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Abstract

Background: A usually confronted problem in association studies is the occurrence of population stratification. In
this work, we propose a novel framework to consider population matchings in the contexts of genome-wide and
sequencing association studies. We employ pairwise and groupwise optimal case-control matchings and present an
agglomerative hierarchical clustering, both based on a genetic similarity score matrix. In order to ensure that the
resulting matches obtained from the matching algorithm capture correctly the population structure, we propose and
discuss two stratum validation methods. We also invent a decisive extension to the Cochran-Armitage Trend test to
explicitly take into account the particular population structure.

Results: We assess our framework by simulations of genotype data under the null hypothesis, to affirm that it
correctly controls for the type-1 error rate. By a power study we evaluate that structured association testing using our
framework displays reasonable power. We compare our result with those obtained from a logistic regression model
with principal component covariates. Using the principal components approaches we also find a possible
false-positive association to Alzheimer’s disease, which is neither supported by our new methods, nor by the results of
a most recent large meta analysis or by a mixed model approach.

Conclusions: Matching methods provide an alternative handling of confounding due to population stratification for
statistical tests for which covariates are hard to model. As a benchmark, we show that our matching framework
performs equally well to state of the art models on common variants.
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Background
Genome-wide association studies (GWAS), see e.g. [1,2]
and references therein, have been proven to be useful
to detect genetic risk variants that are involved in the
etiology of complex diseases. Nonetheless, common sin-
gle nucleotide polymorphisms (SNPs) do not account
for the total inherited risk of complex diseases. One
cause might be attributed to uncommon or rare variants,
which are progressively covered by larger DNA micro-
arrays and Next Generation Sequencing. A large sample
size is required in order to obtain sufficient statistical
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information to detect possible effects. It has been rec-
ommended by the authors of [3,4] to extent GWAS and
sequencing studies to admixed ancestral populations. The
hope is to narrow down linkage disequilibrium (LD)
blocks by probing additional genetic variation. For the
combined analysis of rare variants and admixed popula-
tions it becomes more complicated to correct for con-
founding effects: on the one hand, individuals showing the
same rare variants may originate from distinct ancestral
populations and therefore differ in effect sizes and preva-
lences. On the other hand, individuals sharing ancestry
may have non-trivial local differences due to drift, selec-
tion or partial admixture. The task is to implement a
chromosomal region-specific matching [3,5] in order to
overcome the problem of complex confounding effects
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rising from population structure when considering rare
and common variants.
Population stratification, the characteristic of a popula-

tion sample to enable the occurrence of spurious statistical
findings, rises as a consequence of diverging allele fre-
quencies in combination with varying phenotype preva-
lences. Note that population structure, that is the mere
existence of diverging allele frequencies caused by popula-
tion subgroups [6,7], is insufficient to create confounding
by itself [8]. The main attribute of population stratifica-
tion is the statistically significant but spurious association
[9], that results in an inflated type-1 error rate (false-
positives). The reason is, that due to confounding the
distribution function for the test statistic is biased in a
virtually unpredictable way. Using the known unbiased
distribution function regardless will consequently provide
misguided P-values. It is worth noticing that this may
simultaneously cause inflation of the type-2 error rate
(power-loss) or leads to biased estimates of effect sizes.
To account for population stratification, a lot of effort has
been put into the development of approaches during the
last two decades:
Genomic control (GC) [10,11] has been widely accepted

as a method which provides a measure for the extend
of genomic inflation. A genome-wide inflation factor is
calculated and used to rescale the test statistics for resid-
ual bias. This is done under the assumption that virtu-
ally every SNP is in null-association with the trait and
the more fragile assumption that the degree of infla-
tion is constant across the genome. It should be stressed
that under polygenic inheritance the genomic infla-
tion strongly depends [12] on properties like heritability,
number of causal variants, LD distribution and sample
proportions. In [13,14] it has been shown that GC hardly
provides a sufficient tool to correct for population struc-
ture, but is useful to correct for residual inflation.
The structured association [15] approach relies on

assigning sample individuals to population clusters. Test-
ing for associations is then performed relying on cluster
information [16,17]. Usually clustering algorithms incor-
porate assumptions on the underlying populations, i.e.
they are model-dependent [16,18], or they are based on
the results of principal component approaches [19].
The basic idea of the principal components (PC) [20,21]

approach is to reduce the number of dimensions with a
minimal loss of information. It is based on decompos-
ing a matrix, whose entries quantify genetic properties
of the individuals to eigenvectors and eigenvalues. Lead-
ing components are then used as regression covariates
in the association model or for randomization tests [22].
PCs are widely accepted and employed, but may also
have drawbacks: the decomposition is sensitive to outlying
individuals [23,24] and genome-wide data are required.
The power of regression models may suffer from a large

number of parameters. Additionally, important informa-
tion about population substructure may be hidden in
sub-leading components. Prominent PC approaches are
the principal components analysis (PCA) basing on eigen-
decomposition [25] or singular value decomposition [26]
of the genotype matrix. Another ismultidimensional scal-
ing (MDS) [27], where the identity-by-state (IBS) matrix is
linearly projected down on those axis where the data have
the largest extend.
There are also genetic optimal matchings using the

