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Abstract

Background: Identifying diagnosis and prognosis biomarkers from expression profiling data is of great significance for
achieving personalized medicine and designing therapeutic strategy in complex diseases. However, the reproducibility
of identified biomarkers across tissues and experiments is still a challenge for this issue.

Results: We propose a strategy based on discriminative area of module activities to identify gene biomarkers which
interconnect as a subnetwork or module by integrating gene expression data and protein-protein interactions. Then,
we implement the procedure in T2DM as a case study and identify a module biomarker with 32 genes from mRNA
expression data in skeletal muscle for T2DM. This module biomarker is enriched with known causal genes and related
functions of T2DM. Further analysis shows that the module biomarker is of superior performance in classification, and
has consistently high accuracies across tissues and experiments.

Conclusion: The proposed approach can efficiently identify robust and functionally meaningful module biomarkers in
T2DM, and could be employed in biomarker discovery of other complex diseases characterized by expression profiles.
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Background
Type 2 diabetes mellitus (T2DM) formerly known as
non-insulin dependent diabetes mellitus (NIDDM) or
adult-onset diabetes is the most markedly growing
chronic disease mainly caused by impairment in insulin
secretion and insulin action [1]. A total of 285 million of
people were estimated to suffer from T2DM in 2010 and
would be doubled by 2030 [2,3]. Both environmental fac-
tors like lifestyle, obesity, poor diet, stress, nutritional
status and genetic factors like genetic variations account
for the development of T2DM [4]. In pathophysiology,
insufficient insulin production in the setting of insulin
resistance and inadequate insulin secretion in beta cell
are two key features of T2DM [5], and lots of genetic
variations are thought to contribute to the abnormal
changes, and increase the risk of T2DM [6-11].
* Correspondence: lgao@mail.xidian.edu.cn; lnchen@sibs.ac.cn
1School of Computer Science and Technology, Xidian University, Xi’an
710000, China
2Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology,
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai
200031, China
Full list of author information is available at the end of the article

© 2015 Zhang et al.; licensee BioMed Central.
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
Discovery of gene biomarkers for complex diseases
such as T2DM and various types of cancer is of great
importance for prognosis, diagnosis, and the design of
personalized medicine as well as therapeutic strategy.
Researchers have proposed various methods to counter
this issue, and lots of biomarkers have been identified to
discriminate patients with different disease subtypes or
different clinical prognosis, which are helpful for effective
treatment in the last decade [12-15]. Often, these bio-
markers cannot capture substrate relationships between
phenotypes and genotypes, thus provide little information
in pathogenesis of diseases. On the other hand, with re-
cent rapid advance of modern high-throughput technolo-
gies, massive amounts of omics data have been used to
cater for this need. Biomarkers extracted from these types
of data not only provide new insights in prognosis of dis-
ease states or subtypes, but also a better understanding of
the pathogenesis of complex diseases [16].
However, low reproducibility across experiments or

tissues with the difficulty to gain a clear biological inter-
pretation still exists for the ignorance of the systematic
context gene functions, which can be modeled as a
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biological network, such as protein-protein interactions
(PPI) and regulatory networks. A more effective means to
address this difficulty is to integrate information from mo-
lecular interaction networks. Protein-protein interaction is
considered to be an important way to facilitate biological
functions, such as DNA replication and signal transduc-
tion which play fundamental roles in many biological pro-
cesses. Using PPI networks derived from literature and
databases, a number of approaches have demonstrated the
effectiveness to identify discriminative modules, or so-
called network biomarkers to various diseases [17-22].
On the other hand, discovering gene biomarkers from

