents, the User-oriented Semantic Indexer does not need a
representative learning set. Yet, it provides better results than the other approaches by giving a consistent annotation
scored with a global criterion— instead of one score per concept.
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Background
Over the last decade, the data volume has been inces-
santly growing because of new or improved numerical
technologies. In particular in biomedical domains, they
provide anyone with the ability to create and share new
contents — texts (e.g. scientific papers), pictures (e.g.
radiographies, skin disease images), videos, etc. The man-
agement of massive collections is a problem that needs
to be addressed by new methods capable of handling
big datasets. One key process is document indexing [1],
which associates each document with metadata so that
the corpus can be more easily mined via applications
such as information retrieval or recommending systems.
This consists of assigning a document to one or sev-
eral classes that can be represented by words. However,
ambiguous words hamper such keyword-based appli-
cations [2]. Shall we use “tumor” or “carcinoma” in a
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query? Does “hospital” refer to the building or to the
medical institution? There is also no relation consid-
ered between the words. “Neoplasms” and “carcinoma”
are simply considered different in keyword-based applica-
tions whereas their meanings are pretty close. In order to
overcome these problems, a widespread solution is to rely
on knowledge representations such as ontologies [3,4].
The biomedicine field has devoted much effort to cre-
ating such structured vocabularies. Some examples are
the Gene Ontology (GO), the Clinical Terms (SNOMED
CT) or the Medical Subject Headings (MeSH). Annota-
tions of entities (genes, biomedical papers, etc.) using such
structured vocabularies are more informative since their
concepts and the relations among them tackle the above-
mentioned limitations of keyword-based approaches [5].
Indexing has been historically done manually (e.g. in

libraries) but it tends to be automated due to the explo-
sive growth in corpora sizes. Manual curation of data has
been shown to be a very challenging and time-consuming
task, particularly when annotations rely on an ontology,
e.g. biomedical papers from MEDLINE® annotated with
the MeSH [6]. Besides the number of documents to be
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processed, semantic indexing is a complex and subjec-
tive task and the indexers have to perfectly know and
understand the underlying knowledge representation. The
difficulty for a human expert to pick up the most accurate
concepts to index a new document is better apprehended
considering, for instance, that the 2014 edition of MeSH
contains more than 27,000 descriptors/concepts.
Therefore, the annotation process is usually helped by

algorithms in order to overcome time consumption prob-
lems. Those methods have been developped for several
document media, e.g. for indexing images [7,8], texts [9],
audio documents [10] or videos [11]. Indeed, irrespec-
tive of the media, authors agree that efficient annotation
strategies are needed for real world data-driven appli-
cations. Hence, all of those indexing approaches aim to
identify the most relevant concepts of a taxonomy to
index a document. Thanks to technological advances in
the early 2000’s, researchers have been able to automat-
ically exploit knowledge representations. To the best of
our knowledge, the biomedicine field was the first to
propose algorithms and pipelines to automatically anno-
tate biomedical papers with MTI (Medical Text Indexer)
[12]. This project from the NLM’s (National Library of
Medicine) Indexing Initiative proposed a two-fold strat-
egy to annotate textual documents. First, concepts are
both fetched and extracted. Second, this pool of con-
cepts is ordered by relevance based on values computed
during the first indexing phase to select each of those
concepts.
The first phase of the indexing process is thus related

to a retrieval task. Some of this retrieval is text-based and
requires NLP (Natural Language Processing) tools. Many
applications have been proposed to identify concepts in a
text such as the NCBO annotator [13], MaxMatcher [14]
and many more [15]. In MTI [12], extraction of UMLS
concepts (Unified Medical Language System) is based on
the title and abstract of a paper, using MetaMap [16],
before being restricted to a set of MeSH concepts — with
UMLS being a broader ontology. One other and common
way to retrieve relevant concepts to annotate a document
is to focus on already annotated documents that have
similar contents. The assumption here is that similar doc-
uments should be similarly annotated. PMRA (PubMed
Related Articles) [17] is an algorithm made to help users
finding papers that are similar to a given one. Originally,
this method estimates document similarity based on two
criteria: text similarity— the words those documents have
in common in their titles and abstracts — and semantic
similarity — the relatedness of their MeSH annotations.
This latter information is obviously not available during
the indexing of a new document. Several papers such as
[18-20] hence rely on amodified version of PMRA, that we
further refer to as PMRA*, that finds similar documents
by only using text similarity.