results of the PCA approaches [28] or based on genetic
similarity scores [29] or stratification scores [30].
Most recently linear mixed models (LMM) [31,32] has

made its impact in statistical genetics. These models com-
prise a fixed effect and a random effect term, where
polygenic effects and effects due to sample structure are
modeled into the random part. LMM have proven to
be quite successful in handling population structure in
aggregation with family structure and cryptic relatedness
[33-35]. It has also been advised, to include population
structure in terms of PCA as a fixed effect [36].
In this work we provide an optimal populationmatching

based on a genetic similarity score. We use the pairwise
IBS matrix as genetic similarity score, which can option-
ally be calculated genome-wide or locally. We develop a
set of structuring strategies based on the assignment algo-
rithm in terms of matched case-control pairs andmatched
groups with at least one case and one control. We also
review on the Hungarian Clustering Algorithm [37] that
is employed in order to obtain a population clustering
without model assumptions. These matching strategies
are supplemented by validation methods which serve for
quality controlling the found case-control matches. Our
work is related to that of [29], but instead of using a
matching algorithm that resides on several degrees of
freedom, we apply our validation methods on the results
and eventually re-run the bipartite matching algorithm
on invalid matches. We also develop a particularization
of the Cochran-Armitage trend (CAT) test [38,39] to the
group structures and will compare both modified and
unmodified tests with a principal components approach.

Methods
Genetic similarity score
We introduce the genetic similarity score matrix s. Its
components sij measure the genetic relatedness between
two individuals i and j. In this work we choose the aver-
aged IBS value for the genetic similarity score, which is
given by the portion of alleles shared by state in both
individuals:

sij = 1 − 1
2N

N∑
k=1

|gik − gjk| , (1)
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where N is the number of loci successfully genotyped in
both individuals and gik is the nominal genotype {0, 1, 2}
(number of expressed minor alleles) for individual i at
locus k. It is also possible to weight certain loci, for
instance based on Hardy-Weinberg equilibrium or minor
allele frequency [29]. The determination of the genetic
similarity score matrix is computationally expensive. In
order to expedite the calculation we store genotypes in a
binary encoding, see Additional file 1: Appendix A, and
employ modern versions of the Hamming weight method
[40] to count coinciding alleles. In our implementation
the calculation of the genetic similarity score using the
binary encoding is roughly 15 times faster compared to a
byte-wise storage with byte-wise arithmetics.

Structuring strategies
The basic idea is to divide the study sample into geneti-
cally similar case-control pairs in an overall optimal way.
The measure for this similarity is given by the genetic sim-
ilarity score matrix s of eq. (1). Finding pairs from two
distinct sets (here cases & controls), whose elements of
both sets are connected by weights, in an optimal way is
well-known as the weighted assignment problem [41]. The
Kuhn-Munkres “Hungarian” Method [42], which is the
graph theoretical solution of a ’maximum weighted bipar-
tite matching’, solves this problem in polynomial time
[43]. Algorithms available today are of complexity O(n3)
[44,45]. For a detailed modern illustration of the method
see [46]. In the following we introduce a set of structuring
strategies that are based on this bipartite matching.

Case-control pairwisematching
The Hungarian Method requires balanced and complete
bipartite graphs. Therefore, in case of different cardinal-
ities of the sets of controls O and cases A we extend
the smaller set to have max(|O|, |A|) cardinality. We add∣∣|O| − |A|∣∣ additional elements (“sinks”) to the smaller set.
Then we consider the balanced bipartite graph G(V ,E,w)

with vertices V = O ∪ A, O ∩ A = ∅, edges E ⊆ O × A
and weights w : E → R. The weights are given by
the genetic similarity score of eq. (1), w(i, j) = sij. For
the edges which are incident upon sinks the weights are
set to zero. The Hungarian Method returns a matching
M ⊂ E with max(|O|, |A|) matched pairs. From that we
remove matches comprising sinks. Thus, the individuals
that are matched to the sinks are also removed, ending
up with min(|O|, |A|) cases and controls, respectively. By
doing this, we reduce the sample size to an equal number
of cases and controls. Subsequently, we perform a stra-
tum validation as described in section ‘Stratum validation
strategies’.

Case-control groupwisematching
In order not to reduce asymmetric samples (|O| �=
|A|) too extensively, and therefore lose power, one can

refit unmatched individuals into the sample. To achieve
that, we perform an initial matching as described in
section ‘Case-control pairwise matching’. Afterwards we
repeat the matching process between matched cases with
unmatched controls (those that were removed) and vice
versa. The newly matched individuals are added to the
case-control pairs of the initial matching. Thus, instead of
receiving min(|O|, |A|) case-control pairs, we end up with
min(|O|, |A|) small groups of at least one case and one
control. The process of re-matching unmatched individ-
uals to matched individuals is repeated until either every
individual is matched or until no individual is successfully
been re-matched during a single run of the re-matching
process. The latter may happen because of the validation
procedures which we will introduce in section ‘Stratum
validation strategies’. Because of the validation and itera-
tive re-matching it may occur that a group contains more
than one case and more than one control.
We also note that one might consider multi-objective

matchings similar to [47,48], in order to obtain groups
already in the initial steps of the matching. However,
the removal and repeated matching of invalid pairs due
to the stratum validation completely compensates for
the optimality-advantage of more sophisticated methods.
We therefore stick to our computationally more efficient
method.