gene expression data is also of great importance in progno-
sis, understanding the mechanisms of T2DM and design-
ing personalized medicine and therapeutic strategy. In this
work, a novel method is proposed to identify a set of inter-
acted genes with discriminant ability from gene expression
data, which are defined as “module biomarker”. The pro-
posed method is applied to identify module biomarker for
T2DM by integrating gene expression profiling data and
PPI interactions. It is well known that skeletal muscle in
the dominant position of insulin-mediated uptake plays an
important role in the pathogenesis of insulin resistance
and is responsible for more than 80% of insulin-stimulated
whole body glucose disposal. It is considered that skeletal
muscle insulin resistance is the primary defect in T2DM
[23]. Thus study in skeletal muscle is of great significance
in extracting meaningful biomarkers of T2DM. In this
method, we first generate a group of discriminative mod-
ules by optimizing the discriminative ability of module ac-
tivities, and then a priori knowledge-based method is used
to select the potentially robust module biomarker. Finally,
a robust and stable module biomarker of 32 genes for
T2DM is identified and further validates by various inde-
pendent datasets. The identified module biomarker is
functionally meaningful and enriched with T2DM related
pathways and diseases genes. Interestingly, we find that
few of these disease genes are differentially expressed
across tissues, but they are highly interconnected to form
a subnetwork in the PPI network (PPIN) and play a cen-
tral role in the module biomarker by interconnecting dif-
ferentially expressed genes.

Results and discussion
Overview
Figure 1 shows the flowchart of our method for identifying
module biomarker. The main idea is that genes function
as modules, and the activity of group of genes or modules
may be enhanced or weakened by their interactors.
In this work, we hypothesize that the activity of genes

or modules following normal distribution under specific
conditions. This assumption has been applied to path-
way activity-based classification [24]. According to this
assumption, we model activities of a module under two
conditions (e.g., normal vs. case) following normal distri-
butions with parameters μN, σN and μC, σC respectively.
Then the common area under the two distribution
curves is determined by given μN, σN and μC, σC, and is
defined as discriminative area. Clearly, the smaller the
overlapped size of the discriminative area, the larger the
difference between the two distributions. Thus, the pur-
pose of this work is to find a set of genes which satisfy

(1)these genes interact as a module in the background
network,

(2)the activity of the module is of the smallest
discriminative area, and

(3)genes in the set can be served as gene biomarkers
with robust performance in discriminating whether
a given sample is contained in the normal or case
group.

To capture significant changes of genes in transcrip-
tional expression level, we first identified 203 differentially
expressed genes as seeds with adjusted p-value <0.01 by t-
test, and then generated a discriminative module for each
seed by a greedy strategy. Figure 2 shows the main idea of
the seed-growth strategy (see Methods for details). Hence,
by removing modules of discriminative area disa (M) >0.2,
40 modules remained after selection. The activities of
these 40 modules are highly correlated PCC >0.6, which
indicates that these modules have a poor effect on improv-
ing discriminative ability, and each of them could be
regarded as a potential module biomarker for the original
data (GSE18732). Then, we used a function-similarity
based method to detect a module which would be more
reproducible across data sets. Finally, a module of 32
genes with the highest score was identified. Figure 3 shows
interactions of these 32 genes in module biomarker, and
Additional file 1: Table S1 for the details of these 32 genes.

Validations of module biomarker
We investigated the classification performance of the
identified module biomarker by a number of independ-
ent gene expression datasets across tissues. As the result
shown, the identified module biomarker has a superior
classification performance and has consistently high ac-
curacies across tissues and datasets.
We tested whether 32 genes in the identified module

can be served as biomarkers for type 2 diabetes mellitus in
different expression datasets (GSE18732, E-MEXP-2559,
GSE20966, GSE23343, and GSE26887). All these datasets
refer to different experiments and tissues (see Methods).
Gene profiles of these 32 genes in the module biomarker
as features to model classifier by a SVM with linear kernel
function in these datasets and 10-fold cross-validation was
employed to evaluate classification accuracy. The result
shows that the identified module biomarker of 32 genes