The second phase of the indexing process relies on
information collected during the first one and on the
related ontology to actually build up the index of the
considered document. The work presented in this paper
focuses on this second phase. In most existing methods
this phase only orders the concepts collected during the
first one. For instance, this ordering is done in MTI [12]
based on concept relevance defined using criteria such as:
the method used to include the concept in the annotation
pool or the concept frequency (weight) in the document
title/abstract and in the related documents. More recently,
various Machine-Learning (ML) approaches were applied
to learn the relevance of a concept for a given document:
gradient boosting [21], reflective random indexing [22]
and Learning-To-Rank (LTR) [18]. They all show better
results than MTI. Yepes et al. [23] note that the effective-
ness of ML methods is problem-dependent. They hence
suggest that, instead of using one ML algorithm for anno-
tating every document, it would probably be better to use
meta-learning so that the system can choose the method
to apply for a given document. ML thus appears to behave
differently depending on the corpus and/or the ontology
we use. However, the main limitation of ML methods is
the compulsory learning phase: [23] reports 200,000 train-
ing citations for 100,000 tests, [22] trained the algorithm
on more than 3,000,000 citations and [24] used 100,000
articles during the learning process. Considering the num-
ber of learning instances compared to the number of tests,
the describedMLmethods are likely to overfit the training
data.
Among all indexing models, Yang [25] and Trieschnigg

et al. [26] both stated that the k-Nearest neighbors (k-
NN) approach is the only method that can scale while
providing good results. This approach is based on the
neighborhood of the document to annotate. Each neigh-
bor acts like a voter for each potential annotating concept.
In basic applications, the most frequent concepts used
in k-NN indexing are those proposed for annotating new
documents. Huang et al. [18] present a more elaborate
approach by mixing k-NN and ML methods, thus provid-
ing efficiency and effectiveness. First, the k-NNs of the
document to be indexed are identified via the PMRA* —
which is also used in MTI. The concepts indexing the
k-NNs provide the set of concepts to start with. The con-
cepts are then ordered using the LTR [27] algorithm that
relies on a set of features, such as the concept frequency
in the k-NN annotations and some text-specific features
such as the word unigram/bigram overlap between a con-
cept label and the title or abstract. Since the method just
reorders the concepts, a cut-off is applied on the list so
that only the top 25 concepts will be proposed. By combin-
ing k-NN and ML, their approach can scale to the whole
MeSH domain and provide better results than a basic
frequency-based k-NN method.



Fiorini et al. BMC Bioinformatics  (2015) 16:83 Page 3 of 10

However, several limits of current semantic indexation
methods motivated our work. Historically, a list of con-
cepts ordered by relevance is proposed to the expert
indexer. Since concept relevance scores are evaluated
independently, the top concepts of this list may be very
similar. In extreme cases, having a list of 25 variants of the
same concept is obviously not the most helpful informa-
tion for the expert indexer. Another limit is the need of
training data, considering that the full texts are not always
available [18]. Finally, previous studies barely mention the
algorithm complexity or computation times, which are
crucial to favor reactive systems and interactive processes.
Here we introduce a new method called USI for User-

oriented Semantic Indexer. Thismethod returns a concise,
consistent and accurate conceptual annotation based on
a global evaluation of the returned concept set. This
method is said to be user-oriented because its output is
a suggested annotation that can easily be checked by an
expert rather than an ordered list of concepts in which
the expert should pick the concepts that, put together, will
provide a relevant and concise annotation. For example, if
a system outputs the folowing concepts: 1. “Mammals”, 2.
“Carnivora”, 3. “Dog”, 4.“Cat”; the expert is likely to keep
only one of them. This will certainly be “Mammals” or
“Carnivora” depending on what the text is focusing on.
Our approach automatically prunes redundancy so this
kind of situation should not happen and “Mammals” or
“Carnivora” would be the only proposed concept. More-
over, a variant of USI relies on a semantic map to help
the user to easily refine the set of k-NNs used to derive
the annotation of the document to annotated. We also
provide algorithm details that allow us to implement USI
with a low time complexity and hence to propose a faster
solution than that proposed by Huang et al. [18].