Agglomerative hierarchical clustering
The Hungarian Method can be utilized as a basic build-
ing block for agglomerative hierarchical clustering. This
is called the Hungarian Clustering Algorithm [37]. The
algorithm is capable to cluster non-convex data sets.
The widely used K–Means- or EM-based clustering
approaches, for instance, have difficulties with such data
sets. It is also robust to noisy data due to the hierarchical
nature that prevents fast propagation of clustering errors.
The number of clusters is intrinsically found as part of the
process, while the performance of the algorithm is quite
competitive to other clustering methods. A description
of our implementation of the Hungarian Clustering Algo-
rithm is given in Additional file 1: Appendix B. For com-
parison to other approaches like the spectral clustering we
refer to [37].

Stratum validation strategies
The Hungarian Method provides an optimal matching,
i.e. a matching with an extremal sum of weights over
all matches. It does not guarantee that in each matched
pair both individuals are actually very close. In particular
for samples with strongly asymmetric strata in the study
sample, inter-stratum matches occur due to stratum-wise
excesses of cases or controls. Therefore, we have to per-
form a “quality check” on the matching, and pairs that
fail the validation are removed from the study sample. For
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the groupwise matchings, removed individuals may iter-
atively be re-matched and validated again until they are
matched or identified as not matchable. In the follow-
ing we propose two strategies to perform such a stratum
validation.

Intra-cluster matching
Preceding to the case-control matching, cluster affil-
iation is obtained by a clustering algorithm (e.g.
section ‘Agglomerative hierarchical clustering’). Then the
matching is performed in each cluster separately. This
enforces case-control pairs/groups to originate from the
same stratum. The idea to perform a within-cluster
matching after obtaining cluster information is also given
in [19].

Vicinity check
For the vicinity check we adopt and extend the idea of the
parameter Tall from the Hungarian Clustering Algorithm,
presented in Additional file 1: Appendix B. In contrast
to the purpose of clustering, for the problem at hand we
have a bias in the distribution of individuals due to the
case-control binary trait. For a case, we only consider
neighboring controls and vice versa. Therefore, we relax
the vicinity parameter of eq. (B.4) (Additional file 1) to

Tcc = ln(|O||A|) . (2)

The Hungarian Method returns a matching M ⊂ E
with case-control pairs (x, y). For a found pair we count
for both individuals, using sij, how many pairings with a
higher IBS-value can be found in the data set. Let t(y)x be
the number of controls that have a higher weight to the
case x than the control y and let t(x)y be the number of cases
that have a higher weight to the control y than the case x,
that is t(y)x = count{w(x, j) > w(x, y) : j = 1 . . . |O|} and
t(x)y = count{w(i, y) > w(x, y) : i = 1 . . . |A|}. Then if the
vicinity condition

(
t(y)x < Tcc ∧ t(x)y < Tcc

)
∨ t(y)x = 0 ∨ t(x)y = 0 (3)

is fulfilled the pair is valid, otherwise the pair is removed.
The parameter Tcc does guarantee close relatedness in the
sense that it removes pairs which are too far apart com-
pared to the vicinities of the individuals. On the other
hand it does not enforce a pair belonging to the same
stratum.We expect this approach to be robust in the pres-
ence of strong asymmetric strata, in particular if strata are
overlapping. In other words, the passing condition eq. (3)
checks for a well-defined abundance of possible better
mates (first term) or if there are no better mates at all
(remaining terms).

Matching Cochran-Armitage Trend test
Squared test: MCAT(2)

In genetic association studies, the usually employed for-
mula for the Cochran-Armitage trend (CAT) test statistic
[38,39] with the co-dominant model, t = (0, 1, 2), for a
particular SNP is given by

XT2 = T2√
Var(T2)

= N
nconca

[nco(n22 + 2n23) − nca(n12 + 2n13)]2

N(n�2 + 4n�3) − (n�2 + 2n�3)2
.

(4)

The nomenclature for this equation is defined in Table 1.
Note that only individuals with non-missing genotypes for
the particular SNP can be considered. For large popula-
tion samples the test statistics asymptotically converges
to a squared standard normal distribution or chi-squared
distribution with one degree of freedom, limN→∞ XT2 ∼
N (0, 1)2 = χ2

1 . Let us now generalize the CAT test to pro-
vided structures in terms of pairs, group or clusters, which
we will summarize units in the following. For that, we cal-
culate the test statistic in each unit separately and add up
all test statistics to a joint test statistic. Due to the square
in the numerator of eq. (4), an interchange of the allele
frequencies between cases and controls would contribute
equally. Therefore, we have to weight each statistic with a
sign corresponding to the relation of allele frequencies of
cases and controls

YT2 =
∣∣∣∣∣
M∑
i=1

sgn
(
f (i)
ca − f (i)

co

)
X(i)
T2

∣∣∣∣∣ , (5)

where M = |units| is the number of units. The risk allele
frequencies of the unit i are given by f (i)

co = (2n11 +
n12)/nco for controls and f (i)

ca = (2n21 + n22)/nca for
cases. Due to the signed nature of the contribution per
unit in eq. (5), the test statistic YT2 cannot be expressed
by a χ2

n -distribution, and we will need to employ resam-
pling simulations in order to calculate P-values. In
the following, we will call the test statistics YT2 the
squared Matching Cochran-Armitage Trend (MCAT(2))
test.

