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Abstract

Background: Gene regulatory networks describe the interplay between genes and their products. These networks
control almost every biological activity in the cell through interactions. The hierarchy of genes in these networks as
defined by their interactions gives important insights into how these functions are governed. Accurately determining
the hierarchy of genes is however a computationally difficult problem. This problem is further complicated by the fact
that an intrinsic characteristic of regulatory networks is that the wiring of interactions can change over time.
Determining how the hierarchy in the gene regulatory networks changes with dynamically evolving network
topology remains to be an unsolved challenge.

Results: In this study, we develop a new method, named D-HIDEN (Dynamic-Hlerarchical DEcomposition of
Networks) to find the hierarchy of the genes in dynamically evolving gene regulatory network topologies. Unlike earlier
methods, which recompute the hierarchy from scratch when the network topology changes, our method adapts the
hierarchy based on the wiring of the interactions only for the nodes which have the potential to move in the hierarchy.

Conclusions: We compare D-HIDEN to five currently available hierarchical decomposition methods on synthetic and
real gene regulatory networks. Our experiments demonstrate that D-HIDEN significantly outperforms existing

methods in running time, accuracy, or both. Furthermore, our method is robust against dynamic changes in hierarchy.
Our experiments on human gene regulatory networks suggest that our method may be used to reconstruct hierarchy

in gene regulatory networks.
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Background

Regulatory interactions between genes in a cell are often
represented as a network, also called gene regulatory
network. These networks are often modeled as directed
graphs where nodes represent the genes or their prod-
ucts, and directed edges between these nodes represent
the regulation of a gene by another one. Gene regula-
tory networks govern almost every biological activity in
the cell [1-8]. Due to their central role in the develop-
ment of organisms and human diseases, the analysis of
gene regulatory networks holds the key for understanding
how biological processes are regulated. Subtle changes,
such as an increase or decrease of the abundance of
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regulatory proteins or aberrations in regulatory interac-
tions between these proteins, can have profound effects in
many biological processes including human diseases such
as cancer.

Biological networks have been characterized by a variety
of graph theoretic measures such as degree distribution
and clustering coefficient [9]. Analysis of the gene reg-
ulatory networks has shown that these networks share
common characteristics such as the scale-free degree dis-
tribution and hierarchical ordering of the genes [10-20].

Hierarchical decomposition reveals one of the most fun-
damental characteristic of gene regulatory networks. It
explains the flow of information (i.e., regulation in this
case) from the genes at higher levels (i.e., master regu-
lators) to those at lower levels [11,13]. More specifically,
hierarchical decomposition maps the nodes in the under-
lying network to one of the given hierarchy levels, typically
denoted with integers 1, 2, ..., M. Here, M denotes
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the highest possible hierarchy level. Figure 1 illustrates
this concept. Figure 1(a) shows a hypothetical network.
Figure 1(b) illustrates the same network after the nodes
are assigned to three hierarchy levels.

Correct assignment of the hierarchy levels to the
genes in the regulatory networks is essential for com-
prehensive analysis of the gene regulatory networks,
particularly for understanding the impact of exter-
nal perturbations and diseases on the transcription
and abundance of genes and gene products. While
the experimental approaches can be used to identify
the genes and their interactions, finding the hierarchy
between these genes remains to be a computational
task.

Some of the key approaches for finding the hierar-
chy of genes in regulatory networks computationally
include BFS [11], Vertex-Sort [12], HINO [13], HIDEN,
and Divide and Conquer HIDEN (DC-HIDEN) [14]. The
BFS method uses breadth-first search technique to assign
hierarchies to genes in a network [11]. Although this
method is applicable to any gene regulatory network,
it fails to correctly assign hierarchy levels for networks
that contain cycles. Vertex-Sort uses a topological sort
algorithm to assign hierarchies to genes in the given net-
work [12]. This method does not assign a single hierarchy
level for each gene; it instead assigns a range of pos-
sible levels for genes. HINO improves the BFS method
by introducing two correction steps, called “downgrade”
and “upgrade”. Downgrade step places each node at the
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lowest level where that vertex and its regulating nodes
are assigned to. Upgrade step assigns nodes to the next
higher level if they regulate other nodes which are located
at the same level and no other node regulates them.
Despite this improvement, its accuracy remains very low.
HIDEN [14] formulates the problem using integer lin-
ear programming. In comparison to BES, Vertex-Sort and
HINO, HIDEN produces more accurate hierarchy assign-
ments. However, this comes at the price of significantly
increased computational cost. As a result, HIDEN does
not scale to large gene regulatory networks. To rem-
edy this shortcoming, the same study, proposes a divide
and conquer strategy, named DC-HIDEN. This strategy
computes a set of local solutions for randomly selected
subnetworks of the given network and then combines
them. As a result of this localization, this method scales
to large networks, but its accuracy levels are lower in
comparison to that of HIDEN. In summary, all of these
aforementioned approaches are either grossly inaccu-
rate or take enormous amount of time as the network
size grows. As we explain next, such enormous cost
leads to another challenge that makes these methods
impractical.

An inherent characteristic of gene regulatory networks
is that their topologies are dynamic. New interactions
can appear or existing interactions can become infeasi-
ble over a period of time [21]. For example, many genes
are involved in regulatory networks that control differen-
tiation in different cell types during early development.
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Figure 1 Hierarchical decomposition of gene regulatory networks. (@) A hypothetical regulatory network with seven nodes, labeled with
1,2,...,7. (b) The same network after nodes are assigned to three hierarchy levels with optimal hierarchical assignment. Dashed arrows indicate
conflicting edges. There are two conflicting edges. Thus the penalty of this decomposition is 2. (€) The network obtained by mutating the network in
(@) after removing edge (2,4) and inserting edge (4, 3). (d) The optimal hierarchical decomposition of the network in () into three hierarchy levels.
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The interactions between these genes vary throughout
development and in different cell types. One reaction that
exists at one time point may be lost at a later time point,
or a reaction that exists in one cell type may be missing
in another cell type. These dynamic changes in the reg-
ulatory interactions reflect the changes in the needs of
the system and are key for correct development of the
organism. After the organism develops into its adult form,
cell differentiation is minimal and most of the regulatory
interactions that are involved in these regulatory pathways
are lost. However, the dynamic rewiring of the gene regu-
latory networks for other cellular functions is still needed
to efficiently respond to environmental changes [22-24].
Clearly, such topological changes in the regulatory net-
works can alter the position of a subset of genes in the
hierarchical decomposition, yet we do not know which
genes will change or how they will change their hierarchies
[15-20]. Determining such topological changes is key for
understanding how gene regulatory networks function,
how the development works for different organisms and
finding cures for diseases such as cancer.

To the best of our knowledge, all the methods in
the literature targeted at computing the hierarchical
decomposition of biological networks ignore the dynamic
nature of the network topologies. As a result, they
cannot handle dynamic changes in the gene regula-
tory networks. An obvious way to apply these methods
on dynamic network topologies is to recompute the
hierarchical decomposition from scratch each time the
network topology changes, even when the change is
miniscule. This is, however, not practical as finding the
hierarchical decomposition is a computationally expen-
sive task. New methods that can quickly update the
hierarchical decomposition from the existing hierar-
chy when network topology is updated slightly are
needed.