Methods
In this section, we present step by step how USI differs
from previous methods. Then, we detail the algorithm we
used to implement it and how we optimized it to enhance
its time performances. Our approach basically relies on
semantic similarities to annotate a document with the
medial annotation of its k-NNs.

Identification of the k-NNs
Considering a document dia to annotate, its k neighbors
are selected among the ordered set of its related docu-
ments identified during the first annotation phase, e.g.
using PMRA*.We tested two possible strategies to restrict
this ordered list to k elements. In the first one the k-
NNs are simply the top k documents of the ordered list
returned by the first phase. In the second one the doc-
uments of this ordered list are displayed on a semantic
map and the user is asked to click on the map region
where di should be; the k documents that are the closest

to this click are then used as k-NNs. Hereafter we denote
by K the set of the k-NNs of di. For example, Figure 1
depicts a small example where PMRA* returns 5 docu-
ments and USI relies on a neighborhood of 3 documents.
The automatic selection of the 3 top documents (accord-
ing to PMRA* score) leads to select K = {d1, d2, d3} as
3-NNs for di whereas the click-based approach, involving
the user interaction, leads to select K = {d2, d3, d5} as
3-NNs for di.

Pairwise similarities beyond raw frequencies
Let Ad denote the annotation of a document d ∈ K and
AK the set of annotations of the k documents in K . In the
example depicted in the top of Figure 1, K = {d1, d2, d3}
andAK = {{c1, c2}, {c2, c3}, {c3, c4, c5}}.
In existing k-NN approaches, the relevance of a concept

(w.r.t. di annotation) is mostly estimated based on its fre-
quency in AK . This simple approach completely ignores
concept similarities such that if a third ofAK annotations
contains “dog” another third contains “cat” and the last
third contains “mammals”, the “mammals” concept will
only have a low score of 1/3 despite its presence (direct
or through hyponyms) in all annotations of AK . We thus
propose to use pairwise semantic similarity, taking advan-
tage of a domain ontology, to assess the similarity between
two concepts instead of the crude implicit binary measure
(1 = are identical, 0 = are different) used when relying on
concept frequency.
In USI, pairwise similarities are computed using the

Semantic Measures Library [28] (SML) that proposes a
large choice of pairwise measures. We choose to follow
the method of Névéol et al. [29] who used the Lin [30]
pairwise similarity. This measure is defined using the
Information Content of a concept c, denoted IC(c). This
IC, that measures the amount of information a concept
provides, may be assessed thanks to a corpus analysis, as
proposed by Resnik [31], or solely based on the concept
position within the knowledge representation (ontology)
[32]. We chose to use Seco’s IC [33], which does not take
the corpora into account to keep the application generic.
The Lin similarity relies on IC values of the two concepts
to compare, say cx and cy, and the IC value of their most
informative common ancestor (MICA):

πLin(cx, cy) = 2 ∗ IC(MICA(cx , cy))
IC(cx) + IC(cy)

. (1)

Groupwise similaritiy beyond the concept list
Let us now consider the example where all annotations
of AK contain “dogs”, “cat” and “mammals”. Obviously
those three concepts are highly relevant for indexing di
and they will be returned by existing k-NN approaches at
the top of the suggested list of concepts. However, those
three concepts are highly similar and hence redundant,
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Figure 1 Illustration of USI annotation process according to four variants. During a first phase (A), documents similar to the document di to be
annotated are identified. Here, this is done using PMRA*. The set of the k-NNs of di , denoted K , is identified from this ordered list. It will support the
annotation calculus for di . Here k = 3. This selection may be done by only taking the k top ranked documents obtained by PMRA* (B top) or after
interaction with the user on a semantic map (B bottom). The set A0 of candidate concepts for di annotation is obtained either by taking the union of
concepts annotating at least one document (A0) or two documents (A0+filter ) of K . This candidate set is then processed to find the medial
annotation of K that will be proposed to annotate di (C).