Figure 1 Overview of the proposed framework for identifying module biomarker.
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not only have a high classification accuracy in skeletal
muscle profiles (92.39% for GSE18732 and 80% for E-
MEXP-2559), but also in beta cell (80% for GSE20966),
liver (88.24% for GSE23343) and left ventricle (83.33% for
GSE26887), which means these 32 genes have a superior
classification accuracy across tissues and experiments.
For avoiding over-fitting of classifier, we employed 10-

fold cross-validation and randomly changed certain per-
centage of class attributes as artificial noise by 100 times
in training dataset. The confidence interval was used to
measure correlations between artificial noises and classifi-
cation accuracies. We used GSE18732 as a case study for
enough instances. The result shows that the identified
module biomarker maintains a relatively high mean accur-
acy when the percentage of artificial noise increases from
1% to 10%, which implies the robustness of the classifier
induced by identified module biomarker (Figure 4A).
Then we compared the module biomarker identified

in this work with biomarkers identified by two well-
known methods, SVM-RFE [25] and PAC [24] in dataset
GSE18732. SVM-RFE conducts feature selection in a re-
cursive elimination manner, and was initially proposed
for binary classification. PAC summarizes the pathway
activity level by extracting its condition responsive genes
(CORGs). Finally, 720 genes and 10 pathways identified
by SVM-RFE and PAC were selected for further study



Figure 2 Computational strategy for generating discriminative modules. Computational strategy for generating discriminative modules by
maximizing discriminative area of module activity. The discriminative area is defined as the area under two probability density functions of module
activities corresponding to normal samples and case (disease) samples.
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respectively. The dataset was divided into training set (31
normal vs. 30 case), and test set (16 normal vs. 15 case).
The SVM with linear kernel was applied to generate clas-
sifiers. As a result, biomarkers identified in this work ob-
tained a predictive accuracy 87.09% with AUC 0.96 and
prediction accuracy 90.32% with AUC 0.96 for SVM-RFE,
87.10% with AUC 0.96 for PAC. Figure 4B shows the ROC
curves of these three biomarkers in predicting test in-
stances. Then we performed a 10-fold cross-validation in
all five dataset (GSE18732, E-MEXP-2559, GSE20966,
GSE23343, and GSE26887) to these three biomarkers
(Table 1). Although the highest predictive accuracy, the
mean accuracy for the module biomarker identified in this
work is more stable across tissues (Figure 4C).
We also selected top 32 differentially expressed genes

and other five T2DM-related pathways (type 2 diabetes
mellitus, B cell receptor signalling pathway, toll like re-
ceptor signalling pathway, biosynthesis of unsaturated
fatty acids, insulin signalling pathway) as matched bio-
markers. The p-value of genes was calculated by a t-test
method and genes of adjusted p-value < 0.01 were consid-
ered to be differentially expressed. Five pathways were se-
lected from the background pathway set and functionally
enriched in module biomarker. We compared the classifi-
cation performance of the identified module biomarker to
differentially expressed gene biomarkers and pathway-
based biomarkers on all 5 datasets. Table 1 shows accur-
acies of these biomarkers in all five datasets.
We found that the classification accuracy of our mod-

ule biomarker is consistently high in all datasets (92.39%
in GSE18732, 80% in E-MEXP-2559, 80% GSE20966,
88.24% in GSE23343, 83.33% in GSE26887). On the
other hand, we noticed that the classification accuracy of
our module biomarker is not always the maximal one,
differentially expressed gene biomarkers and pathway-
based biomarkers can also obtain high classification ac-
curacies in some datasets. For example, the classification
accuracies of differentially expressed genes and insulin
signalling pathway even reach 100% in GSE26887, 90%
for type 2 diabetes in GSE20966, while 83.33% and
88.24% for our module biomarker in GSE26887 and
GSE20966 respectively. We then compared the stability
of all these biomarkers by mean classification accuracies
and variances across all datasets. The mean accuracy
and standard variation of our module biomarker is
84.79% ± 0.054, while 81.25% ± 0.11 for differentially
expressed gene biomarkers, 70.34% ± 0.24 for type 2 dia-
betes mellitus, 78.96% ± 0.133 for B cell receptor signal-
ling pathway, 74.1% ± 0.156 for toll like receptor
signalling pathway, 72.73% ± 0.128 for biosynthesis of