Table 1 Genotypic contingency table for risk/reference
allele a/A

AA aA aa Sum

Controls n11 n12 n13 nco

Cases n21 n22 n23 nca

Sum n�1 n�2 n�3 N
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Linear test: MCAT(1)

Let us now consider the linear version of the CAT test
statistic with the co-dominant, t = (0, 1, 2), model

XU = U√
Var(U)

=
√
N − 1
nconca

nco(n22 + 2n23) − nca(n12 + 2n13)√
N(n∗2 + 4n∗3) − (n∗2 + 2n∗3)2

.

(6)

For large population samples the distribution function
of the test statistic converges to a standard normal dis-
tribution, limN→∞ XU ∼ N (0, 1). Note, that the finite
population correction factor

√
(N − 1)/N compared to

eq. (4) is necessary in order to guarantee unbiasedness of
the expectation value E(X2

U) and to fix Var(XU) = 1 for all
sample sizesN . It is straightforward to verify this factor by
calculating Var(U) using the multivariate hypergeomet-
ric distribution. Let us now generalize the CAT test to a
provided sample structures. We again calculate the test
statistic in each unit separately and add up all test statistics
to one joint test statistic

YU =
M∑
i=1

X(i)
U . (7)

The resulting test statistic for large M is asymptoti-
cally normal distributed with variance M, limM→∞ YU ∼
N (0,M). Note, that the convergence is quite fast, there-
fore it is reasonable to employ this test for more than a
dozen pairs/groups while the variance is finite. To bemore
precise, the test can be transformed to a standard nor-
mal distribution where the test statistic scales with 1/

√
M.

Likewise, considering large clusters, the test statistic is
normally distributed for small M with large numbers of
individuals per unit N (i), limN (i)→∞,∀i∈M YU ∼ N (0,M).
In the following, we will call the test statistics YU the
linear Matching Cochran-Armitage Trend (MCAT(1)) test
compared to the squared test MCAT(2).

Determination of P-values
(M)CAT tests with resampling simulation
We obtain P-values for the CAT and MCAT(2) tests by
utilizing resampling simulations on the basis of within-
unit – i.e. within-pair, -group or -cluster – permutation
of the case-control trait. The P-values are determined by
the fraction of simulations, where the resulting test statis-
tic is equal to or more extreme than the test statistic of the
original set. We also allow adjustment for multiple testing
by employing the minP approach [49], that has previously
been used in the context of pathway association analysis
[50]. One considerable strength of the minP approach is
that it allows to avoid nested simulations.

Regressionmodels with structure covariates
Regression models with structure covariates provide use-
ful tools to perform stratified analyses without employing

resampling simulations. For case-control studies we may
employ logistic regression (LR) and for quantitative trait
studies linear regression. Population structure covariates
are obtained by calculating principal components using
MDS or PCA. The P-values are calculated using the likeli-
hood ratio test.

Simulation of stratified population samples
The simulation study is based on the genotype data of
the 14 population samples from 4 continents of the 1,000
Genomes Project phase 1 integrated release [51] (data
access Mar 2012), where we use SNPs from just chro-
mosome 22. Since some of the samples are rather small,
we first create larger samples in the following way: for
each population, we estimate allele frequencies from a set
of 500,000 SNPs and local 2-SNP-haplotype frequencies
from the original data. These frequencies serve as param-
eters for the simulation of data sets with 4,000 individuals
for each population. Thus, our simulated data meet the
original data with respect to allele frequency distribution
and pairwise LD, but do not capture higher order LD. We
feel that this potential loss of information is compensated
by the fact that it is considerable to extend sample sizes
beyond the original sample sizes of the 1,000 Genomes
project. The TSI population, for instance, is represented
by a sample of only 14 individuals so it would not have
been possible to include it in the simulation without our
treatment. Inflating populations from a small source does
over-estimate the abundance of monomorphous SNPs.
Therefore, we will remove SNPs that are monomorphous
in any population in our following simulations.

Results and discussion
Simulated multi-population study
H0 simulation
From each simulated population sample of section ‘Simu-
lation of stratified population samples’, we randomly select
cases and controls under the null hypothesis of no asso-
ciation within each population stratum. After this, we
merge the genotype data of the strata, thereby produc-
ing population stratification, and discard the population
information for further analysis. In this way, we simu-
late about 44,900 SNPs and 1,845 individuals, where the
distribution of cases and controls from each stratum is
strongly asymmetric and is listed in Table 2. Thus we
mimic over/under-sampling of cases from different strata,
thereby generating stratified data sets. We create each
simulated data set tenfold in order to ensure that we do
not obtain an accidentally outlying set, and will state the
mean and standard error of the inflation factor λ and the
false-positive rate fp.
In Table 3 we show the results of a single-marker

analysis using the CAT, the MCAT(2) and the MCAT(1)

tests with all combinations of structuring (pairs, groups,
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Table 2 Distribution of the 1,845 individuals (967 controls, 878 cases) from 14 distinct ancestries