there is probably no need to keep the three of them in the
annotation Adi . USI overcomes this problem by scoring
the whole set of proposed concepts using semantic group-
wise similarities between a potential annotation ofAdi and
the neighbor annotationsAK . BMA (BestMatch Average)
[34], a composite average, is a well-balanced way to esti-
mate those groupwise similarities. Denoted as sim(c,A)

the similarity between the concept c and the annotation A
is defined as the maximum pairwise similarity between c
and all concepts of A, i.e. sim(c,A) = maxc′∈A(πLin(c, c′)).
The BMA similarity between two annotations Adi and
Ad ∈ AK , denoted hereafter as simBMA(Adi ,Ad), is
defined as:

1
2|Adi |

∑
c∈Adi

sim(c,Ad) + 1
2|Ad|

∑
c∈Ad

sim(c,Adi). (2)

In order to annotate a new document, we look for a con-
cise annotation that is as similar as possible to those in
AK . We thus search the annotation Adi maximizing the
objective function:

f
(
Adi

) = 1
|AK |

∑
Ad∈AK

simBMA
(
Adi ,Ad

) − μ|Adi |. (3)

The first part of f (Adi) tries to maximize the semantic
similarity of the proposed annotation with those of the
k-NNs whereas the second part favors a concise anno-
tation by penalizing the annotation proportionally to
its size. The μ ∈[0, 1] parameter controls the balance
between those two objectives. It allows users to relax the
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threshold value on f (Adi) degradation when reducing the
size of the annotation:
∣∣∣∣∣∣

1
|AK |

∑
Ad∈AK

simBMA
(
Adi ,Ad

) − simBMA
(
Adi \ {c},Ad

)
∣∣∣∣∣∣
.

(4)

Hill-climbing heuristic
We define a set of concept A0 in which the solution will
be searched. It is the set of concepts present in at least
one annotation of k-NNs (see Figure 1 for some exam-
ples). Limiting the search to subsets of A0 instead of trying
all possible concept sets of the ontology already tremen-
dously reduces the processing time. One can wonder how
useful it is to introduce new concepts in A0. That is, for
example, adding the “mammals” concept in A0 if it already
contains “cat”, “dog”, “rabbit”, “bat”, etc. Our tests showed
that it complicates the computation while not significantly
improving the output.
Even when reducing the initial pool of concepts with

A0, however, a brute force approach is not tractable either
since it would require us to evaluate 2|A0| candidate anno-
tations. We thus rely on a greedy hill-climbing heuristic
to provide accurate annotation with a very short comput-
ing time. A naive approach is, starting from A0, to test
the removal of one concept and to actually remove it if
this leads to an increase in f (Adi). The process stops when
no concept can be removed without decreasing f (Adi).
However, the result of this heuristic depends highly on
the initial concept order and is often rapidly stuck at a
local maximum. A more robust heuristic search consists
of always testing the removal of each concept and remov-
ing the one that leads to the highest increase in f (Adi).
As we will see, this heuristic provides accurate annotation
with very short computing times thanks to the algorithmic
optimizations introduced in the next section.

Algorithmic optimizations
The evaluation of f (Adi) for a given annotation A requires
computation of the BMA similarity betweenAdi and allAd
annotations contained in AK . Since we only consider the
annotation Adi ⊆ A0 and by definition, ∀Ad ∈ AK , Ad ⊆
A0, all those BMA similarities ultimately only depend
on |A0|2 pairwise similarities that will be used numer-
ous times during the heuristic. Pre-computing and saving
those pairwise similarities in a matrixMps is thus the first
obvious optimization. The exact complexity of this step
depends on the pairwise similarity measure that is used.
For Lin’s measure, assuming that ICs have been computed
once and for all when loading the ontology with |V | ver-
tices, Mps can be initialized in O(|A0|2|V |) since in the
worst case a concept has |V − 1| ancestors among which
the MICA is searched.