Figure 3 Network structure of identified module. Network structure of identified module which contains 32 genes, where diamond denotes that
the gene is a causal gene of T2DM by quering T2D-Db or GAD, hexagon denotes that the gene is a T2DM related gene by functional correlation.
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unsaturated fatty acids, and 77.72% ± 0.179 for insulin sig-
nalling pathway. The result shows that our module bio-
marker has the highest mean classification performance
and the lowest standard variance, which implies that our
module biomarker is more stable than differentially
expressed gene biomarkers and pathway-based biomarkers.
The high accuracy of classification also provides evidence
for the discriminative power of biomarker property under-
lying the identified module biomarker.

Module-based biomarker analysis
Functional implications
Performing database query in T2D-Db [26] and GAD
[27], we found that eight genes, i.e., CETN3, CTSB,
ESR1, HDAC2, MAPK8, PIK3R1, SMARCA4, TCF4 are
documented disease genes of T2DM. Of these, 7 genes
(ESR1, HDAC2, MAPK8, PIK3R1, SMARCA4, TCF4
and CETN3) highly interact. The interactions of these 7
genes were shown in Additional file 1: Figure S1.
Besides 8 known disease genes, many genes also have

a relationship to T2DM by literature mining or play a
role in pathways associated to T2DM [28-35]. For in-
stances, ACAA, TCF3, JUNB and WDR5. ACAA1 is a
key gene involved in lipid oxidation and glucose metab-
olism, both of which are highly related to T2DM [28,29].
TCF3 is a transcriptional factor involved in the initiation
of neuronal differentiation, and plays a role in muscle
cell differentiation and cell development. Heterodimers
between TCF3 and tissue-specific basic helix-loop-helix
(bHLH) proteins play major roles in determining tissue-
specific cell fate during embryogenesis, like muscle or
early B-cell differentiation (function annotation of TCF3
in UniprotKB) [230]. A recent study has suggested that
low muscle mass associated with type II diabetes risk
[31,32]. JUNB is also a transcriptional factor which is in-
volved in regulating gene activity following the primary
growth factor response. It maintains skeletal muscle mass
and promotes hypertrophy [33]. WDR5 has an effect on
the molecular regulation of myogenesis by cooperating
with Ash2L and MLL2 to form a histone methyltransfer-
ase (HMT) complex, which is recruited by Pax7 factor to
remodel the chromatin structure for the control of the
muscle lineage-specific gene expression [34,35].
We then extracted enriched pathways of module bio-

marker in KEGG [36,37] using a hypergeometric test, and
the p-value is adjusted by Benjamini-Hochberg method



Figure 4 Performance analysis of the identified module biomarker. (A) The robustness of classification accuracy in perturbation data with
different ratio of artificial noises. The mean accuracy of the proposed classifier decreases progressively from 84.02% to 73.26% when ratio of noise
increases from 1% to 10%. (B) Comparison of biomarkers identified by different methods in GSE18732. ROC curves shows a superior performance
in classification of module biomarker identified in this work (AUC = 0.96). (C) Histogram of mean accuracy with variance for biomarkers identified
by our method, SVM-RFE and PAC. We also randomized the interactions of background network (PPIs) 50 times and identified a module biomarker
using the proposed method, then mean accuracy and variance are calculated for 10-fold cross-validation across 5 datasets used in this work. Results
show a stable performance across tissues for identified biomarkers.
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[38]. Results indicate that the module biomarker is
enriched with T2DM related pathways such as Type 2 dia-
betes mellitus (p <10− 3), B cell receptor signalling pathway
(p <0.003), Insulin signalling pathway (p <0.013), Toll like
receptor signalling pathway (p <0.006), and Biosynthesis of
unsaturated fatty acid (p <0.036) (full list can be found in
Table 2).

