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Abstract

Background: In template-based modeling when using a single template, inter-atomic distances of an unknown
protein structure are assumed to be distributed by Gaussian probability density functions, whose center peaks are
located at the distances between corresponding atoms in the template structure. The width of the Gaussian
distribution, the variability of a spatial restraint, is closely related to the reliability of the restraint information extracted
from a template, and it should be accurately estimated for successful template-based protein structure modeling.

Results: To predict the variability of the spatial restraints in template-based modeling, we have devised a prediction
model, Sigma-RF, by using the random forest (RF) algorithm. The benchmark results on 22 CASP9 targets show that
the variability values from Sigma-RF are of higher correlations with the true distance deviation than those from
Modeller. We assessed the effect of new sigma values by performing the single-domain homology modeling of 22
CASP9 targets and 24 CASP10 targets. For most of the targets tested, we could obtain more accurate 3D models from
the identical alignments by using the Sigma-RF results than by using Modeller ones.

Conclusions: We find that the average alignment quality of residues located between and at two aligned residues,
quasi-local information, is the most contributing factor, by investigating the importance of input features used in the
RF machine learning. This average alignment quality is shown to be more important than the previously identified
quantity of a local information: the product of alignment qualities at two aligned residues.

Keywords: Template-based modeling, Homology modeling, Random forest, Machine learning, Protein structure,
Protein structure prediction, Protein sequence, Bioinformatics, Statistics

Background
Due to the rapid increase of the size of the protein struc-
ture database, the template-based modeling has become
a major tool for studying the structural aspect of pro-
teins whose structures are not yet determined. Typical
template-based modeling consists of three steps: 1) fold
recognition, 2) sequence-template alignment and 3) chain
building by optimizing spatial restraints. For the last
decade, there have been significant improvements in the
first two steps. A number of new methods have been

*Correspondence: jlee@kias.re.kr
2Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul,
Korea
4School of Computational Sciences, Korea Institute for Advanced Study, Seoul,
Korea
Full list of author information is available at the end of the article

proposed for improved fold recognition [1-6] and mul-
tiple sequence-template alignment [7-9] and these pro-
gresses have been validated in recent critical assessments
of techniques for protein structure prediction experi-
ments (CASPs) [10-14]. However, for the chain building
step, the study of constructing accurate 3D models from
a given alignment has not been as extensively explored
as the other two steps [15], and the Modeller program
[16,17] has been used as an efficient standard tool for
many template-based modeling servers [2,18-21].
Generally, the chain building is carried out by optimiz-

ing a number of spatial restraints, which are extracted
from a given sequence-template alignment. When a pair
of residues in a target sequence are aligned with a cor-
responding pair in a template structure, the inter-atomic
distance of the residue pair of the target sequence is
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assumed to take that of the template structure. The vari-
ability, denoted as σ , between two corresponding inter-
atomic distances (�d = |dn − dt| where dn is from the
native structure and dt from the template structure) is
assumed to follow the Gaussian probability distribution
function (PDF), which is defined as

p(�d) = 1
σ
√
2π

exp
(

−�d2

2σ 2

)
.

In Modeller [17] and Rosetta [22], the standard devia-
tion of the PDF, σ , is estimated by fitting the Gaussian
function against the histogram of data considering four
features related to the quality of the alignment. For the
chain building, the PDFs are converted into harmonic
restraints by taking the negative logarithm and the model
is constructed by minimizing the sum of the restraints. If
a restraint is assumed to be more accurate than others,
its corresponding σ value will be set to be relatively small
and the restraint will be reinforced accordingly. Therefore,
even with an identical alignment, the accuracy of a gener-
ated model would depend on the accuracy of σ values for
the spatial restraints.
In this work, we have constructed a statistical prediction

model, Sigma-RF, to predict the variability of the spatial
restraint, 〈�d〉, by using the random forest (RF) method
[23]. RF is an ensemble predictor, which consists of a num-
ber of decision trees and it makes a prediction from the
ensemble average of outputs by individual trees. RF is one
of the most accurate learning algorithms available and
has been applied to many real-world problems [24-27]. It
has advantages in dealing with large-size databases and
many features [28]. The variability estimated by Sigma-
RF, σRF, has the following simple linear relationship with
the standard deviation of Gaussian PDF used in Modeller,
σModeller ,

〈�d〉 = σRF = 2
∫ ∞

0
�d p(�d) d�d

= 2
∫ ∞

0
�d

1
σModeller

√
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exp
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2σ 2
Modeller

)
d�d

=
√

2
π

σModeller .