Ancestry
AFR AMR ASN EUR

ASW LWK YRI CLM MXL PUR CHB CHS JPT CEU FIN GBR IBS TSI

ncontrols 85 96 66 30 88 36 130 66 45 31 92 120 9 73

ncases 42 48 66 60 44 73 65 133 88 61 46 60 18 74

cluster) and validation (pre-cluster, vicinity) methods.
We compare these results with the logistic regression
test employing 7, 14 and 28 structure covariates in
terms of principal components obtained by multidimen-
sional scaling. For the logistic regression tests the P-
values are obtained by the likelihood ratio test, for the
MCAT(1) test by the asymptotic normal distribution and
for the CAT and MCAT(2) tests by resampling simula-
tions (section ‘(M)CAT tests with resampling simulation’)
with 99,999 cycles. False-positive rates are given by the
fractions of SNPs that show a P-value that is smaller than
a nominal error level of α = 0.05. The inflation fac-
tors are calculated from the median of the test statistics
divided by the expected median value of a χ2

1 -distributed
statistic (≈ 0.456). For the MCAT(1) test, in order to
have one standardized definition of the inflation factor, we
use the squared test statistic of eq. (7), Y 2

U/M. The initial

inflation for the asymptotic CAT test yields λ = 1.990 and
fp = 0.167, while a resampling simulation of all individu-
als shows no significant change on this λ = 1.900 and fp =
0.163. This indicates a sensible amount of stratification in
the population sample.
While the naive CAT test with resampling within units

over-compensates for stratification effects, both MCAT
tests in general perform much better. The groupwise
matchings show overall good results in terms of inflation
(λ ≈ 1) and consumption of the statistical level (fp ≈
0.05). We find that both validation methods (pre-cluster
and vicinity) work well with the groupwise matching. In
Table 3 the number of found groups for the vicinity vali-
dation is smaller than for the clustering validation. Thus,
the vicinity validation ismore stringent than the clustering
validation. The clustering approach was able to detect all
14 populations in nearly all of the ten samples, sometimes

Table 3 H0-simulation: inflation factor and false-positive rates

Test Units Validation N λ σλ fp σfp

CAT AT – – 1845 1.990 0.013 0.167 0.001

CAT RSU All – 1845 1.900 0.013 0.163 0.002

CAT RSU Pairs Cluster 1322 (661p) 0.853 0.008 0.044 0.001

CAT RSU Pairs Vicinity 1254 (627p) 0.846 0.007 0.044 0.001

CAT RSU Groups Cluster 1845 (661g) 0.921 0.006 0.047 0.001

CAT RSU Groups Vicinity 1845 (627g) 0.921 0.009 0.046 0.001

CAT RSU Clusters – 1845 (14c) 0.918 0.006 0.046 0.001

MCAT(2) RSU Pairs Cluster 1322 (661p) 0.832 0.008 0.044 0.001

MCAT(2) RSU Pairs Vicinity 1254 (627p) 0.828 0.010 0.043 0.001

MCAT(2) RSU Groups Cluster 1845 (661g) 1.005 0.011 0.050 0.001

MCAT(2) RSU Groups Vicinity 1845 (627g) 1.001 0.011 0.050 0.001

MCAT(2) RSU Clusters – 1845 (14c) 1.004 0.009 0.050 0.001

MCAT(1) AT Pairs Cluster 1322 (661p) 1.007 0.009 0.050 0.001

MCAT(1) AT Pairs Vicinity 1254 (627p) 1.007 0.011 0.050 0.001

MCAT(1) AT Groups Cluster 1845 (627g) 1.007 0.012 0.051 0.001

MCAT(1) AT Groups Vicinity 1845 (627g) 1.008 0.010 0.050 0.001

MCAT(1) AT Clusters – 1845 (14c) 1.000 0.007 0.050 0.001

LRmds LRT 7 PCs – 1845 1.201 0.019 0.078 0.001

LRmds LRT 14 PCs – 1845 1.006 0.009 0.051 0.001

LRmds LRT 28 PCs – 1845 1.017 0.009 0.052 0.001

Given are means and standard errors of the inflation factor λ and false-positive rates fp from ten iterations of 1845 individuals and ∼44,900 SNPs. The nominal error
level is α = 0.05. The abbreviations in the second column are: AT asymptotic test, RSU resampling simulation within units (99,999 cycles), LRT likelihood ratio test.
Column N shows the number of individuals included and in brackets the number of pairs p, groups g and clusters c.
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deviating by one. The pairwise matchings reduce the sam-
ple to become equal in the number of cases and controls
and remove the least fitting individuals. For that reason
it is comprehensible that it tends to produce samples that
are deflated (λ < 1, Table 3).
The MDS approach also yields very good results if we

provide the correct number of populations (LRmds14,
λ = 1.006). However, underestimating the number
does only partially correct for population stratifica-
tion (LRmds07) and also overestimating the number
(LRmds28) shows a slow increase of the false-positive rate.
We think the latter may happen due to cancellation of
redundant components, which leads to a drop-off in the
ability to correct for stratification.
Computation time of the resampling simulation (99,999

cycle, 44,900 SNPs) on the MCAT(2) test with groupwise
matching takes about 450 minutes on a single used core
of an Intel® Xeon® E5540 CPU with 2.53GHz. Our imple-
mentation supports parallelization, which reduces the real
time correspondingly.