Tissue-specific module biomarker
We then investigated gene activities in identified mod-
ule biomarker in different tissues, and discovered the
Table 1 Accuracy of different biomarkers across experiments

Biomarkers Dataset

GSE18732 E-MEXP-2559

Module biomarker (32 genes) 92.39% 80%

SVM-RFE 67.39% 80%

PAC 84.78% 75%

32 top differentially expressed genes 73.91% 75%

Type 2 diabetes mellitus 55.43% 80%

B cell receptor signalling pathway 60.87% 85%

Toll like receptor signalling pathway 48.91% 70%

Biosynthesis of unsaturated fatty acids 55.43% 80%

Insulin signalling pathway 59.78% 85%

The best results for nine obtained biomarkers in each dataset are shown in boldfac
relationships among tissue specific differentially expressed
genes, T2DM related genes and identified module
biomarker.
The module biomarker has different sets of differentially

expressed genes in different tissues, such as TCF12,
MAPK8, MLH1, LMO4, CDC73, HIST1H1C, WDR61,
WDR5 in GSE18732, SUPT5H, TCF3 and WDR5 in E-
MEXP-2995 (skeletal muscle), CTSB, TCF4, LMO4 and
HBP1 in GSE20966 (beta-cells from pancreatic tissue),
CETN3, PIK3R1, SMARCB1, CDK2AP1, LMO4, WDR5,
PNO1, CDC73 and WDR61 in GSE23343 (liver), BTK,
by 10-fold cross-validation

Mean ± Variance

GSE20966 GSE23343 GSE26887

80% 88.24% 83.33% 84.79% ± 0.054

85% 58.82% 75% 73.24% ± 0.103

60% 47.06% 83.33% 70.03% ± 0.16

75% 82.35% 100% 81.25% ± 0.11

90% 35.29% 91% 70.34% ± 0.24

95% 70.59% 83.33% 78.96% ± 0.133

80% 88.24% 83.33% 74.1% ± 0.156

65% 88.24% 75% 72.73% ± 0.128

85% 58.82% 100% 77.72% ± 0.179

e.



Table 2 Enriched KEGG pathways of biomarker module

KEGG Pathway Corrected P-value

Fc epsilon RI signaling pathway 0.000177920

Type 2 diabetes mellitus 0.000616943

B cell receptor signaling pathway 0.002456893

Progesterone mediated oocyte maturation 0.003642362

ERBB signaling pathway 0.003764635

Toll like receptor signalling pathway 0.005905897

Biosynthesis of unsaturated fatty acids 0.036209447

Mismatch repair 0.002893819

Neurotrophin signaling pathway 0.010609564

Insulin signaling pathway 0.013322982
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CTSB, JUNB, FSCN1 and TCF4 in GSE26887 (left ven-
tricle (LV) cardiac biopsies). Among these tissue-specific
differentially expressed gene sets, few T2DM related genes
are differentially expressed by t-test with p-value less than
0.05 (skeletal muscle (MAPK8, WDR5 in GSE18732), Beta
cell from pancreatic tissue (CTSB, TCF4 in GSE20966),
Liver (CTEN3, PIK3R1, WDR5 in GSE23343), left ven-
tricle (LV) cardiac biopsies (CTSB, TCF4, JUNB in
GSE26887)). And also, few overlaps share among these
tissue-specific differentially expressed gene sets. Inter-
estingly, we found that all tissue-specific differentially
expressed genes in the module biomarker tightly interact
to T2DM related genes which also highly interconnect
in PPIN (see Additional file 1: Figure S1-S6 for network
construction between T2DM related genes and tissue-
specific differentially expressed genes in Additional file 1).
We also tested the classification performance of these