(1)

Therefore, the direct comparison of the correlation
coefficients between the true variation of the distance
restraint and the σ value either from Sigma-RF or Mod-
eller is possible. When we benchmark the accuracy of
σ prediction by Sigma-RF against that by Modeller, we
find that the correlation between σ and �d by Sigma-RF
outperforms that by Modeller when tested on 22 CASP9
targets, To identify the effect of the improvement of σ

values, we performed template-based modeling of single-
domain targets of recent CASP experiments: 22 from

CASP9 and 24 from CASP10, by using the σ values from
Sigma-RF (σRF ) and those from Modeller (σModeller) sep-
arately. The quality of model structures are compared in
terms of the maximumTMscore [29] and lDDT-score [30]
and the TMscore and lDDT-score of the minimum energy
model. Single-domain template-based modeling targets of
CASP9 and CASP10 were selected as benchmark targets.
The importance of each input feature used in RF is esti-
mated and its meaning and potential application to other
related works are discussed.

Methods
Sequence-structure alignment preparation
To train Sigma-RF, a set of known sequence-structure
alignments is necessary. To prepare a training set for
Sigma-RF, a set of 1181 non-redundant protein sequences
were selected from the PISCES server [31]. The criteria
for filtering the non-redundant proteins are as follows:
1) sequence identity is less than 20%, 2) R-factor is less
than 0.25, 3) structure is determined by X-ray and reso-
lution is better than 1.6Å, 4) protein length ranges from
60 to 500 residues, and 5) there are no missing residues
in the middle of a structure. The top-scoring template of
each sequence was detected by an in-house fold recog-
nition program, FoldFinder, which has been successfully
used in previous CASP events [10,11,21,32]. FoldFinder
is a profile-profile alignment tool using predicted sec-
ondary structure information of a target sequence by
PSI-PRED [33], and predicted solvent accessibility by
SANN [34]. In the fold database of FoldFinder, proteins
released after CASP9 were eliminated for proper bench-
marking.

Feature generation
Following the Modeller procedure [16,17], for a given
alignment between a target and its template, atom-pair
distance information is extracted for all aligned residue
pairs whose inter-atomic distance from the template
structure is less than predetermined cutoff values. The
pairs are grouped into four categories based on the atom-
pair type: Cα-Cα (CACA), N-O (NO), Main chain-Side
chain (MS), Side chain-Side chain (SS). The distance cut-
off values of the four categories are 14.5, 10.0, 8.0 and
5.0Å, respectively. For a given pair of atoms, i and j,
the variability of their spatial inter-atomic distance, the
objective quantity for training, is defined as the difference
between the distance from the native structure and the
one from the template structure, |di,jnative − di,jtemplate|.
We considered 20 input features to train four ran-

dom forest machines separately and they are described in
Table 1. The first two features are related to the residue
index difference between two aligned positions, I and J, in
the target sequence. The third feature is the inter-atomic
distance between atom i and atom j from two aligned
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Table 1 20 input features used for Sigma-RF are listed
along with their importance estimates

Index Feature Importance

F1 |I − J| 7.51

F2 |I − J|/Nres,target 2.91

F3 dtemplate 9.43

F4 mI,KmJ,L 2.55

F5
∑

I≤i≤J
K≤j≤L

mi,jδ(i, j)/
∑

I≤i≤J
K≤j≤L

δ(i, j) 16.81

F6 NIJ
gap 1.91

F7 NIJ
gap/|I − J| 1.36

F8 1/|I′ − I| 0.12

F9 1/|J′ − J| 0.20

F10 NKL
gap 0.37

F11 NKL
gap/|K − L| 0.32

F12 1/|K ′ − K| 0.23

F13 1/|L′ − L| 0.49

F14
∑

s=H,E,C p(s)δ(sI , sK ) 0.16

F15
∑

s=H,E,C p(s)δ(sJ , sL) 0.88

F16
∑

acc=B,E p(acc)δ(accI , accK ) 0.53

F17
∑

acc=B,E p(acc)δ(accJ , accL) 0.58

F18 F4F14F15F16F17 3.62

F19 F18
1+F6+F10

3.02

F20 F19
1+F8+F9+F12+F13

4.22

I and J (> I) indicate the residue indices in the target sequence, and K and L
(> K) indicate those in the template sequence. When two residue pairs [(I, K) and
(J, L)] are aligned, we extract the distance information of dtemplate between two
atoms in the template. Nres,target is the chain length of the target sequence.mI,K is
the match score of the aligned pair (I, K). In F5, δ(i, j) = 1, if residues i, j are
aligned, otherwise δ(i, j) = 0. NI,J

gap is the number of gaps between I and J in the
target sequence. I′ , J′ , K ′ and L′ represent the residue indices of the closest gaps
of I, J, K and L, respectively. p(s) represents the PSI-PRED scores of the secondary
structure elements, helix (H), strand (E) and coil (C). p(acc) represents the SANN
scores of the solvent accessibility states, buried (B) and exposed (E).