Power simulation
We create a series of data sets by moving along the sim-
ulated chromosome. A particular encountered SNP is
assigned to be associated and we assume a relative dis-
ease risk of 1.5 under a multiplicative model. Based on this
model assumption and on strata-specific baseline allele
frequency we simulate cases and controls from each of
the 14 population samples of section ‘Simulation of strat-
ified population samples’ with the distribution given in
Table 2. In this way, we mimic over/under-sampling of
cases from different strata, thereby generating stratified
data sets that each contain one true SNP association. By
construction, the biased sampling from different strata
may blur the true association effect in the joint sample.
In total, our procedure yields 11,010 data sets with the
case-control status under this model. We use 10,000 SNPs
for the matching and keep a gap of at least 1,000 SNPs
to the analyzed SNP to guarantee that there is no LD
between SNPs that are used for the matching and the
associated SNP. We determine the P-values as described
in section ‘H0 simulation’. On the results of the power
study we perform genomic control: from the P-values we
calculate the test statistics by an inverse χ2-distribution,
then correct those test statistics by the inflation factors of
Table 3, and finally calculate again the P-values according
to a χ2-distribution.
In Figure 1 we illustrate the power vs. the nominal

error level for both MCAT(2) and MCAT(1) test and the
logistic regression test with covariates. In Table 4 we list
the power for three selected nominal error levels (0.01,
0.001, 0.0001) for all employed tests. We observe that
the unstructured association testing (CAT - red line) is
fully outperformed by all structured association testing

methods. The logistic regression model with an over-
estimated count of MDS covariates (LRmds28 - dashed
gray line) performs considerably weaker than the model
with the optimal count (LRmds14 - solid gray line). The
naive CAT tests, with resampling simulations performed
within units, drop off rapidly for already very large nom-
inal levels (Table 4). Both MCAT tests (colored lines) for
the groupwise matching and the cluster are competitive
with LRmds14. Reducing the sample size to matched pairs
(blue and turquoise lines) reduces power considerably.We
conclude, that groupwise matching should definitely be
favored over pairwise matchings.

Stratification from fine scale population structure in an
Alzheimer’s disease sample
We apply the methods to a GWAS on Alzheimer’s dis-
ease (AD) which uses the Illumina® Omni1Mmicro-array.
The study has been described in [52]. AD patients have
been recruited within the German Dementia Competence
Network and at the interdisciplinary memory clinic of
the Department of Psychiatry and Department of Neurol-
ogy at the University Hospital in Bonn, Germany. Diag-
nosis was established according to NINCDA-ADRDA
criteria [53]. After application of standard quality con-
trol, genotypes of 850,612 SNPs are available for 631
cases and 1,080 controls. We exclude a ±1MB region
surrounding the APOE gene, since its well-established
strong association with AD would interfere with the
inflation factor, and SNPs with a minor allele fre-
quency (MAF) below 0.02. Analysis with the CAT
test yields a genome-wide inflation factor of λAD =
1.087 for the unstructured analysis, indicating residual
inflation.
In order to clarify if this inflation is likely due to pop-

ulation stratification we proceed as follows: we aim to
identify SNP loci with an allele frequency distribution that
varies according to the geographic origin within Europe
utilizing information from the 1,000 Genomes Project
data [51]. In detail, we filter the 1,000 Genomes data
set for MAF> 0.01 and compare SNPs from the CEU
sample with the FIN, GBR and TSI sample, respectively,
in a case-control fashion. The respective genome-wide
inflation factors are λ1kGCEUvsFIN = 2.110, λ1kGCEUvsGBR =
1.127 and λ1kGCEUvsTSI = 1.563, which demonstrates the
presence of a considerable portion of SNPs that differ
in allele frequency between the subsamples in [51]. For
each of the three comparisons, we retain the SNPs with
p < 0.05 as a pre-selection for our AD-GWAS study.
These CEUvsFIN, CEUvsGBR and CEUvTSI SNP-sets
contain false-positive SNPs but are also enriched for SNPs
with group-specific genotype distribution. Indeed, when
we restrict the analysis of our independent AD-GWAS
to these SNP-sets, we obtain inflation factors that were
markedly higher (λADCEUvsFIN = 1.097, λADCEUvsGBR = 1.101,
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Figure 1 ROC curve. Power simulation of 11,010 SNPs, 1845 individuals. P-values are corrected via genomic control using the corresponding
inflation factor from the simulation under H0. The abscissas are given in logarithmic scale. The upper plot compares the MCAT(2) with the principal
components approach. The lower plot shows the asymptotic test MCAT(1) . The subscripts in the legend denote the employed structures: clusters c,
groups (pairs) with cluster validation gc (pc) and groups (pairs) with vicinity validation gv (pv).