Our contributions In this paper, we develop a new
method, namely Dynamic Hierarchical Decomposition of
Regulatory Networks (D-HIDEN) which finds the hierar-
chy in gene regulatory networks. Unlike existing methods,
D-HIDEN can handle networks whose topologies change
dynamically. The idea behind D-HIDEN is that small
changes in the topology of a network alters the hierar-
chies of only a small number of nodes of that networks.
When the network topology changes, instead of recom-
puting the hierarchy from scratch for the entire network,
D-HIDEN computes the hierarchy levels of a small part
of the underlying network that is most likely to move
in the hierarchy. We formulate this problem as an inte-
ger linear programming problem. The challenge here is
to predict which subnetwork yields the variables in the
resulting mixed integer linear programming. D-HIDEN
tackles this problem by learning a function that describes
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the probability that a given gene in the network will
move in the hierarchy, based on a given set of alterations
in the network topology (i.e., insertions and deletion of
interactions). Our extensive experimental results on both
synthetic and real networks demonstrate that D-HIDEN
achieves much better performance (accuracy and run-
ning time) than five currently available methods. Appli-
cations of our method to the human gene regulatory
networks could successfully reconstruct the hierarchy
in these networks. Our analysis on the human gene
regulatory networks evolving due to cell differentiation
reveals changes in the hierarchy of the regulatory roles of
genes.

The implementation of the methods we developed in
this paper and the datasets we used in our experiments are
available at http://bioinformatics.cise.ufl.edu/dhiden.

The rest of the paper is organized as follows. In
the Methods section, we formally define the problem
and describe the D-HIDEN algorithm. In the Results
section, we present the results of our method. In the
Discussion and Conclusion section we summarize our

findings.

Methods

In this section, we first present the key terms that are
essential to describe our method. We then explain our
method in detail.

Terms and definitions

A gene regulatory network describes the regulatory inter-
actions between genes and their products. Mathemat-
ically, we model a gene regulatory network using a
directed graph denoted with G = (V,E). In this nota-
tion, V denotes the set of nodes where each node cor-
responds to a unique gene. E € V x V denotes the
set of directed edges where each edge corresponds to
an interaction. In the rest of this paper, we will use
the term graph to denote directed network unless oth-
erwise stated explicitly. We start by defining the inver-
sion operation on graphs and how we use it to enrich a
graph.

Definition 1 (Inversion of a graph). Given a graph
G = (V,E), we say that graph G' = (V,EY is the
inverse of G if E' is obtained by reversing the directions
of all the edges in E. Formally, this happens when both
of the following two conditions hold: (i) V(u,v) € E,
we have (v,u) € E. and (i) V(u,v) € E., we have
(v,u) € E.

Definition 2 (Direction enriched graph). Consider a
graph G = (V,E) and its inverse G' = (V,E'). We say
that graph G° = (V, E®) is direction enriched graph of G if
E¢=EUE.
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We say that a graph G = (V, E) is connected if its direc-
tion enriched graph contains at least one path from all
the nodes of V to all the other nodes of V. In the rest
of this paper, unless otherwise specified, we assume G to
be directed and connected. It is worth noting that our
method does not rely on this assumption. We only make
this assumption to simplify the method description. We
defer the discussion on disconnected graphs to the end of
this section.

Definition 3 (Hierarchical decomposition of a graph).
Consider a graph G = (V,E), and a positive integer M
denoting the highest possible hierarchy level. The hierarchi-
cal decomposition of G is a function H : V — {1,..., M}.

Verbally, the hierarchical decomposition assigns a level,
which is described by an integer, to the nodes of the graph.
In this hierarchy, larger numbers indicate a higher level
in the hierarchy, and thus, M is the highest level of hier-
archy. The Figure 1(b) shows an example of hierarchical
decomposition where M = 3.

The hierarchical decomposition of a graph describes the
relative role of the genes as the regulators or the regu-
lated ones in that graph. Ideally, if a gene denoted by node
u regulates another gene denoted by node v (i.e., there is
a directed edge from u to v in the corresponding graph),
then we would like to place node u at a higher level in
the hierarchy than node v. The following two definitions
capture this.

Definition 4 (Conflicting edge). Consider a graph G =
(V,E), and its hierarchical decomposition, H : V —
{1,...,M}. Consider an edge (u,v) € E. We say that the
edge (u,v) is conflicting if H(u) < H(v).

For instance, in Figure 1(b), the edge (4,5) is a conflict-
ing edge because H(4) = H(5). Similarly, the edge (5, 3) is
also conflicting as H(5) < H(3).

Definition 5 (Penalty of hierarchical decomposition).
Counsider a graph G = (V, E), and its hierarchical decom-
position, H : V. — {1,...,M}. For all (u,v) € E, consider
the indicator variable €,, defined as

o = 1 H(u) <H®)
"1 0 otherwise

The penalty of H on the graph G is the number of con-
flicting edges in G based on the hierarchy function H.
Formally, it is computed as:

Pg(H) = Z €uy

(u,v)eE
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For instance, in Figure 1(b), penalty of the given hierar-
chy is two since there are two conflicting edges. We say
that a hierarchical decomposition of a given graph into M
hierarchical levels is optimal if it yields the least penalty
among all possible hierarchical decompositions.

Definition 6 (Dynamically evolving graphs). Assume
that we are provided with a positive integer t. Also assume
that we are given sequences of graphs G = (Gy, ..., Gg),
where YVi(l < i < K), G; = (Vi,E;). We say that G
is a sequence of dynamically evolving graphs with respect
to T if both of the following two criteria are satisfied for
consecutive graphs G;_1 and G; in G, Vi(1 < i < K),

L Via=V,
2. |[Ei-1—E|+I|E —Ei1| <.

In Definition 6 above, the first condition enforces that
the set of nodes should be preserved (we will relax this
constraint later in this section). The second condition
requires that only a limited amount of edges can be altered
(i.e., inserted or removed) from one graph to obtain the
next graph in the sequence.

When the threshold 7 in Definition 6 is small, instead
of considering the K graphs in the dynamically evolving
sequence G as K independent graphs, we view them as
single graph whose topology is gradually changing from
G1 to Gy, then to Gs, and so on until we reach Gg.

Notice that as the graph topology evolves as pro-
vided in the sequence G, the hierarchy level assigned
to the nodes of the graph by the optimal hierarchical
decomposition can also change. This is because as new
edges are inserted or existing ones are removed, the
role of the gene (i.e., node) incident to those edges as
the regulator of other genes can change. For instance,
in Figure 1(a), if we remove edge (2,4) and insert edge
(4,3), we obtain the graph in Figure 1(c). Figure 1(d)
presents the optimal hierarchical decomposition of the
resulting graph. Notice that the hierarchical decompo-
sition in Figure 1(d) differs from that in Figure 1(b).
Following from this observation, we define two sets of
nodes based on the graphs corresponding to two con-
secutive graphs of a given dynamically evolving graphs
next.

Definition 7 (Dynamic and complementary nodes).
Counsider two consecutive graphs G;_1 and G; in a sequence
of dynamically evolving graphs. Let us denote their optimal
hierarchical decomposition with H,_; and H; respectively.