positions in the template, di,j. The fourth feature is the
product of match scores of two aligned positions of target-
template residues, mI,K and mJ ,L, given by FoldFinder,
which is equivalent to the local alignment quality in
Rosetta [22]. The fifth feature is the average match score
of two aligned positions and all aligned residues located
between them. The four features, F6, F7, F10 and F11 are
related to the number of gaps between two aligned posi-
tions in the target sequence (F6 and F7) and the template
sequence (F10 and F11). The features, F8, F9, F12 and F13
are the reciprocals of the sequence distances from each
aligned position to its closest gap. If a gap is placed next
to an aligned residue, the value would be a unity, and
it decreases monotonically as the distance from the gap
increases.
The next four features represent the consistency

between the predicted secondary structure/solvent acces-
sibility of the target and those of the template. In addition,

we introduced three heuristic features, F18, F19 and F20,
to consider correlations between features more explicitly.
For example, F18 is defined as the product of match scores
and consistency scores of two aligned positions since we
observed that these features have positive correlations
with the accuracy of the spatial restraint.

Training random forest
The random forest algorithm is a machine learning algo-
rithm using the ensemble of decision trees. Each tree
is optimized by using a random subset of input fea-
tures instead of deterministic optimization [35]. More
detailed description of random forest can be found
in the original reference [23]. We used the Breiman’s
fortran 77 implementation of random forest, which
can be downloaded from https://www.stat.berkeley.edu/~
breiman/RandomForests/reg_examples/RFR.f.
From all sequence-template alignments in the training

set, we could identify over 10 million pairs of aligned
atoms whose inter-atomic distances were shorter than the
corresponding cutoff value for each distance type. Among
these, we selected 1million cases randomly and used them
to train a random forest machine. We trained 4 random
forest machines considering 4 distance types separately:
CACA, NO, MS, and SS. Each random forest consists of
200 decision trees. For each tree, 2/3 of the initial train-
ing set is randomly sampled with replacement to train
the tree. The unused training set is called out of the bag
(OOB) data and it is used to measure feature importance.
At each split, 6 out of 20 features were randomly selected
to find the best split that maximizes information gain [36].
The tree growth is stopped when 5 or less instances are
included in the leaf node.
For prediction, a test case runs down all trees from the

root to an end node based on the pre-determined splits.
The output of each tree is defined as the average of σ val-
ues of instances included in the end node where the test
case ends. The ensemble average of outputs from all 200
trees is considered as the final estimate of σ value.
The importance of each feature is measured by the

increase of error in out of the bag (OOB) data after the
value of the test feature among OOB data is permuted in
a random fashion. When a tree is trained, the error of tree
is estimated using the original OOB data. Next, the test
feature is randomly permuted among the OOB data and
the error of the tree is re-estimated by using the permuted
data. The average difference between two error estimates
over all trees in the forest is the raw importance score for
the test feature.

Homology modeling
Based on the linear relationship between the standard
deviation (σModeller) of the Gaussian model of the dis-
tance restraint from Modeller [16] and our variability

https://www.stat.berkeley.edu/~breiman/RandomForests/reg_examples/RFR.f
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estimation (σRF ), the predicted variability can be utilized
as the parameter of the harmonic spatial restraint to build
a model structure, which is defined as