λADCEUvsTSI = 1.132) compared to the inflation factor of
the entire GWAS (λAD = 1.087). Our interpretation is
that the group-specific SNPs follow a genotype distribu-
tion that is correlated with the geographic location within
Germany and particularly migration and therefore cause
moderate population stratification within our study.
Next, we investigate how the observed population strat-

ification is accounted for by our and by well-established
stratification methods. We have determined that for the
13 leading covariates the inflation factor from the LR-
MDS [54] test has a minimum (λ = 1.032). With a
more increasing count of used components we observe a
slight but steady increase in the inflation factor. A test for

significance for each covariate, employed on each single
SNP and corrected for multiple testing on 50 employed
principal components, revealed an overall impact by the
components 3, 4, 5, 9, 10 & 13. We repeated the analysis
with PCA components in combination with LR using the
PLINK 1.9 software [55] resulting in an optimum of 7 lead-
ing components (λ = 1.021) and the significant compo-
nents 2, 4, 5, 6, 18 & 19. For comparison we also employed
themixed linear model based association (MLMA) test of
the GCTA software [56].
In Table 5 we show the ranking association results,

that we obtain from the analysis each without adjust-
ment for population stratification (λ = 1.087), our three
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Table 4 Power simulation: power vs. selected nominal levels for all strategies

Power 1 − β

Test Units Validation α = 0.01 α = 0.001 α = 0.0001

CAT AT – – 0.665 0.450 0.271

CAT RSU Pairs Cluster 0.881 0.782 0.662

CAT RSU Pairs Vicinity 0.846 0.710 0.558

CAT RSU Groups Cluster 0.809 0.705 0.594

CAT RSU Groups Vicinity 0.833 0.729 0.607

CAT RSU Clusters – 0.808 0.704 0.597

MCAT(2) RSU Pairs Cluster 0.884 0.783 0.658

MCAT(2) RSU Pairs Vicinity 0.823 0.705 0.549

MCAT(2) RSU Groups Cluster 0.907 0.808 0.685

MCAT(2) RSU Groups Vicinity 0.872 0.745 0.591

MCAT(2) RSU Clusters – 0.894 0.782 0.641

MCAT(1) AT Pairs Cluster 0.862 0.733 0.579

MCAT(1) AT Pairs Vicinity 0.813 0.641 0.454

MCAT(1) AT Groups Cluster 0.903 0.797 0.671

MCAT(1) AT Groups Vicinity 0.878 0.751 0.603

MCAT(1) AT Clusters – 0.898 0.786 0.650

LRmds LRT 7 PCs – 0.871 0.741 0.588

LRmds LRT 14 PCs – 0.908 0.805 0.678

LRmds LRT 28 PCs – 0.901 0.798 0.664

11,010 SNPs, 1845 individuals, nominal error level α and power 1 − β . 10,000 independent SNPs were used to obtain structure information. The abbreviations in the
second column are: AT asymptotic test, RSU resampling simulation within units (99,995 cycles), LRT likelihood ratio test. Column N shows the number of individuals
included and in brackets the number of pairs p, groups g and clusters c.

comparison methods, and with the groupwise matching
with the vicinity validation for the MCAT(2) test (λ =
1.044). The top 5 hits of all methods are marked bold.
In most cases, the strength of association of the results
from the unstratified analysis drops with all methods for
stratification. There is, however, a noteworthy exception
among the top results of the linear regression model
with principal component covariates. rs3094078 (f =
0.120), located within the major histocompatibility com-
plex (MHC) on chromosome 6, reaches p = 6 · 10−8 with
the MDS- and p = 5 · 10−7 with the PCA-approach. In
contrast, the unstratified analysis only shows a P-value
of p = 0.003. The groupwise stratification analysis like-
wise shows a much less impressive level of significance
with p = 0.013 which is supported by the MLMA test
(p = 0.031).
It turns out that the first PC is highly correlated with

rs3094078, Pearson correlation r(PC1,SNP) = 0.80, while
the correlations between SNP and case-control status,
r(SNP,phen) = −0.07, and case-control status with first
PC, r(phen,PC1) = −0.02, are negligible. There is no
association of PC 1 with the trait P = 0.6. Employing only
PC 2-7 in the regression model, we obtain CI95%(β) =
[ 0.17; 0.62] and P = 6.1 · 10−4 for rs3094078. Adding

PC 1 changes this to CI95%(β) = [0.59; 1.36] and P =
5.0·10−7, while PC 1 also becomes significant. UsingMDS
covariates leads to virtually identical results. We think it is
possible, that an accidental correlation of the leading com-
ponent with the SNP has boosted a false-positive signal.
In this context, external knowledge does not convincingly
support association of rs3094078 with AD. The Interna-
tional Genomics of Alzheimer’s Project (IGAP) recently
published results of a joint meta-analysis [57]. The pub-
lished list of IGAP SNPs with p ≤ 0.001, contains a region
147 kb to 207 kb upstream from our result with 75 SNP
signals with P-values in the range [ 0.69, 9.93] ·10−4, but
no signals that come close to genome-wide significance
are listed within ±2MB of our signal. IGAP actually
found rs9271192 from HLA-DRB1 from the MHC to be
associated with AD at genome-wide significance. This
signal, however, resides more than 2.3Mb away from
rs3094078. According to the CEU [51] reference data,
rs3094078 and rs9271192 are not in LD (r2 = 0.001).
In summary, the IGAP analysis does not strongly sup-
port association of our top signal from analysis using
principal components with AD and suggests that the
results of the matching stratification methods are more
realistic.
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Table 5 Comparison of top ranking associations between different stratificationmethods