We define the subset of nodes whose hierarchy levels
change as G;_1 evolves to G; as the dynamic node set and
denote it with D;. Formally

D;={vlve Vi,H,_1(v) # Hi(v)}
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We define the nodes which are not in D; but have direct
connections to at least one of the nodes in D; as the
complementary set and denote it with C;. Formally

Ci={vlve VA\D;,3u € D;s.t.(u,v) € E; vV (v,u) € Ej}

We are now ready to define the problem considered in
this paper formally.

Formal problem definition Given a sequence of dynam-
ically evolving graphs G = (Gji, Ga, ..., Gk), our aim is to
find an optimal hierarchy assignment for all graphs in G.
In other words, for each graph G; in G, we would like to
find H; such that

H; = argminy {Pg,(H)}

The naive solution to the problem above is to com-
pute the hierarchical decomposition for each graph G;
in G independently using existing algorithms, such as
HIDEN [14]. This is however not practical as the size of
the graph (number of nodes and edges) and the number
of graphs in G increases, the cost of finding the optimal
hierarchical decomposition grows rapidly.

Our algorithm: Dynamic-HIDEN

Here, we describe our method, named Dynamic-HIDEN
(D-HIDEN), which computes the hierarchial decomposi-
tions of the graphs in a given sequence of dynamically
evolving graphs G = (Gji,...,Gk). The central idea
behind our method is our conjecture that if the topol-
ogy of the underlying graph does not change significantly
from one graph in the sequence to the next, then their
hierarchical decomposition also does not change dramat-
ically. Following from this conjecture, our method com-
putes the hierarchical decomposition of the first graph G;
similar to the HIDEN method. To compute the hierar-
chical decomposition for the remaining graphs in G, say

Page 5 of 19

G; with 1 < i < K, it exploits two kinds of informa-
tion: the part of the topology that is different between
consecutive graphs G;_; and G; into consideration as well
as the hierarchical decomposition of G;_; denoted with
H;_,. Figure 2 illustrates this idea. We elaborate on our
algorithm next.

Integer linear programming formulation of hierarchical
decomposition

D-HIDEN computes the hierarchical decomposition of
each graph in a sequence of dynamically evolving graphs
G using Integer Linear Programming (ILP). Unlike, exist-
ing methods that also use ILP, it creates variables only for
a small set of nodes and edges. As we will explain later
in detail, these variables correspond to the nodes that will
change their position in the hierarchical decomposition
with a high probability. We present the ILP formulation
next by focusing on the ith graph in the sequence denoted
by graph G; = (V}, E)).

Suppose that we are given the hierarchy assignment
H;_; for the graph G;_;, and our aim is to compute a
new hierarchy assignment H; for the graph G;. We start
by constructing an induced subgraph S; = (V}, E}) using
the dynamic and complementary node sets D; and C; as
follows:

‘/;s:DlUCl
E ={@vlue Vive Vi (uv) cE)

Figure 3 illustrates construction of subgraph S;. Notice
that knowing the sets V7 and Ej requires knowing the
hierarchical decomposition H; of G;, which is actually the
problem we are trying to solve here. We discuss how we
predict the sets D; and C; to construct the graph S; prior to
computing H; later in this section. We continue explaining

the ILP formulation.
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Figure 2 [llustration of the key difference between D-HIDEN and the classical hierarchical decomposition algorithms, such as HIDEN. The HIDEN
method in the figure can be replaced by any existing hierarchical decomposition method without losing generality. HIDEN computes the hierarchy
of all the networks G; independently. On the other hand, D-HIDEN updates the hierarchy of each network G; based on the topological difference
between G; and Gj_1, and the existing hierarchy H;_ of Gj_;.
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We keep the hierarchy assignments of all the nodes in
Vi — D; the same as the previous graph’s hierarchy assign-
ment H;_; (ie, Vv € V; — D;, Hj(v) = H;_1(v)). We only
compute the hierarchy assignments for the nodes in D; by
solving the following optimization problem.

€
Z(u,v)e B

ty—ty+ €M >0

€ €{0,1}V(u,v) € E}

t, €{1,..., M} Vt, € D;
ty,=Hi_1(uw) Vt, € C;

Minimize :

Subject to :

Where:

M is the maximum number of hierarchy levels

This formulation minimizes the number of conflicting
edges, where €,, can take either O (if (&, v) is not a con-
flicting edge) or 1 (if (4, v) is a conflicting edge). The first
constraint ensures that if ¢, < ¢, (which implies (i, v) is
a conflicting edge), then it holds if and only if €,, takes
1. While ¢, > ¢, (which implies (,v) is not a conflict-
ing edge), the condition holds no matter ¢, takes O or 1.
But in order to minimize Z(W)e ES €uvs the €, will take 0.
The second constraint requires €, to be either O or 1. The
third constraint assigns nodes in D; to one of the levels
from 1 to M. The last constraint says that level assignment
for nodes in C; will be taken from H;_;.

The problem above has |D;| + |E| variables. Since the
topologies of G;_;1 and G; are highly similar (see Definition
6), it is expected that their corresponding assignments
H;_; and H; also share high similarity. Thus, we expect
that the cardinality of the dynamic set D; to be very
small as compared to that of V;. In other words, very
small number of nodes are likely to change their hierarchy
assignments as graphs evolve gradually. As a result, the

number of variables in our ILP formulation is dramatically
smaller than the standard ILP solution, such as HIDEN.

Dealing with node insertion and deletion So far we
have formulated our D-HIDEN algorithm for solving a
sequence of dynamic graphs G = (Gy, Go, . . ., Gx) whose
nodes are preserved (i.e., V; = V;,VG;, G; € G). Accord-
ing to Definition 6 however, the set of nodes may also
slightly change as graph evolves. That is, new nodes can
be inserted or existing nodes can be removed in a graph
in G to obtain the next graph in the sequence. We solve
this problem as follows. Consider two consecutive graphs
G;—1 and G; in G such that V;_; # V;. To compute the
hierarchy of G;, we do not need to define any variable for
the nodes that are removed from V;_; (i.e. the nodes in
Vi—1 — V;). Since we do not know the initial assignment
of newly introduced nodes (i.e., nodes in V; — V;_;), we
include all of these new nodes in the dynamic node set
while creating the ILP constraints.

Dealing with disconnected graphs Another assump-
tion we have previously made is that the graph is con-
nected. For disjointed graphs, we apply D-HIDEN on
each of the individual components to obtain hierarchi-
cal decompositions. The rationale behind this strategy is
the following: as there is no edge between any pair of
disjointed components, the decomposition is optimal if
and only if the decompositions of these components are
optimal.

So, what is the challenge? The ILP formulation we pro-
vide above is brief and varies slightly from the traditional
ILP solutions for the same problem. So, the obvious ques-
tion is: What is the challenge here?

The crux of our algorithm lies in creating the dynamic
set of nodes D;, which will be detailed in this section.
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Recall that this set can only be precisely known after the
decomposition H; is actually computed. This information
is however not known at this stage. It is actually what is
computed at the end of this stage. To deal with this cyclic
dependency, we predict the set D; prior to computing
H;. Let us denote our predicted set with Df . The perfor-
mance and the accuracy of our algorithm depends on how
well DY represents D;. Thus, the central challenge lies in
predicting the dynamic set precisely. In the following, we
describe how we address this challenge.