V (dij) = 1
2

(
dij − d′

ij

σ

)2

, (2)

where dij and d′
ij are distance between two atoms i and j in

the model and in the template, respectively.
To test the influence of the accuracy of the restraint-

distance variability on the quality of template-based mod-
eling, we performed modeling of 22 CASP9 and 24
CASP10 targets by using σRF and σModeller . The best
template of each target was detected by FoldFinder, and
target-template alignments were obtained by MSA-CSA
[7]. Protein structures released after the CASP9 and
CASP10 experiment were excluded from the fold database
of FoldFinder.
For a given alignment, a set of distance restraints was

obtained by Modeller, and a new restraint file was gener-
ated by replacing σModeller values of harmonic restraints
with σRF values. Additionally, a restraint file generated by
using the true �d values (σnative) is also prepared as the
reference, which corresponds to the ideal prediction based
on a given alignment.
For each target, 100 models were generated by exe-

cuting restraint optimization with ModellerCSA [20]
and original Modeller [16,37] using separate restraint
files. The ModellerCSA package can be downloaded
from http://lee.kias.re.kr/~protein/wiki/doku.php?id=
modellercsa:download. It should be noted that, in this
work, we excluded multiple binormal restraints of the
Modeller energy function that affect the backbone and
side-chain dihedral angles [37]. The quality of 3D models
was evaluated by two measures, TM-score as the global
quality measure [29] and lDDT-score–the local distance
difference test score–as the local quality measure [30].
The maximum scores and the scores of the lowest energy
conformations are compared.

Results and discussion
Prediction of structural variability
The correlation coefficients between the actual �d =
|dn − dt| and the predicted variability values σ were cal-
culated for 22 single-domain template-based modeling
targets from CASP9. The results of four distance types,
Cα-Cα (CACA), N-O (NO), main chain-side chain atoms
(MS), and side chain-side chain atoms (SS), obtained by
Sigma-RF and Modeller are shown in Table 2. Using
Sigma-RF, clear and significant improvement of the aver-
age correlation coefficients for all four distance types is
observed over Modeller results. The largest improvement
is observed in MS restraints, which is increased from
0.187 to 0.458 and the improvement of CACA restraints

which play the most important role in the chain building
step is also considerable (increase from 0.226 to 0.355).
To illustrate details on the difference of results between

Sigma-RF and Modeller, σ values of CACA restraints of
T0552 and T0598 are shown in Figure 1. We observe
that σModeller (red) tend to have rather smaller values and
they are more narrowly distributed than σRF (green). We
note that many highly inaccurate spatial restraints, |dn −
dt| > 10.0Å, are assigned to have rather small σ values
by Modeller, σ < 2. These small σ values can signifi-
cantly lower the accuracy of thus-generated 3D protein
models since the corresponding harmonic restraints will
cause large penalty scores for the native structure, which
would prevent the sampling of more native-like confor-
mations. On the other hand, Sigma-RF provides relatively
larger σ values for highly inaccurate distance restraints
thanModeller does. For T0552 and T0598, all highly inac-
curate restraints are predicted with larger σ values by
Sigma-RF. This will lower the penalty from inaccurate dis-
tance restraints and will potentially allow one to sample
more native-like conformations, which are inaccessible
with small σ values fromModeller.
One of the advantages of using RF is that we can esti-

mate the importance of each input feature with little
additional computational cost. We performed the impor-
tance test for 20 input features by using CACA restraints
and the results are shown in Table 1.We find that the aver-
age match score of aligned residues located between and
at two target positions, F5, is the most important factor
for the variability prediction. Its importance score is sig-
nificantly higher than the rest of the features. It is worth
mentioning that this feature has not been considered pre-
viously either inModeller [16] or Rosetta [22]. The second
important feature is the spatial distance between two cor-
responding atoms in the template structure, which is con-
sidered both in Modeller [16] and Rosetta [22]. The third
one is the residue index difference between two matched
positions in the target sequence. These results indicate
that the accuracy of distance information extracted from
a template structure depends on the alignment quality
of neighboring residues as well as that of two target
positions. In addition, the distance information from the
template is more reliable when physical and sequence
distances between two target positions are relatively
short.
In this work, we used three heuristic features, F18, F19

and F20, to take into account the relationship between fea-
tures more explicitly. F18 is the product of match scores
of two target positions successively multiplied by consis-
tency scores considering the predicted secondary struc-
ture and solvent accessibility between the target and the
actual value from a template. All features used to gen-
erate F18 are expected to be positively correlated with
the local similarities at target positions. Therefore, as the

http://lee.kias.re.kr/~protein/wiki/doku.php?id=modellercsa:download
http://lee.kias.re.kr/~protein/wiki/doku.php?id=modellercsa:download
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Table 2 Correlation coefficients between predicted σ values and actual error, |dnative − dtemplate|, are shown