ID chr:pos PCAT P[54]LR-mds13 P[55]LR-pca07 P[56]MLMA PMCAT-gv

λ = 1.087 λ = 1.027 λ = 1.021 λ = 0.998 λ = 1.044

rs13320534 3:46171700 7.35e-8 2.32e-7 5.22e-7 2.17e-7 4.63e-6

rs936939 3:45986623 9.85e-7 1.36e-6 2.20e-6 2.40e-6 1.55e-5

rs9967637 19:57250898 1.04e-6 6.50e-6 1.24e-5 1.96e-6 4.96e-5

rs17650960 15:27999442 1.84e-6 7.93e-5 9.67e-5 5.33e-5 3.81e-5

rs10902222 11:810882 1.89e-6 2.76e-5 1.14e-5 1.04e-5 4.16e-5

rs1992102 3:21280562 2.80e-6 1.55e-6 1.22e-6 2.93e-6 2.38e-2

rs2962492 5:39568609 7.54e-6 3.72e-6 4.19e-6 7.08e-6 1.08e-6

rs4673251 2:204114244 1.70e-5 6.90e-6 1.13e-5 2.03e-5 8.57e-2

rs16844699 3:103879674 4.00e-5 6.04e-5 6.04e-5 3.50e-4 1.50e-5

kgp9470129 3:141298124 5.30e-5 3.70e-5 2.67e-5 2.20e-5 1.34e-5

rs8073498 17:7569698 1.32e-4 1.66e-3 1.08e-3 6.90e-4 1.36e-5

rs3094078 6:30224970 3.16e-3 5.85e-8 5.00e-7 3.05e-2 1.28e-2

The indices of the P-values refer to the type of test: CAT test without any stratification method, LR-mds13/LR-pca07 for logistic regression with 13 MDS/7 PCA
covariates, MLMA stands for mixed linear model association and MCAT-gv for our modified CAT test with group unit and vicinity validation.

Conclusions
We presented a framework which allows for struc-
tured association testing of arbitrarily complex population
samples. It is based on pairwise/groupwise matchings
(section ‘Structuring strategies’) obtained utilizing the
assignment algorithm in combination with validation
methods (section ‘Stratum validation strategies’). In addi-
tion, we applied an agglomerative hierarchical method
that allows clustering (section ‘Agglomerative hierarchical
clustering’) without the need of any model assumptions to
be made on the underlying sample. P-values for the CAT
and the MCAT(2) tests (section ‘Squared test: MCAT(2)’)
were obtained by simulations via permutation testing,
while the MCAT(1) (section ‘Linear test: MCAT(1)’) test
is asymptotically normal distributed. We found that the
CAT test generally is insufficient for the analysis with pop-
ulation structure. The new MCAT tests shows consider-
able improvements over the CAT test for analysis of such
samples and is competitive with principal components
approaches in logistic regression models.
The pairwise matching reduces the sample (forfeits sta-

tistical information) and tends to pick an over-deflated
subsample of asymmetric samples (inflation factor < 1).
We strongly advise to utilize it for analysis of discordant
sib-pair only. If it is possible to detect a clear cluster struc-
ture without substructure clustering performs optimal.
Also, clustering does not rely on case-control information,
therefore it can be used with either binary or quantitative
traits. If clusters and substructure are present, the group-
wise matching with cluster validation is a good choice.
In the case that no cluster-structure can be revealed,
we advise to apply the groupwise matching with vicinity
validation.

We found that, for principal components approaches,
the number of needed PCs has to be estimated relatively
accurately in order to obtain not-inflated analysis results.
It has been claimed [58] that the first ten principal compo-
nents explain the majority of variance attributed to popu-
lation structure. In contrast there is a study [13], where ten
principal components are insufficient to expose popula-
tion substructure, which consequently leads to a spurious
association of the lactate gene LCT with body height. For
the same study GC was not able to correct for stratifica-
tion [13] and also clustering approaches failed to detect
population substructure [59]. It is useful to verify results
by employing different approaches such as ours for a cross
check. In section ‘Stratification from fine scale population
structure in an Alzheimer’s disease sample’ we presented
another example of a possibly false-positive associated
SNP of the MHC region with Alzheimer’s disease using
the principal component approaches. We illustrated that
the finding is not supported by our new developed meth-
ods and has neither been found in [57] nor been approved
by the MLMA test.
We wish to point out that matching methods are of

particular interest for models, for which the inclusion of
covariates is not possible or hard to model. We empiri-
cally found that about 7,500 common variants are suffi-
cient to calculate the genetic similarity scores, from which
the matchings are derived. Thus the score can be eval-
uated both genome-wide and window-wise. The latter is
of particular interest for finding region-specific matches
for rare-variants analysis, which was proposed in [3].
The application and extension of the provided methods
to rare-variants analysis [5] will be a topic for future
investigations.
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All methods described are implemented in INTERSNP
[60], which is a stand-alone C/C++ software, freely avail-
able under the GNU license, that was originally developed
for genome-wide interaction analysis [61]. The software is
fully compatible with all PLINK [54] input file formats. All
matching procedures can be conducted genome-wide and
are documented [60].
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