OUR PREDICTION STRATEGY IN A NUTSHELL. In order
to predict whether a node will change its hierarchy level as
the graph evolves from G;_; to G;, we learn a probabilis-
tic model that predicts whether a given node will change
its hierarchy level based on its neighboring nodes. We do
this by learning from a large collection of graphs with ran-
dom topological perturbations. The rationale behind this
local modelling strategy is that the penalty arising from
the hierarchy level of a node is determined by its neigh-
boring nodes. This is because the penalty associated with
this node involves conflicting edges between itself and its
neighbors. We explain our method in detail next.

DETAILED ALGORITHM. Consider two consecutive
graphs G;_; and G; in a sequence of dynamically evolv-
ing graphs, with H;_; given. We start by defining the
following sets which partition the nodes of the evolving
graph into three classes based on their movements in the
hierarchy.
bdown = (VIHi(v) < Hi_1(v)}
Gsame = (VIH;(v) = H;i—1(v)}
Gup = {VIHi(v) > Hi_1(v)}
Conceptually, @iowns Psame and ¢, contain the set of
nodes which move down, stay at the same level, or move
up in the hierarchy respectively. Next, we define six more
sets describing the six possible relationships between
neighboring nodes based on their relative positions in the
hierarchy.

Y1 = {(w, V)|Hi—1 (1) > Hi-1(v) A (u,v) € Ej}
Yo = {(, vV)|Hi—1(u) = Hi—1(v) A (u,v) € Ej}
Y3 = {(u, V)|Hi—1(u) < Hi—1(v) A (u,v) € Ej}
Ya = {(, V)|Hi—1 (1) > Hi—1(v) A (v, u) € Ej}
Vs = {(u,V)|Hi—1(u) = Hi—1(v) A (v, u) € Ej}
Ve = {(u,V)|Hi—1(u) < Hi—1(v) A (v, u) € Ej}

Figure 4 illustrates the relationships denoted with

wl: I/f27 WB, W‘l-: w57 Ip6~
Using the sets above, we define two more sets:
d = {¢downr Dsame> ¢up}
V= {Y1, Y2, ¥13, Y4, Y5, Y}
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Figure 4 |llustration of the six possible relationships between
neighboring nodes u and v as denoted with ¥, ¥, . . . , Y6 based
on the direction of connecting edges and relative locations of the
nodes in the hierarchy.

Next, we define a function f : V x & —[0, 1] such that
f(v,¢) = P(v € ¢) represents the probability that v € ¢.
This function tells the probability that for a given node v,
the probability that this node moves down (v € ¢ioun),
stays at the same level (v € @sume), or moves up (v € ¢yp).
Let us denote the set of neighboring nodes of a given node
vwith N(v) = {u|(u,v) € E;V(v,u) € E;}.In order to com-
pute the function f (v, ¢), we first need to define two other
functions. The first one, denoted with Py, (v € ¢|u € ¢'), is
the probability that v € ¢ on the condition that the neigh-
bor node u € ¢’ and (v, u) € y where ¥ € W. The second
one is the prior of the given node v, denoted as fy(v, ¢).
The prior function f represents the probability of move-
ment in hierarchy for node involved in edge operations as
denoted by set ¢. We explain how we compute the func-
tion Py and fy in detail later in this section. Using these
definitions, we formulate f (v, ¢) as

l1—«

F09) = 1 2o 2o (0 ®) Pu (v € $lu € ¢')
+afo(v, )

1)

The first term in this equation is the normalized aver-
age contribution from the neighboring nodes. The second
term is the prior of the given node v. The parameter « is
a real number in the [0, 1] interval. It controls the relative
contributions of these two terms.

Next, we define a vector x of size |V| x |®| to describe
the relationship of each node in V with each class in
®. To simplify our notation, we describe x in doubly
indexed form as x4 = f(V,da)),v = 1,...,|Vil;d =
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[down,same,up] and i = 1,...,|®| We further define a

matrix A and vector b such that
0 vV é¢N®©)
Py (veda IV ebyr))
IN()]
b((v — D]+ i) = fov, pag))

A(v=DI®|+5i (V- DID|+i) =
otherwise

Using these definitions, we rewrite Equation (1) as
x=(1—a)Ax+ab 2)
We compute the solution x* to Equation (2) as
= —(1-a)A) lab

After solving Equation (2), the probabilities of node v to
move down, stay the same and move up in the hierarchy
are givenby x} ;%7 ., and &, respectively.

Recall that, in order to evaluate Equation (1), we need
to compute the prior function f, and the function Py
that captures the conditional probability of the relative
location of a node in the hierarchy conditioned on the
hierarchy of its neighboring nodes. In the following, we

explain how we compute these two functions in detail.

Computation of the prior function The computation of

fo involves two parts. The first part trains a model using a
large number of random graphs. The second part predicts
the value of f; for a given graph.

Algorithm 1 presents the first part. Briefly, for training,
the algorithm takes two consecutive graphs G; and G3 in
the dynamically evolving sequence along with their hierar-
chical decompositions H; and Hj as input. It then iterates
over all the edges (lines 5-27) and identifies the ones that
are not common to the two graphs (lines 6-13). These are
the edges that have dynamically changed (i.e., inserted or
removed) in the input graphs. For all such edges (i, v), it
then counts the number of times we observe that these
nodes have moved up, moved down, or stayed at the same
level (lines 14-15). Next, it records the same statistics for
the neighboring nodes of u# and v (lines 16-25). Finally, it
normalizes these counts with the total number of nodes in
each class to find the fraction of nodes that move up, move
down, or stay at the same level for each class (lines 28-35).

Algorithm 2 presents the second part. This algorithm
takes the two consecutive graphs G; and G, along with
the hierarchical decompositions H; of Gy, and the model
M learned in Algorithm 1. It starts by initializing the
prior function, so that all the nodes stay at the same level
with 100% probability (lines 5-7). This defines the base
case, where there is no change in the graph topology. It
then iterates over all the edges (lines 9-31) and identifies
the ones that are not common to the two graphs (lines
11-17). For each such edge (i, v), it then updates the prior
function for nodes u, v and all of the neighbors of # and v
using the model M (lines 18-29).
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Algorithm 1 LEARN-PRIOR-DISTRIBUTION-MODEL
(G1, H1, G2, Hy)
1: Inputs: Graph G; = (V,E;) and its mutated graph
Gy = (V,Ep)
2: Outputs: The prior distribution model M
3: Hj and H; are the corresponding hierarchy
assignments.
4: Initialize counter arrays: src, dst, src_neighbor,
dst_neghbor as 0.
5. foreachu € V do
6 foreachv e Vandv # udo
7: if (4,v) € Eq and (u,v) ¢ E, then
8
9