Once we have Mps, any simBMA(Adi ,Ad) can be com-
puted by restricting Mps to a submatrix Mps(Adi ,Ad)
preserving only columns corresponding to concepts
of Adi and rows corresponding to concepts of Ad.
simBMA(Adi ,Ad) then corresponds to half the average of
the maximum values of Mps(Adi ,Ad) rows plus half the
average of the maximum values of Mps(Adi ,Ad) columns.
Finding those maximum values from scratch requires
parsing of the whole matrix so that simBMA(Adi ,Ad) is
computed inO(|Adi ||Ad|). Where Sdmax denotes the max-
imal size of an annotation of AK , testing the removal of
a concept in a current annotation of z concepts requires
computing |AK | groupwise similarities, with each being
computed inO(zSdmax). This test must be done z times to
select the concept to be removed and z ranges from |A0| to
1 because concepts are removed one after another. Hence
the overall time complexity of a naive implementation of
our heuristic would be

O
⎛
⎝

1∑
z=|A0|

|AK |z2Sdmax

⎞
⎠ = O (|AK ||A0|3Sdmax

)
. (5)

The key idea of the algorithmic optimization imple-
mented in USI is that the BMA similarities needed to test
the removal of a concept cr from a candidate annotation
Adi can efficiently be derived by updating some values
already computed to estimate simBMA(Adi ,Ad).
Given the submatrix Mps(Adi ,Ad), let col(c) denote the

column containing the similarities for the concept c of
A. The maximum value in col(c) hence corresponds to
sim(c,Ad). The sum of the maximum column values,
hereafter denoted as sumMaxCols(Mps), is thus equal
to

∑
c∈Adi

sim(c,Ad). Note that in order to update these
values for the annotation A \ cr, it suffices to remove
the maximum value observed in col(cr) in Mps(Adi ,Ad)
which is also the maximum value observed in col(cr)
in Mps(A0,Ad). Hence we pre-compute the maximum
column values for the |AK | sub-matrices Mps(A0,Ad)
with Ad ∈ AK . This is done once and for all in
O (|AK ||A0|Sdmax

)
, the sumMaxCols values needed to test

a concept removal are then obtained in constant times
for each document. Therefore, the overall complexity for
computing the sumMaxCols values is

O
⎛
⎝|AK ||A0|Sdmax +

1∑
k=|A0 |

k|AK |
⎞
⎠= O (|AK ||A0|Sdmax + |A0|2|AK |).

(6)

Similarly, the sumMaxRows(Mps(A0,Ad)) can be effi-
ciently updated. This part is however a little trickier since
the removal of cr from the current annotation Adi may
change some row(c) maximum values if cr is precisely
the most similar concept with c. To efficiently update the
maxRow values we hence have to keep, for each concept
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cr of Adi , a list of the rows of Mps for which the maxi-
mum values were precisely found using cr and to keep for
each concept c of A0 the list of Ad annotations contain-
ing c. The sumMaxRows(Mps(A0,Ad)) values and those
two lists are initialized inO (|AK ||A0|Sdmax

)
; and the latter

list needs no update thereafter. When we test the removal
of a concept cr we hence know exactly for which rows
the maximum values need to be recalculated. For each
updated row(c) we compute the difference between its
new maximum value and its old one. This difference then
just has to be added to the sumMaxRows(Mps(A0,Ad))
value of each annotation Ad � c to update them. When
iteratively testing the removal of each concept cr of Adi ,
the maximum value of each of the |A0| rows will be
updated, in O(|A|), exactly once. It follows that each
sumMaxRows(Mps(A0,Ad)) is updated exactly |Ad| times.
The complexity for computing those sumMaxRows is thus

O
⎛
⎝|AK ||A0|Sdmax +

1∑
k=|A0|

|A0|k + |AK |Sdmax

⎞
⎠ (7)

= O (|AK ||A0|Sdmax + |A0|3
)
. (8)