Target Template
CACA NO MS SS

Modeller Sigma-RF Modeller Sigma-RF Modeller Sigma-RF Modeller Sigma-RF

T0517 2qs7A 0.2912 0.5622 0.2492 0.6013 0.2016 0.5217 0.2614 0.6158

T0523 1ew0A 0.3518 0.3923 0.3382 0.3621 0.2505 0.6017 0.1397 0.2932

T0527 3f1pA 0.2131 0.3402 0.1347 0.3309 0.3624 0.6456 0.4031 0.4859

T0536 1ew0A 0.1969 0.3138 0.2261 0.4194 0.4438 0.4754 0.1690 0.3075

T0538 2kruA 0.1363 0.2225 0.1573 0.2940 -0.0174 0.2370 0.1241 -0.1121

T0539 1x4jA 0.2608 0.5197 0.2179 0.5094 0.2578 0.3832 -0.0061 0.2398

T0545 1wywA 0.1998 0.3312 0.1969 0.3495 0.2351 0.5871 0.1435 -0.1385

T0552 2q0zX 0.1053 0.4061 0.1197 0.4386 -0.0547 0.5310 0.0830 0.5007

T0557 3lmmA 0.2984 0.4447 0.3258 0.4861 -0.0896 0.3577 0.4558 0.5855

T0559 1qbjA 0.1473 0.2589 0.0865 0.3176 0.2635 0.5315 -0.2199 0.1325

T0560 2fokA 0.2076 0.4392 0.1677 0.4554 0.3255 0.5524 -0.0587 0.1467

T0566 1usuB 0.3187 0.4536 0.3524 0.4407 0.2816 0.3639 0.3723 0.4313

T0567 1ny5A 0.2712 0.1997 0.2768 0.2678 0.0558 0.2472 0.1784 0.2378

T0580 1iibA 0.0710 0.2354 0.1195 0.3090 -0.0505 0.2871 0.1281 0.3200

T0586 3by6A 0.1282 0.3713 0.0724 0.3283 -0.0420 0.3020 -0.1258 -0.0214

T0590 1l0qA 0.1390 0.1218 0.1369 0.0431 0.3497 0.5478 0.3307 -0.0593

T0594 1x53A 0.1894 0.3364 0.2257 0.3768 0.2010 0.4539 0.2696 0.1527

T0598 2osoA 0.2631 0.3145 0.3188 0.3489 0.2556 0.4792 0.3168 0.3842

T0610 1wdjA 0.2421 0.2756 0.2517 0.3567 0.2707 0.5224 0.3233 0.4691

T0615 1vj7A 0.3285 0.4062 0.3407 0.5037 0.1585 0.4329 0.2142 0.3148

T0622 3c1aA 0.3945 0.5028 0.4249 0.4589 0.2729 0.5577 0.2606 0.4841

Average 0.2264 0.3547 0.2257 0.3809 0.1872 0.4580 0.1792 0.2748

Better values are shown in bold face.

characteristics of target positions are consistent between
predicted values and actual values, this feature’s relevance
will increase. F19 is defined as the division of F18 by
(1+F6+F10), where F6 and F10 is the number of gaps
between two target positions of the target and the tem-
plate, respectively. The number of gaps in the alignment
is expected to correlate negatively with the accuracy of
the alignment, and therefore the smaller value of F19
would indicate that the local alignment between two tar-
get positions is less reliable. Similarly, F20 is defined as the
division of F19 by (1+F8+F9+F12+F13).
For F8, F9, F12 and F13, the reciprocal to the closest gap

is defined as zero if there are no neighboring gaps, i.e.,
these features become zero. The distance from an aligned
position to its closest gap is also closely related to the accu-
racy of alignment. This was identified as the most [16] or
the second most [22] important feature among four fea-
tures in previous studies. As the closest gap is located
further from two target positions, F20 increases. The
relatively high importance values of these features (F18,
F19, F20) than the individual features used to generate

them (see Table 1) demonstrate that devising an intuitive
heuristic feature can be useful in reducing the complex-
ity and computational time when dealing with a large
number of input features. The importance of individual
similarity and gap-related features appears to be relatively
low, since the essence of equivalent information is already
considered.
Next, we tested the performance of the machine trained

by using only the 10 most importance features to vali-
date the importance estimates. The correlation coefficient
between the true and predicted σ values of the CACA
restraints are shown in Table 3. Only slight decrease of
the average correlation coefficient was observed by using
the top 10 features from 0.355 to 0.339. The excluded
low-importance features are related to the distance from
a gap and the secondary structure/solvent accessible area
information. This indicates that the importance estimate
obtained by the random forest is quite reliable and the
information contained in the excluded features can be
mostly captured by a smaller number of heuristic vari-
ables, F18, F19 and F20.
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C D

Figure 1 Predicted distance variability values are shown against actual distance errors for T0552 and T0598. The results of T0552 are shown
in panel A and B, and those of T0598 are shown in panel C and D. The variability values by Sigma-RF, σRF , (green) show better correlation with true
distance deviations, σnative = |dnative − dtemplate|, than those by Modeller, σModeller , (red). The blue lines represent the linear correlation, y = x.