E = “removed”
else if (4, v) ¢ E; and (u,v) € E; then

10: E = “inserted”
11: else
12: continue
13: end if
14: src[E,MOVEMENT-OF-NODE(H1 (1), Hy(11))]
++ (see Table 1)
15: dst[E,MOVEMENT-OF-NODE(H; (v), Hy (v))]++
16: for each neighbor node w of u do
17: M = MOVEMENT-OE-NODE(H; (w), Hy(w))
18: P = POSITION-OE-NODE(H1 (1), H1 (w))
(see Table 1)
19: src_neighbor[E,M,P]++
20: end for
21: for each neighbor node w of v do
22: M = MOVEMENT-OE-NODE(H; (w), Hy(w))
23: P = POSITION-OF-NODE(H1 (v), Hy (w))
24: dst_neighbor[E,M,P]++
25: end for
26: end for
27: end for
28: for each e € {“removed’, “inserted”} do
29: srcle,:] = srcle,:]/sum(src[e,:])
30: dst[e,:] = dst[e,:]/sum(dst[e,:])
31: for each p € {“above’;'same level’, “below”} do
32 src_neighborle,:,p] = src_neighborle,:,p]/sum
(src_neighbor/[e,:,p])
33: dst_neighborle,:,p] = dst_neighbor[e,:,p]/sum
(dst_neighbor[e,:,p])
34: end for
35: end for
36: M.src = src
37: M.dst = dst

38: M.src_neighbor = src_neighbor
39: M.dst_neighbor = dst_neighbor
40: Return M

Computation of the function Py. The function Py
computes the conditional probability of the relative loca-
tions (i.e, are they at the same level or is one above
another) of the neighboring nodes in the hierarchy
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Table 1 Algorithms for MOVEMENT-OF-NODE and
PosiTION-OF-NoDE functions

MOVEMENT-OF-NODE(h1, hy) PosITION-OF-NODE(h1, hy)

Inputs: Integer hy and h;
if hy < h, then

M ="move up”
else if hy = h, then

M ="stay same”

Inputs: Integer hy and hy
if h; < h, then

P ="above”
else if hy = h, then

P ="same level”

else else

M ="move down” P ="below”
end if end if
Return M Return P

Algorithm 2 COMPUTE-PRIOR-PROBABILITIES
(Gl, Hl, G2r M)

1: Inputs: Graph G; = (V, E;) and its mutated graph Go =
(V,Ey)

2: Hj is the hierarchy assignment of Gj.

3: M is the prior distribution model learned from
Algorithm 1.

4: Outputs: The prior probabilistic distributions fo (v, ¢)

5. Initialize prior probabilities:

6 fov,p) =0, forallv=1,..
“move up”}

7. fov,¢) =1, forallv=1,...,|V| and ¢ = {“stay same”}

8: M = {“move down’}'stay same’'move up”}

9: foreachu € V do

.,|V] and ¢ = {“move down”,

10: foreachv € Vandv # u do

11: if (u,v) € E; and (u,v) ¢ E; then

12: E = “removed”

13: elseif (u,v) ¢ E; and (u,v) € E; then

14: E = “inserted”

15: else

16: continue

17: end if

18: for each m € M do

19: fo(u, m) += M.src[ E, m]

20: fo(v,m) += M.dst[ E, m]

21: end for

22: for each m € M do

23: for each neighbor node w of u do

24: fo(w, m) += M.src_neighbor[ E, m,
POSITION-OF-NODE(H; (1), Hy (w))]

25: end for

26 for each neighbor node w of v do

27: fo(w, m) += M.dst_neighbor| E, m,
POSITION-OF-NODE(H; (v), H1 (w))]

28: end for

29: end for

30: end for

31: end for

32: fori=1to|V|do

33: fo(i,:) = fo(@,:)/sum(fo(i,:))
34: end for

35: Return fj
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conditioned on each other. Algorithm 3 shows a pseu-
docode that describes how we learn this function.

The algorithm takes a graph Gj, its hierarchical decom-
position Hj, and a potentially large integer N denoting the
number of random hierarchy perturbations (i.e., number
of times, the hierarchy of nodes will be altered) to be used
for training as input. It iteratively alters the position of a
node N times (line 8). At each iteration, it randomly picks
a node and moves it to a different level in the hierarchy
(lines 9-10). After this alteration, it recomputes the hier-
archy of the rest of the nodes by fixing the location of this
node at the newly selected location (line 11). We denote
this new hierarchy with the function H,. It then records
the movement of the randomly selected node as well as
those of all of its neighbors by comparing H; and H (lines
12-24). It records the number of times each of the relative
movement class is observed over all these neighbors (lines
25-26). Finally, it returns the distribution of the fraction of
times each class is observed as the function Py,.

Algorithm 3 LEARN-INTERACTIVE-MODEL(G1, Hy, N)
1: Inputs: Graph G; = (V, E1) and its hierarchy
assignment Hj.

: N is the number of random edge insertion or removal.

: Outputs: Interactive model Py, in Equation (1).

M = {“move down’;'stay same’;'move up”}

. Initialize joint probability counter variables:

: J(@1, 02, 9) =0, forall g1, ¢ € M and ¢ = {1,2,...,6}

: Let L denotes the allowed number of hierarchy levels.

: forn =1to N do

Randomly select a node v

Randomly select a positive integer /4 s.t. h # H;(v) and
h<L

Fix node v at level /;, and solve the ILP problem, result-
ing in hierarchy Hy.

12: if # < H;(v) then

13: my =“move down”

14: else

15: my =“move up”

16: end if

17: for each neighbor node w of v do

18: if Hy(w) < Hy(w) then

19: m1 =“move down”

20: else if Hy(w) = Hy1(w) then

21: my ="“stay same”

22: else

23: m; =“move up”

24: end if

25: Y =NEIGHBOR-RELATIONSHIP(v, w, E1, H1)

(see Table 2)

26: J(my, ma, ¥)++

27: end for

28: end for

29: Return JOINT-PROBABILITY-NORMALIZATION(J)

(see Table 2)
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Table 2 Algorithms for NEIGHBOR-RELATIONSHIP and JOINT-PROBABILITY-NORMALIZATION functions

NEIGHBOR-RELATIONSHIP(v, w, E, H)

JOINT-PROBABILITY-NORMALIZATION(J)

Inputs: Node v and w
Eis edge set.
H s hierarchy assignment.
if (v,w) € F then

if H(v) > H(w) then

Inputs: Joint probability J
M = {*move down”,“stay same”,“move up”}
for ¢’ € {“move down”,“move up”} do

fory = 1to6do

Y= count =0
else if H(v) = H(w) then for$ € M do
v =2 count+ = J(¢, @', )
else end for
¥y =3 forp € M do
end if Py(veglueg) =220
else end for
if H(v) > H(w) then end for
v =4 end for
else if H(v) = H(w) then fory = 1to6do
Y =5 Py (“move down”|“stay same”) = 0
else Py (“stay same”|“stay same”) = 1
Y =06 Py (“move down”|“stay same”) = 0
end if end for
end if Return Py,
Return v
How do we choose the dynamic node set? So far, we Datasets

have described how we compute the probability distribu-
tion for each node in G;_; to move up, down, or remain
at the same level in the hierarchy based on the topologi-
cal differences between G;_; and G;. Recall that the aim of
D-HIDEN is to recompute the hierarchy levels for only a
small set of nodes (called dynamic node set) that can move
in the hierarchy rather than recompute it for the entire
graph. The final question we need to answer to complete
the description of our method is how we construct the
dynamic node set. To find the node in this set, we first sort
all the nodes in G; in ascending order of their probabil-
ity to stay unchanged in the hierarchy. More specifically,
we sort all v € V; in increasing order of xj .. The rea-
son behind this ranking strategy is that nodes with higher
ranks have higher probability to change their hierarchy
levels, and are more preferable to be a part of the dynamic
node set.