tissue specific differentially expressed genes in 5 independ-
ent datasets, and the result shows that these tissue specific
differentially expressed genes have high classification ac-
curacy across tissues (77.17% for GSE18732, 80% for E-
MEXP-2995, 85% for GSE20966, 94.12% for GSE23343
and 100% for GSE26887), which indicates that the identi-
fied module biomarker has specific gene activities in differ-
ent datasets corresponding to different tissues. However,
these tissue-specific gene actions differ from tissue to tissue
and implies poor reproducible classification performance
across tissues.
Although few overlaps among tissue-specific differen-

tially expressed genes and poor reproducibility across
tissues, the module biomarker shows strong stability in
classification performance across tissues for capturing
relationships between tissue-specific gene actions and
T2DM related genes, which may reveal potential patho-
logical mechanisms for T2DM.

Conclusions
We propose a novel module-based method to identify net-
work biomarkers for T2DM on skeletal muscle. A module
biomarker with 32 genes is identified. The module bio-
marker is more accuracy in classification performance
than traditional biomarkers, i.e., gene-based biomarkers
and pathway-based biomarkers, and also has consistently
high classification accuracy when applied in different tis-
sues. The module biomarker is enriched with T2DM re-
lated genes and T2DM related pathways, which implies
that the module biomarker is functionally meaningful. 32
genes in module biomarker are also enriched with causal
genes of T2DM. In particular, 4 genes, ACAA1, TCF3,
JUNB and WDR5, are functionally related genes for
T2DM by a literature analysis, and play major roles in
muscle mass and regulate important actions of hyper-
trophy, and can be served as candidate disease genes for
T2DM. All 8 causal genes and 4 T2DM related genes dir-
ectly interacted to form a module. Analysis of module bio-
markers in specific tissues indicates that the module
biomarker can capture relationships of tissue specific dif-
ferentially expressed genes and T2DM related genes,
which may reveal potential pathological mechanisms for
T2DM, and makes the module biomarker more stable
across tissues.

Methods
Datasets
All datasets used in this work were downloaded from
public data portals. We downloaded the gene expression
data (GSE18732) for T2DM from Gene Expression
Omnibus (GEO) [39], which consists of mRNA extracted
from skeletal muscle of 47 normal (NGT) subjects, 26
glucose intolerant (IGT) subjects and 45 type 2 diabetic
(DM) subjects. The expression data were normalized by
z-score, and only NGT and DM subjects were selected
in this work. For a given gene g, let X = (x1, x2⋯, xn) be
the expression vector of g across n instances, the z-score
can be calculated as follows,

Z gð Þ ¼ �x−X
σ

;

where �x is the mean of X and σ is the standard devi-
ation of X.
We also downloaded other datasets from GEO and

ArrayExpress [40] as independent datasets referred to dif-
ferent experiments and tissues. E-MEXP-2559 [41] was
downloaded from ArrayExpress. This dataset contains 5
normal subjects, 15 first degree relatives, 5 type 2 diabetic
subjects. All subjects were Caucasian males and biopsies
were taken after a controlled metabolic period of a two
hour hyperinsulinemic euglycemic clamp. GSE20966 con-
tains 10 control and 10 type 2 diabetic subjects obtained
from beta-cells from pancreatic tissue sections by the laser
capture microdissection technique [42]. GSE23343 con-
tains 10 patients with type 2 diabetes and 7 subjects
with normal glucose tolerance from hepatic tissues with
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percutaneous needle liver biopsy [43]. GSE26887 contains
7 T2DM heart failure patients, 12 non-T2DM heart failure
patients and 5 controls from left ventricle (LV) cardiac bi-
opsies [44]. Only control/normal subjects and DM sub-
jects were selected for further study in this work.
The protein-protein interaction network was down-