Application to homology modeling
The average model quality measures of homology mod-
eling results of 46 benchmark targets obtained by Mod-
ellerCSA using σRF , σModeller and σnative are summarized in
Table 4. About 70% of benchmark targets are improved in
terms of TM-score measures (the upper panels of Figure 2
and Additional file 1). The average TMmax,TMEmin and
TMavg values obtained with σRF are consistently higher
than those with σModeller .
In terms of lDDT-score measures, 63% of targets

improved although the average values are almost identi-
cal (the lower panels of Figure 2 and Additional file 2).
The lesser improvement in lDDT-scores may originate
from less accurate σ predictions of SS atom-pairs than
those of main-chain related atom-pairs (Table 2). These
results show that using σRF for the chain-building step
during protein structure prediction can consistently lead
to better models than using σModeller for a given sequence-
template alignment with little additional computational
cost.
We also performed the homology modeling of bench-

mark targets using the original Modeller package to iden-
tify whether predicting better σ value is useful without
using ModellerCSA (Table 5 and Additional file 3 and 4).

The results show that using σRF with Modeller signifi-
cantly improves the quality of the best model. The TMmax
values of 36 targets improved (Figure 3A). However, unlike
the results of ModellerCSA, other measures, TMEmin,
TMavg , lDDTEmin and lDDTavg values are showing no
improvement (the middle and right panels of Figure 3).
This difference may be attributed to the lack of extensive
conformational sampling. ModellerCSA performs much
more extensive conformational sampling than Modeller
and always finds lower energy conformations. Thus the
minimum energy conformations obtained byModeller are
likely to be remote from the true energy minimum, which
makes TMEmin results less meaningful.
A comparison of ModellerCSA and Modeller results

shows that theModeller results aremore accurate in terms
of the TM-scores. The higher TM-scores of Modeller
results may be due to the difference in energy functions.
ModellerCSA used a modified Modeller energy function
without multiple binormal restraints that consider back-
bone and side-chain dihedral angle preferences. However,
theModellerCSA results are showing higher lDDT-scores,
which correspond to more accurate side-chain conforma-
tions. This significant improvement in side-chain confor-
mations is consistent with what was observed in previous
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Table 3 Correlation coefficients between predicted σ

values by Sigma-RF and the actual errors for CACA
distances of 22 CASP9 targets are shown

Target ID With 20 features With top 10 features

T0517 0.5622 0.5774

T0523 0.3923 0.3041

T0527 0.3402 0.3355

T0536 0.3138 0.3438

T0538 0.2225 0.2998

T0539 0.5197 0.5093

T0545 0.3312 0.2289

T0552 0.4061 0.4277

T0557 0.4447 0.3720

T0559 0.2589 0.2237

T0560 0.4392 0.4080

T0566 0.4536 0.3619

T0567 0.1997 0.1960

T0580 0.2354 0.2948

T0586 0.3713 0.4038

T0590 0.1218 0.0670

T0594 0.3364 0.3330

T0598 0.3145 0.2489

T0602 0.5608 0.4723

T0610 0.2756 0.2825

T0615 0.4062 0.4177

T0622 0.5028 0.4853

Average 0.3640 0.3452

Results using the full 20 features as well as using top 10 features are shown. On
average, by using only half of the features, 95% of the prediction level is
achieved.

ModellerCSA study [20]. Model quality improvement by
sampling lower Modeller energy was more prominent in
side-chains accuracy than backbone accuracy.
It should be noted that, for some targets, the aver-

age TM-scores of σRF results are even higher than those
of σnative results. To identify the reason for this unintu-
itive result, we examined the energy landscapes of two
targets, T0517 and T0523 (see Figure 4). From the energy
landscapes (Figure 4A and 4D), it is clear that final 100
conformations are clustered into two groups for all three

cases of σ . The majority of conformations are located
near TM-score=0.75 with lower energies while some con-
formations are located near TM-score=0.3 with higher
energies. The superposition of structures from the two
regions shows that the lower TM-score structures corre-
spond to mirror images of more native-like structures (see
Figure 4B and 4E). The occurrence of mirror-images has
been observed in many other modeling approaches based
on the optimization of distance restraints [38-41].
The energy landscapes show that a smaller number of