Results

In this section, we evaluate the performance of the D-
HIDEN method extensively on both synthetic and real
datasets. We compare the D-HIDEN method to five cur-
rently available methods that can only deal with a static
network topology: BFS, Vertex-Sort, HINO, HIDEN, and
DC-HIDEN. To the best of our knowledge, our method
is the first one to address the hierarchical decomposi-
tion problem for dynamically evolving networks. To use
them for a sequence of dynamically evolving networks
G = (G1,Gy,...,Gk), we run each of these competing
methods independently on each G; in G. We compute the
performance of these methods in terms of the resulting
penalty and the running time.

We use both synthetically generated and real gene regula-
tory network datasets in our experiments.

SYNTHETIC DATA SETS We randomly generate
scale-free gene regulatory networks following the
Barabasi-Albert model [10] for varying number of nodes
and densities (i.e., number of edges per node). Using this
model, we create the first network, Gi, in the sequence
of dynamically evolving networks for each sequence,
G = (G1,Gy,...,Gk). Let us denote each network G; in
this sequence with G; = (V}, E;). In order to construct the
subsequent networks G; (1 < i < K) in each sequence, we
mutated the topology of G;_; using the degree preserving
edge shuffling method [25]. This technique is frequently
used in the literature to alter network topology while
ensuring that all nodes maintain their degrees. Briefly,
each mutation step of this technique randomly picks two
edges, such that the edges do not share a node. It then
swaps the end points of those edges. For instance, assume
that the two randomly selected edges are (1, v1) and (u2,
v2). The mutation step replaces these two edges with (i,
vo) and (uy, v1). Given a mutation rate r > 0, we perform

{%—I mutation steps on G;_; to generate G;. We use

r = 0.1 as the mutation rate in our experiments (i.e. at
most 10% of the edges are swapped) unless otherwise
specified.

REAL DATA SETS We use the human gene regulatory
network dataset of Neph et al. 2012 [21]. This dataset
contains the regulatory information of the transcription
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factors for 41 different cell and tissue types. The num-
ber of nodes in these networks vary from 493 to 533, and
the number of interactions range from 16,461 to 17,320.
Among these 41 networks, we select four dynamically
evolving sequences, each containing three cell types that
are known to follow each other throughout the devel-
opment stages. The first one contains embryonic stem
cells, hematopoietic stem cells and erythroid (K562) cells.
The second contains embryonic stem cells, hematopoi-
etic stem cells and Th1 T-Lymphocyte. The third contains
embryonic stem cells, hematopoietic stem cells and B-
Lymphocyte (CD20+). The last one contains embryonic
stem cells, skeletal myoblast and skeletal muscle cells.
Figure 5 illustrates these four sequences.

Quality measures used We used various quantifiable
measures to evaluate the success and the limitations of our
method and the competing methods.

e We report the number of conflicting edges (see
Definitions 4 and 5) as the penalty of a given
hierarchical decomposition. Smaller values of this
measure indicates better results.

Recall that our method aims to accelerate the
hierarchical decomposition in dynamically evolving
networks by predicting the nodes that are likely to
move in the hierarchy. Thus, after the first network in
the sequence, errors in prediction may increase the
penalty of the resulting decomposition. We report
the accuracy of our method in terms of how it
compares to the exhaustive method, HIDEN, when
HIDEN uses all the nodes and edges as variables for
all networks in the sequence. Let us denote the
penalties of the methods HIDEN and D-HIDEN with
penalty(HIDEN) and penalty(D-HIDEN) respectively.
We compute the accuracy as

1 + penalty(HIDEN)
1 + penalty(D-HIDEN)
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Accuracy takes a value in the (0, 1] interval. Larger
values indicate better results. It is worth mentioning
that the mixed integer linear programming solution
of the hierarchical decomposition problem can have
time complexity exponential in the number of
variables used. Therefore, the true optimal result can
only be computed for very small networks which are
not considered in this paper.

Implementation and sytem details We implemented
the D-HIDEN, HIDEN, DC-HIDEN, BES, Vertex-Sort and
HINO algorithms using MATLAB. We conducted all the
experiments on a hexa core 4.5-GHz CPU (Intel 3960x)
64 GB-memory computer, running the Linux operating
system.

Evaluation of large scale networks

We first compare our method against the state-of-the-
art methods in the literature, namely BFS [11], Vertex-
Sort [12], HINO [13] and DC-HIDEN [14] for large scale
networks. We omit the HIDEN method in this experiment
as it does not scale to networks with over 100 nodes.

To observe the performance trend as network size
varies, we run experiments on different network sizes,
ranging from 100 to 1000. For each network size, we
randomly create 50 initial networks with edge density 2.
Then, we mutate these networks with mutation rate 0.1 to
get the corresponding mutated networks in the sequence
of dynamically evolving networks. In order to apply our
method, we first compute the initial hierarchical decom-
position of the first network at each dynamically evolving
sequence using the DC-HIDEN method. We then com-
pare the performance of hierarchical decomposition on
the mutated networks. Note that for each sequence of net-
works, the initial decomposition needs to be computed
only once. We set the size of dynamic node set for our
method (see Definition 7) to 50 for all networks. To ensure

44

Embryonic
Stem Cell

/ I_I&

44

B-Lymphocyte Cell

e

Skeletal Myoblast Cell

Erythroid Cell

Figure 5 Developmental order among seven human cell types. An edge from cell type x to cell type y indicates that x appears before y in
development order. Each path from the embryonic stem cell to each of the four cell types Th1 T-Lymphocyte, Erythroid, B-Lymphocyte, and skeletal

muscle cell defines a different sequence of dynamically evolving network.
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that the results are reliable, we repeat this process to create
50 such mutated networks for each network size and
report their average penalty and running time (Figure 6).

D-HIDEN yields significantly less penalty than all the
competing methods for all network sizes (Figure 6(a)).
Thus, it is the most accurate among all competing meth-
ods. Furthermore, the gap between the accuracy of D-
HIDEN and the rest of the methods grow consistently as
network size increases. These results are highly encour-
aging especially given the fact that D-HIDEN considers
updating the hierarchy levels of only a small subset of
nodes while all the other methods consider updating all
the nodes.

To determine the computational cost of these methods
next we compare the running times of the two most accu-
rate methods, D-HIDEN and DC-HIDEN, as the remain-
ing methods have extremely low accuracies. Figure 6(b)
shows that D-HIDEN is orders of magnitude faster than
DC-HIDEN. As the network size grows, DC-HIDEN’s
running time increases exponentially while D-HIDEN’s
running time increases linearly. As the network size grows
to 1000 nodes, the penalty of the hierarchical decompo-
sition of our method is 15% less than DC-HIDEN and it
is also about 100 times faster. These results suggest that
as the network size increases, our method becomes even
more advantageous.