loaded from iRefIndex (version 9.0) [45], which integrate
multiple types of interactions (physical and genetic) from
a number of primary interaction databases (BIND [46],
BioGRID [47], CORUM [48], DIP [49], HPRD [50], IntAct
[51], MINT [52], MPact [53], MPPI [54] and OPHID
[55]). The iRefIndex consists of 32475 interactors and
401140 interactions. We filtered PPINs using gene expres-
sion data, genes both in PPINs and microarray were used
in the following analysis. Thus, the final PPIN contains
8028 interactors/gene products and 58253 interactions.
The background T2DM related pathways were col-

lected from Genetic Database for Diabetes Mellitus
(DMBase) [56].
Methods
Figure 1 shows the flow chart of our method for identi-
fying subnetwork or module biomarker, which is de-
scribed in this section.
Seed selection
Differentially expressed genes can capture significant
changes of genes in transcription level between different
conditions. So we calculate P-value for each genes in
PPIN, and 190 genes with adjusted p-value <0.01 are se-
lected as seeds.
Identification of discriminative modules
We use a greedy strategy to generate a module of max-
imal discriminative ability for each seed. Figure 2 shows
the flowchart of this process. These modules are defined
as discriminative modules.
Our method is based on the assumption that the activ-

ity of a group of genes or module is normal distribution.
This assumption has been discussed above. For a given
module M corresponding to seed g,the activity vector of
M is

a Mð Þ ¼
X
gi∈M

a gi
� �
ffiffiffi
k

p

where a(gi) denotes the expression vector of gi, k is the
size of M. We define the discriminative area of (M(disa
(M))) as the area under probability density functions
(PDFs) of a(M) corresponding to control and disease
states. Then the greedy strategy is
min
gc

disa a MU gc
� �� �� �

subject to gc ∈N Mð Þ

N Mð Þ ¼ ∪k
i¼1

N gi
� �

; gi∈M

where N(g) denotes the

neighbour set of gene g in PPIN. The iteration is termi-
nated if disa(M) is less than a predefined threshold δ (in
this work δ = 0.001).

Network biomarker selection
As the strategy opted, discriminative modules highly fit
the original expression data but not all of them can be
regard as biomarker. Thus we used a functional
similarity-based method to evaluate these modules. We
collected 19 T2DM related pathways from DMBase as a
background set (see Additional file 1: Table S2 in for full
descriptions of these 19 pathways).
Then we scored each discriminative module as the simi-

larity between the enriched pathways (MF) and back-
ground set (DMF). We used a hypergeometric test to
access whether a pathway P is in KEGG and a module M

p ¼ 1−
Xs−1
i¼0

n2
i

� �
n−n2
n1−i

� �

n
n1

� �

where n is the total number of nodes in PPIN. n1 and
PS1 = {ps11, ps12,⋯, ps1m} are the sizes of P and M, re-
spectively. The similarity of two pathway sets can be cal-
culated as follows [57]:

sim PS1; PS2ð Þ ¼

X
1≤i≤m

sim ps1i; PS2ð Þ þ
X
1≤j≤n

sim ps2j; PS1
	 


mþ n

where PS1 = {ps11, ps12,⋯, ps1m} and PS2 = {ps21, ps22,⋯,
ps2n} denote two pathway sets. ps is the gene set of a path-
way and

sim ps;PSð Þ ¼ max
1<i<k

sim ps; psið Þ

sim ps1; ps2ð Þ ¼
ps1∩ps2
��� ���
ps1∪ps2
��� ���

where k is the size of psi.

Additional file

Additional file 1: This document provides detailed descriptions of
context not included in the paper. Table S1. Detailed description of
32 genes in identified module biomarker. Table S2. 19 T2DM related
pathways downloaded from DMBase used in the paper. Figure S1-S6.
Connections of causal genes and tissue specific differentially expressed
genes in different datasets across tissues.

http://www.biomedcentral.com/content/supplementary/s12859-015-0519-y-s1.doc
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