conformations are found in the low TM-score region by
using σRF , which suggests that the distance restraints by
σRF energetically disfavor the formation of mirror-images.
To validate this assumption, the restraint energy differ-
ences between σRF and σnative, �Eij = ERFij − Enativeij
where ERFij and Enativeij are respectively distance restraint
energies between atom i and j by σRF and σnative, are cal-
culated for the mirror images of T0517 and T0523 (see
Figure 4C and 4F). The plots demonstrate that, for the
mirror images of T0517 and T0523, distance restraints
with large σnative are penalizedmore by σRF than by σnative.
In the case of T0517, there are a number of restraints
whose σnative values are over 10 Å due to erroneous target-
template alignment. With larger σnative values than σRF
values, the residues related to these restraints experi-
ence less unfavorable restraint energies and are modeled
almost freely, which may allow it to adopt a mirror-
image structure without causing much penalty. Similarly,
in the mirror-image of T0523, the distance restraints with
σnative > 4Å become energetically much more unfavor-
able by σRF . This observation is consistent with a previous
NMR study, which reported that the likelihood of obtain-
ing an inverted structure is higher when the number of
restraints is insufficient [38]. This explains why using large
σnative values for poorly aligned regions tends to result in
more mirror-image structures.
In summary, for a given sequence-template alignment,

chain building using σRF leads to more accurate protein
modeling than that using σModeller in terms of local atomic
details as well as the global structure.

Advantages of random forest
In this work, we have used the random forest learn-
ing algorithm to predict the variability of the spatial

Table 4 Averagemodel quality measures of homologymodeling results of 46 benchmark targets obtained by
ModellerCSA using σRF , σModeller, and σnative are shown

TMmax TMEmin TMavg lDDTmax lDDTEmin lDDTavg

σnative 0.756 0.734 0.710 0.661 0.650 0.648

σRF 0.730 0.722 0.707 0.636 0.630 0.626

σModeller 0.727 0.719 0.691 0.635 0.630 0.624

No. of improved targets 32/46 33/46 34/46 29/46 29/46 30/46
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Figure 2 A comparison of TM-scores and lDDT-scores of 3Dmodels generated by ModellerCSA using σRF and σModeller from those using
σnative. The TM-score results are shown in panel A and B, and the lDDT-score results are shown in panel C and D. For all plots, X-axes represent the
quality measure differences between models obtained by σModeller and σnative . Y-axes represent the differences between models obtained by σRF
and σnative . The green lines represent the y = x line, which corresponds to the identical model quality. The number of dots over the green line
corresponds to the targets that are improved by using σRF .

restraint in the template-based modeling. The random
forest method has a number of advantageous features: 1) it
is one of the most accurate learning algorithms available,
2) it can handle large datasets efficiently, 3) it can handle
a large number of input features without modification or
deletion and 4) it provides an estimate of importance for
each input feature [23]. In previous sigma prediction stud-
ies [16,22], histogram-based approaches were used, where
a database was constructed by dividing and storing the

learning instances into the bins of input feature space and
the width of the Gaussian PDF of sigma was fitted on the
histogram of instances.
One shortcoming of the histogram approach is that the

number of input features and the number of bins are lim-
ited by the size of the database. If there are 5 input features
each of which is divided into 10 bins, a total of 100,000
bins should be considered, which would require at least
10 million data points to obtain a reasonable estimate of

Table 5 Averagemodel quality measures of homologymodeling results of 46 benchmark targets obtained by original
Modeller using σRF , σModeller, and σnative are shown

TMmax TMEmin TMavg lDDTmax lDDTEmin lDDTavg

σnative 0.764 0.744 0.743 0.635 0.617 0.616

σRF 0.741 0.719 0.719 0.609 0.595 0.593

σModeller 0.735 0.721 0.719 0.607 0.595 0.592

No. of improved targets 36/46 21/46 22/46 27/46 22/46 29/46
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Figure 3 A comparison of TM-scores and lDDT-scores of 3Dmodels generated by Modeller using σRF and σModeller from those using
σnative. The TM-score results are shown in panel A and B, and the lDDT-score results are shown in panel C and D. For all plots, X-axes represent the
quality measure differences between models obtained by σModeller and σnative . Y-axes represent the differences between models obtained by σRF
and σnative . The green lines represent the y = x line, which corresponds to the identical model quality. The number of dots over the green line
corresponds to the targets that are improved by using σRF .