Note that we only detail how to proceed when removing
a concept cr . When a concept cr is temporarily removed,
all previous values are cached such that the restoration
does not require their re-computation, which is done with
the same time complexity as the removal. The whole com-
plexity of our optimized algorithm is thus the complexity
needed to compute the sumMaxCols and sumMaxRows
values:

O (|AK ||A0|Sdmax + |A0|3
)
. (9)

Let us now detail the space complexity of this algo-
rithm. This space complexity depends on the solution
used to parse and store the domain ontology, which could
be influenced by the used pairwise similarity. Following
the assumptions done in the time complexity section,
we consider here the Lin’s measure and assume that the
domain ontology IS_A structure is stored in memory as
well as the IC of each of its concept. Considering an
ontology of |V | concepts a memory space of O(V 2) is
required to store those ontology related information —
since in the worst case an ontology with |V | concepts has
O(V 2) IS_A-relationships. Moreover, the space complex-
ity of USI optimized hill-climbing algorithm is dominated
by the storage of the Mps matrix of size |A0|2. sumMax-
Cols and sumMaxRows both are stored in O(|A0|), so the
overall space complexity of USI is

O (
V 2 + |A0|2 + 2|A0|

) = O (
V 2) . (10)

In average, we observe a memory usage of 300−400MB
when processing the evaluation dataset — note that this
includes the storage of the domain ontology, all the ICs
and the matrixMps of pairwise similarities.

Evaluation
Themost recent work about automatic indexing for which
evaluation datasets were provided is the one used to val-
idate the method of Huang et al. [18], which we further
refer to as LTR (Learning-To-Rank, the technique they
used for ranking the suggested concepts) as compared
to MTI [12]. This dataset provides expert curated anno-
tations for 1,000 documents as well as the list of their
50 nearest neighbors (k-NNs) gathered via the PMRA*
algorithm. Each neighbor is characterized by a title, a
proximity score (provided by PMRA*) an abstract and a
list of MeSH terms but the two latter may be missing for
some neighbors.
We test several variations of our algorithm that are

schematically summarized on Figure 1. The most basic
version denoted USI is exactly the heuristic described in
the previous section with the subset of the 20 nearest
neighbors, i.e. the exact same k-NNs as in the LTR evalua-
tion.We also test a USI functionality, called filter, in which
the initial set of concepts A0 is pre-filtered to keep only
those appearing in at least two annotations of the 20 con-
sidered neighbors. The objective of this variant is twofold:
i) to reduce the average computing times, ii) to reduce the
potential noise (hence potential local optima) introduced
by concepts that appear only once in the k-NNs and are
thus probably too document specific to be relevant. The
third version, denoted asUSI+map, relies on user interac-
tion with a semantic map to select the 20 best neighbors
among the 50 related documents gathered by PMRA*.
This semantic map is computed using multidimensional
scaling to position the 50 PMRA* documents on a 2Dmap
so that their pairwise similarities (simBMA) are respected
as much as possible. The expert only needs to pinpoint
the location where the document to be annotated should
be on this map, to implicitly specify its 20 k-NNs (accord-
ing to their map locations). In our tests, we assume the
expert pinpoints the correct location (i.e. the location cor-
responding to the expert annotation used as reference in
the benchmark). The fourth and final version,USI_filter +
map, is a straightforward combination of the filter and the
map. Previous approaches from the state of the art assign
a score to any concept that can be relevant for annotat-
ing the new document. The concepts are then ordered
considering their scores and a cut-off is applied to pick
the top ones — e.g. 25 in Huang et al. [18]. Our method
differs from these previous works by returning a set of
concepts that taken as a whole, is supposed to provide
an overall description of the document that satisfies the
user. The heuristic we defined removes the concepts until
the objective function score does not increase anymore.
Therefore,USI does apply a cut-off but proposes a variable
number of concepts.While cut-off-based approaches tend
to maximize the recall, USI tries to maximize the preci-
sion by proposing the minimal set satisfying the objective
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function. We evaluate the results with three criteria. First,
the F-score, which is a classical metric for assessing the
quality of an annotation, and was used for evaluating LTR
in [18]. Second, the semantic similarity between the pro-
posed annotation and the expected one, as suggested by
the analyses of Névéol et al. [29]. Here, this similarity is
denoted Semantic score and it is measured using the aver-
age groupwise semantic similarity (Lin & BMA). Third,
the processing time, which is also an important criterion
to consider, since the main objective of such an approach
is to ease (semi)-automatic indexing for large corpora and
ontologies. Note that the PMRA* computing time is not
taken into account for this criterion because (i) it has been
used by all tested approaches so it should not impact the
results and (ii) we used the PMRA* results given in the
benchmark dataset and did not recalculate them.