Evaluation of D-HIDEN under various network
characteristics

So far in our experiments, we have demonstrated the
superiority of D-HIDEN against other scalable methods.
Here, we focus further on our method and compare it
against HIDEN. The HIDEN method is exhaustive as it
minimizes the penalty while allowing all node and edges
to be variables. On the other hand, D-HIDEN creates vari-
ables for only a small fraction of the nodes and edges.
Therefore, HIDEN vyields the smallest possible penalty
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among all the hierarchical assignments (using the ILP
method). Thus, the purpose of the next set of experi-
ments is to determine how close our solutions are to those
of HIDEN. We use synthetically generated scale-free net-
works of different characteristics in these experiments.
Due to explosive increase in the running time of the
HIDEN method, we limit our experiments to the largest
possible network sizes and densities we could run HIDEN
on our system.

We focus on three key parameters which affects the
performance of hierarchical decomposition in this exper-
iment: number of nodes, network density, and maximum
number of hierarchy levels allowed. While evaluating each
of these parameters, we fix all the others (Table 3). For
each parameter setting, we first randomly generate an ini-
tial network. We then mutate that network with mutation
rate 0.1 to get subsequent evolving networks. We com-
pute the hierarchy assignment of the first network in each
sequence using HIDEN. For the remaining networks in
the sequence, we use D-HIDEN to compute the hierarchy
incrementally. In order to observe the impact of the size of
the dynamic node set, we vary the size of this set from 10%
to 80% of the total number of nodes in the given network.
Notice that smaller sizes for this set yield fewer variables
in the ILP formulation of D-HIDEN. Inversely, large sizes
imply conservative predictions for D-HIDEN allowing for
more nodes to alter their hierarchy levels. We also run
HIDEN on each network. For each parameter setting, we
repeat this experiment 500 times and measure the average
penalties and running times.

Impact of network density

First, we explore the impact of network density. We fix the
number of nodes to 50 and the number of allowable hier-
archy levels to 5. We experiment for densities 1,2 and 3.
Note that for larger densities, HIDEN did not run till com-
pletion due to exponential increase in the running time.
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Figure 6 Comparison of the accuracy and running time of D-HIDEN and the state-of-the-art methods on large scale networks. (@) Comparison of
the penalties arising from the hierarchical decomposition obtained by five methods for different network sizes. (b) The running time of D-HIDEN
and DC-HIDEN for different network sizes. The results are reported in seconds.




Ay et al. BMC Bioinformatics (2015) 16:161

Table 3 Parameter settings used in our experiments for
evaluating the impact of various network characteristics
comparison

Evaluated Network Numberof Number of allowed
characteristics density nodes hierarchy levels
Network density [1,2,3] 50 5

Number of nodes 2 [30,50,70] 5
Hierarchy levels allowed 2 50 [3,5,10]

Each row corresponds to one experiment where we fix the value of two
parameters and vary one.

For high density networks the accuracy of D-HIDEN is
very high even if we use a small fraction of nodes as the
dynamic node set (Figure 7(a)). For low density networks,
although the accuracy is low for very small dynamic node
set, it improves quickly as the size of dynamic node set
increases. The running time of our method is significantly
faster to that of HIDEN for dense networks (Figure 7
(b)). Especially for small dynamic node sets, the speed
up of our method over HIDEN becomes more dramatic.
For example at density equal to 3, when the size of the
dynamic node set is 40% of the node set, our method
is almost two orders of magnitude faster than HIDEN.
These results are highly encouraging since our method
can obtain high accuracies using small dynamic node sets.
Collectively these results suggest that our method is highly
preferable, especially when the network has medium to
high density.

Impact of number of nodes

Next, we consider the impact of number of nodes. We
fix the density to 2 and the number of allowable hierar-
chy levels to 5. We experiment for the number of nodes
30,50 and 70. D-HIDEN can achieve a very high accuracy
regardless of the network size (Figure 8(a)). For example,
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when the dynamic node set includes only 20% of nodes,
D-HIDEN can achieve 90% accuracy. This suggests that
our method can be applied to large networks without
incurring noticeable decrease in accuracy. Figure 8(b)
reflects that as the number of nodes increases, the run-
ning time of HIDEN increases dramatically while that
of D-HIDEN grows gradually. Interestingly, as the size
of the dynamic node set increases, the advantage in the
running time of D-HIDEN does not noticeably decrease
initially (e.g. ratio from 0.1 to 0.5), which allows us
to set a higher ratio for D-HIDEN to achieve better
accuracy without too much additional cost in running
time. In summary, these results suggest that our method
is favorable, especially when the size of networks gets
larger.

Impact of the number of allowed hierarchy levels

Finally, we focus on the impact of maximum hierarchy
level. We fix the density to 2 and the number of nodes
to 50. We experiment for the number of allowed hierar-
chy levels 3,5 and 10. We observe a very high accuracy of
D-HIDEN (Figure 9(a)). As the number of allowed hierar-
chy levels decreases, the accuracy increases consistently,
because the number of nodes that need to change their
hierarchy levels also decreases. Based on these results,
we can conclude that D-HIDEN consistently achieves
extremely high accuracy, especially for small number of
allowed hierarchy levels. Figure 9(b) suggests that the run-
ning time is relatively insensitive to the number of allowed
hierarchy levels.

Evaluation of the impact of the number of dynamic steps

So far, we have analyzed the performance of our method
for only one dynamic step. In other words, in the sequence
of dynamically evolving networks G = (Gjy,...,Gk), K
was set to 2. In this experiment, we evaluate how the
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Figure 7 Impact of the network density on D-HIDEN method’s accuracy and running time. (@) Accuracy of D-HIDEN for networks with different
edge densities computed. (b) The speedup of D-HIDEN over HIDEN (i.e,, running time of HIDEN divided with the running time of D-HIDEN) for the
same experiment. In both figures, x-axis represents the ratio of the number of genes in the dynamic node set to that in the entire network.
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Figure 8 Impact of the number of nodes on D-HIDEN method's accuracy and running time. (a) Accuracy of D-HIDEN for networks with different
number of nodes. (b) The speedup of D-HIDEN over HIDEN (i.e,, running time of HIDEN divided with the running time of D-HIDEN) for the same
experiment. In both figures, x-axis represents the ratio of the number of genes in the dynamic node set to that in the entire network.

performance of our method is affected by the length of
this sequence (i.e. K). The purpose is to explore how the
error propagates as the deviation between the topology of
the subsequent networks from that of the initial network
grows with increasing value of K.

Evaluation on large networks

In this experiment, we generate synthetic network with
500 nodes and density equal to 2 to use as the initial net-
work G in the sequence. We then create 25 subsequent
networks Gy, Go, . .., Gys. To construct each G; (1 < i <
25), we mutate G;_; with 0.1 mutation rate. We repeat this
process 1000 times to construct 1000 such independent
sequences of dynamically evolving networks. Because
these networks are too large for the HIDEN method, we
compare our method to the most accurate competing

method (DC-HIDEN) which can solve networks of this
size.