the quantity of interests. The size of database can increase
even further by including an additional feature. In addi-
tion, a considerably large size of the database does not
always guarantee that all bins are properly filled. There-
fore, to obtain an accurate estimation of σ values using
the histogram-based approach, one should be careful in
selecting only a small number of relevant input features,
the identities of which are generally unknown in advance.
By using the random forest method, however, we were
able to use as many as 20 input features readily.
The random forest method can measure the impor-

tance of each feature during the training with a frac-
tion of additional computational cost. The importance
estimation of an input feature can uncover hidden rela-
tionships between local properties of protein attributes.
We found that the average match score of all aligned
residue pairs located between and at two target positions
is the most relevant information to predict the accuracy

of the distance restraint extracted from the template. This
suggests that the alignment quality of two target posi-
tions depends on their neighboring residues as well as
the aligned pair themselves. This feature has not been
considered in existing homology modeling studies [16,22].
Therefore, incorporating the equivalent information

may help to improve the accuracy of Modeller [17] and/or
Rosetta [22]. In addition, the minimal increase of the pre-
diction accuracy of the machine trained with all twenty
features over the one using only top 10 features suggests
that the importance estimation of the current random for-
est implementation is quite reliable, and it can serve as
a useful tool to analyze and simplify problems in related
bioinformatics.

Beyond this work
Additional improvement in the model quality can be
achieved by using a multiple sequence alignment. In this
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Figure 4 A comparison of template-basedmodeling results of T0517 and T0523 by the σRF and σnative values. The energy landscapes of
template-based modeling results of (A) T0517 and (D) T0523 by σRF , σModeller and σnative . The representative structures of low and high TM-score
results are superposed: (B) T0517 and (E) T0523. The average restraint energy differences, ERF − Enative , of the mirror-image structures of (C) T0517
and (F) T0523 evaluated by σRF and σnative are shown as 3D histogram plots. Positive z-axis values indicate that corresponding distance restraints are
favored by σnative and disfavored by σRF .

work, the single template alignment of each target was
used to measure the sole effect of new σ values on the
3D chain building. However, in general, it is well known
that the multiple alignment can help to generate more
accurate protein 3D models. By using the multiple align-
ment and Sigma-RF, themodeling quality of such residues,
which are aligned in terms of multiple templates, are
likely to improve the model quality even further if accu-
rate σ values are assigned to competing distance restraints
originating from separate templates. Obviously, accurate
assignment of σ values will allow thus-generate model to
adopt the more accurate part selectively out of multiple
template structures.

Conclusion
In this work, we have trained a statistical model, Sigma-
RF, to predict the intrinsic variability of the distance

restraint between a residue pair using the random for-
est algorithm. Benchmark results show that Sigma-RF
predictions are more highly correlated with the true vari-
ability than Modeller results. The homology modeling
of 46 CASP9 and CASP10 targets shows that the uti-
lization of the variability predicted by Sigma-RF consis-
tently leads to more accurate three-dimensional protein
models than using Modeller predictions with the iden-
tical alignment. The importance test of input features
shows that the average alignment quality of residues
located between and at two aligned residues, quasi-local
information, is the most important feature in determin-
ing the variability of the distance restraint. This average
alignment quality is shown to be more important than
the previously identified quantity of local information:
the product of alignment qualities at two aligned resi-
dues.
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Additional files

Additional file 1: The TM-score measures of ModellerCSA results
using σnative , σRF , and σModeller are shown. An excel file contains the
complete list of TM-score measures, TMmax , TMEmin and TMavg , of
ModellerCSA results of 46 CASP9 and CASP10 benchmark targets.

Additional file 2: The lDDT-score measures of ModellerCSA results
using σnative , σRF , and σModeller are shown. An excel file contains the
complete list of TM-score measures, lDDTmax , lDDTEmin and lDDTavg , of
ModellerCSA results of 46 CASP9 and CASP10 benchmark targets.

Additional file 3: The TM-score measures of Modeller results using
σnative , σRF , and σModeller are shown. An excel file contains the
complete list of TM-score measures, TMmax , TMEmin and TMavg , of Modeller
results of 46 CASP9 and CASP10 benchmark targets.

Additional file 4: The lDDT-score measures of Modeller results using
σnative , σRF , and σModeller are shown. An excel file contains the
complete list of TM-score measures, lDDTmax , lDDTEmin and lDDTavg , of
Modeller results of 46 CASP9 and CASP10 benchmark targets.
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