Results and discussion
We studied the impact of k on the output F-scores, seman-
tic scores and processing time. The Figure 2 shows that
the scores reach a plateau around k = 10 that contin-
ues to k = 20. The processing time, however, increases
non-linearily while k increases. This leads to the same
conclusion of previous work by Huang et al. [18] that
k should be at most around 20. It also appears that an

evaluation with a semantic measure is more robust than
the F-score. The left part of the graphs shows low scores
with both evaluations — because the output annotation is
bad — but the right part diverges: the F-score decreases
faster than the semantic score. This happens because as k
increases, the concepts that are proposed are not exactly
the ones of the gold standard but they are close to them.
The F-score highly prunes such a substitution whereas the
semantic score still considers the closeness between the
gold standard and the substitution concept.
Table 1 summarizes the evaluations of MTI [12], the

Huang et al. [18] LTR method, a naive implementation of
the algorithm of USI detailed in Equation 5 and all set-
ups of USI. Note that all USI scores are highly significantly
higher (p < 10−6) than previous approaches according to
paired t-tests. The good semantic scores of MTI and LTR
(resp. 0.68 and 0.768) compared to their low F-score (resp.
0.398 and 0.467) confirm the conclusions of Névéol et al.
[29] that semantic scores better assess semantic annota-
tion quality than F-scores. This is expected as the F-score
similarly penalizes the complete absence of a concept
and its replacement by a closely related concept. Those
scores also confirm that LTR significantly outperformed
MTI and proposed high quality annotations that are, on
average, already very similar (0.768) to the expert ones.

Figure 2 Impact of the variation of kwith the PMRA* +USI_filter +map set-up. Computing times are expressed in milliseconds. The highest
values of the F-score and the semantic score are obtained with 10 ≤ k ≤ 20. Increasing the value of k over 20 would only increase the computation
time while not providing better results.
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Table 1 F-score, semantic score and processing time for differentmethods with k = 20

Method F-score Semantic score Processing time (s)

PMRA* + MetaMap + Clustering (MTI) [12] 0.398 0.68 N/A

PMRA* + LTR [18] 0.467 0.768 0.169

PMRA* + algorithm implemented in Equation 5 0.474 0.785 0.791

PMRA* + USI 0.474 0.785 0.015

PMRA* + USI_filter 0.521 0.776 0.003

PMRA* + USI +map 0.509 0.807 0.014

PMRA* + USI_filter +map 0.546 0.802 0.004

Note that PMRA* is never taken into account for the processing time since it has already been computed in the benchmark dataset. USI running times were measured
on a 2.7Ghz microprocessor and 16Go of RAM Linux machine, whereas LTR running times, kindly provided by Huang et al., were measured on a somewhat
comparable configuration but on a different machine.

The basic version of USI and its variantUSI_filter +map
both significantly outperforms LTR in terms of semantic-
score (0.785 and 0.802, respectively, versus 0.768 for LTR)
as well as in terms of the F-score (0.474 and 0.546, respec-
tively, versus 0.467 for LTR). We also studied the specific
benefits of the filter option and the use of the map.
USI_filter mainly improves processing times (0.003 s ver-
sus 0.015 s for USI and 0.169 s for LTR) and the F-score
as compared to USI alone. This happens because the fil-
ter reduces the search space A0 by removing the concepts
annotating a single neighbor, thus reducing processing
time and possible noise for the F-score. Remarkably, the
combination of the filter option and the map in USI_filter
+ map allows their strengths to be combined, hence lead-
ing to a very high semantic score (0.802) and F-score
(0.546) together with a low processing time (0.004 s).
All set-ups of USI are very fast and provide annotations

in milliseconds. The difference with the processing time
of the naive algorithm (0.791 s) proves that the optimiza-
tion applied on USI highly improves its efficiency. Note
however that those computation times are only indicative
since it was not possible to run the LTR algorithm on the
same machine as USI and its computation time is thus
the one kindly provided by its authors but the low time
complexity of USI is obviously an asset concerning this
feature.
Although the map seems to improve the semantic score,

we have to consider that, in a real context, the user would
not instantly click on it. Therefore, the processing time
should be higher when relying on the map. Since the
scores do not greatly improve with the use of a map, we
suggest using it only when the neighbors are highly het-
erogeneous. These cases are those with the worst scores
but they are also those where using the map is the most
useful to improve the suggested annotations. A natural
extension of this work would thus be to detect whether or
not the set of neighbors is heterogeneous — this can be
assessed thanks to the initialMps matrix computed in USI.
If it is, USI would propose a map to the user, otherwise a
fully automatic method would be performed.

Conclusions
In this paper, we present USI a fast and accurate solution
for semantic annotation. By only using semantic annota-
tions of the neighbor documents of the one to annotate,
USI does not need any access to the abstract nor to the
full text. USI annotations benefit from the definition of
a global criterion of the proposed annotation based on
semantic similarities. This global criterion enables USI
to output consistent annotations — instead of individ-
ually scored ones — and allows it to outperform the
approach of Huang et al. [18] based on their biomedical
papers benchmark. USI is not only accurate, it is also fast
thanks to the special care regarding algorithmic opti-
mization leading to low computation complexity, thus
ensuring that it can easily be scaled up to handle very
large corpus and ontologies, even if larger neighborhood
are considered to annotate a document. Another major
advantage of USI, as compared to ML inspired strate-
gies, is that no learning phase is needed, which avoids
the problematic task of assembling a representative and
accurate learning set. We are thus convinced that USI
could be an efficient solution to the time consuming
task of semantic annotation which is a pre-requisite
for numerous semantic information management
projects.

Availability of supporting data
The data sets supporting the results of this article
are available at http://kidknowledge.wp.mines-telecom.
fr/software/usi.

List of notations
d, di: one document (e.g. a scientific paper)
K : a set of k = |K | identified neighbor documents
Ad,Adi : the annotation (set of concepts) of the document
d and di, respectively
A0: the set of concepts from which our method tries to
find the best subset according to the objective function
AK : The set of annotations of documents in K i.e.AK is a
set of set of concepts

http://kidknowledge.wp.mines-telecom.fr/software/usi
http://kidknowledge.wp.mines-telecom.fr/software/usi
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π(a, b): the pairwise similarity between two concepts a
and b
πLin(a, b): the Lin pairwise similarity between two con-
cepts a and b [30]
IC(a): the information content, in this paper Seco’s IC, of
a concept a [33]
MICA(a, b): the most informative (with highest IC) com-
mon ancestor of concepts a and b.
c, cx, cy: concepts
sim(a,B): the similarity between a concept a and a set of
concepts B
simBMA(A,B): the BestMatchAverage similarity between
two sets of concepts A and B
μ: a parameter describing by how much the objective
function score can decrease for the removal of one
concept
f (Adi): the objective function
Mps: a matrix of pairwise similarities of concepts
V : the vertices of an ontology (e.g. the Gene Ontology)
O: bigO notation is used to define algorithms complexity,
by assessing how they respond to changes in input size
Mps(A,B): the submatrix ofMps with pairwise similarities
of concepts from the sets A and B
Sdmax : the maximal size of an annotation ofAK
col(a): the column of the matrix — or submatrix — cor-
responding to the concept a
row(a): the row of the matrix — or submatrix — corre-
sponding to the concept a
cr : a concept tested for removal from A0
sumMaxCols(Mps): the sum of all column maximums in
the matrixMps
sumMaxRows(Mps(A,B)): the sum of all row maximums
in the submatrixMps(A,B)

Endnote
aA comprehensive list of notations is provided at the

end of this paper.
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