We observe that as the number of mutation step
increases, the advantage of our method over the DC-
HIDEN enlarges (Figure 10(a)). Initially at mutation step
1, our method has about 20% less penalty than the DC-
HIDEN, and when the mutation step reaches 24, our
method has 68% less penalty than the DC-HIDEN. This
reveals that the accuracy of our method relative to that
of DC-HIDEN gets better on continuously changing net-
works with growing number of networks in the sequence.
Though the initial hierarchy assignments of base net-
works were inaccurate (as they were computed with
DC-HIDEN), at each mutation step our method has an
opportunity to identify the nodes whose hierarchy levels
should be updated, and sets them as variables instead of
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Figure 9 Impact of the number of allowed hierarchy levels on D-HIDEN method'’s accuracy and running time. (a) Accuracy of D-HIDEN for
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constants. Thus, it corrects the hierarchy of new set of
nodes each dynamic step.

Evaluation on small networks

Next, we use networks with a small number of nodes
to compare the performance of our method against
the exhaustive HIDEN method. More specifically, we
construct networks with 50 nodes and density equal
to 2. Similar to the previous experiment, we gener-
ate sequences of dynamically evolving networks with 25
networks in each sequence, and use 0.1 mutation rate
while altering the topology of consecutive networks. We
repeat this process 1000 times and report the average
results.

We observe that as the number of mutation steps
increase, the advantage of HIDEN over our method
enlarges (Figure 10 (b)). This reveals that HIDEN is intrin-
sically better than our method in terms of accuracy only
(note that again the computational cost of HIDEN is
exponentially higher than our method as it exhausitively
considers all nodes in all networks. Thus, for networks
with over 100 nodes, it becomes intractable). The reason
behind this trend is also similar to the previous experi-
ment but this time the initial assignment of base networks
were computed by HIDEN. Interestingly the curve con-
verges quickly around step 10, where the penalty of our
method is only about 25% higher than HIDEN. This is
very promising, because even after mutating the initial
network 24 times with 10% mutation at each step, the
error incurred by our method does not grow significantly.
This suggests that our method does not diverge from
the optimal solution greatly even for a large number of
dynamic steps.

Results on real data

To assess the applicability of our method to real biological
regulatory networks, in this section we analyze four
dynamically evolving cell lineages each containing three
cell types. In the first three cell lineages embryonic stem
cells are developed into hematopoietic stem cells, and the
hematopoietic stem cells are developed into erythroid, T-
lymphocyte and B-lymphocyte respectively. In the fourth
cell lineage, embryonic stem cells develop into skeletal
myoblast and eventually to skeletal muscle.

Penalty comparison on real data

In the above sections, we have demonstrated the supe-
riority of D-HIDEN against the state of the art methods
BES, Vertex-Sort, HINO and DC-HIDEN on synthetic
datasets. To show the applicability of our method to real
gene regulatory networks, here we compare the accuracy
of the D-HIDEN method to these four methods on a real
dataset (described above). In this comparison, we focus
on the gene regulatory networks of the seven cell types
in our dataset: hESC, CD34+, HSMM, K562, Th1, CD20+
and SKMC. To apply our method; we first find the initial
hierarchical decomposition of the hESC gene regulatory
network (first network in the chain) using DC-HIDEN
method and then determine the hierarchy assignments
of the genes in the rest of the cells using D-HIDEN. In
the final step, we compute the penalties for each cell-
type based on the resulting hierarchy assignments. We
apply the other methods as follows; we first find the hier-
archical decomposition of all the networks in different
cell types using the specific method and then compute
the penalties for each network based on the resulting
assignments.



Ay et al. BMC Bioinformatics (2015) 16:161

Our results demonstrate that D-HIDEN yields sig-
nificantly less penalty than all the competing methods
(Figure 11). Thus it is the most accurate among the
competing methods on gene regulatory networks of the
seven cell types. We observe that the penalty score of
the HINO, Vertex Sort and BFS methods are usually at
least 3 fold more than the D-HIDEN method. Similarly,
D-HIDEN method is more accurate than the DC-HIDEN
method. The superior accuracy of D-HIDEN method on
real datasets strengthens our analysis on the synthetic
datasets, and suggests that our method can be used to
create highly accurate hierarchical decomposition of real
datasets.

Biological derivations on real data

Here, we apply our method to four dynamically evolv-
ing cell linages described above. The experimental results
reveal the changing hierarchy of gene regulation in these
four lineages of embryonic stem cells (Tables 4 and 5).
Similar trends can be observed for each cell lineage. In the
lineage of embryonic stem cells (H7-hESC) that develop
into erythroid cells (K562), most genes (146 genes) are
expressed at level five the highest level in the genetic hier-
archy at the embryonic stem cell stage (Table 4). At the
erythroid stage, most genes (156 genes) are at level one,
which is the lowest level in the hierarchy. In addition,
the highest number of genes (533 genes) is observed at
the embryonic stem cell stage and this number gradu-
ally decreases in each of the following two developmental
stages. These two observations are also valid for the cell
lineages that develop into T-lymphocyte (Thl) and B-
lymphocyte (CD20+) cells. In the cell lineage that develop
into skeletal muscle cells (SKMC) the former trend is also
observed but the latter is not, in that the number of genes
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observed at the final stage, skeletal muscle cell, is greater
than the number observed in the intermediate, skeletal
myoblast (HSMM) stage. It is important to emphasize
that as these stem cells develop, more genes move down
in the hierarchy (Table 5) in comparison to moving up,
which suggests that in general the role of genes as key reg-
ulators become less important since they regulate fewer
downstream target genes. We observe that most of the
genes do not change their hierarchy level, which suggests
that the network rewiring is substantial, but it does not
involve most of the genes. It is also interesting to note that
genes do not fluctuate in their rankings very often. The
changes in the hierarchy levels of all of these genes should
be analyzed in detail to understand their changing roles in
different cell lines.

For example the MYOG gene moves up in the hierar-
chy for skeletal muscle cell lineage. Myogenin (MYOG) is
the second muscle-specific gene to be expressed in embry-
onic stem cells in the process of muscle cell develop-
ment [26]. In a study in myoblasts Brunetti and Goldfine
found MYOG to be important in muscle cell develop-
ment [27]. Mice with a mutation in MYOG could develop
myoblasts but the myoblasts could not further form func-
tional myofibers; i.e. MYOG is important for later stages
of muscle cell differentiation [28]. In addition, Hasty
et al. 1993 found that when MYOG is knocked out in mice
embryos, the embryos develop but die after birth [29].
These results are consistent with this gene moving up
in the genetic hierarchy, as it becomes important later
in the muscle cell development. One gene that moves
down in the muscle cell lineage is MEF2C because of its
importance in early myoblast development. In embryonic
stem cells, this gene is used as a marker of cardiac cells
and its expression is found to be increased with greater
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Figure 11 Comparison of the penalties arising from the hierarchical decomposition obtained by five methods on real datasets. In the figure, x-axis
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Table 4 Distribution of the number of genes to different
levels for each cell line

Level hESC CD34+ HSMM K562 Thl CD20+ SKMC
1 106 117 122 156 152 157 170
2 95 94 91 90 95 92 90
3 94 90 91 73 74 83 80
4 92 90 89 71 81 73 75
5 146 135 130 103 116 110 114

Total 533 526 523 493 518 515 529

expression of miR-499 [30]. In myoblasts, this gene is an
important indicator of early muscle cell differentiation
activity because of its importance in regulating skele-
tal muscle differentiation [31,32]. Taken together, genes
that move up or down in the hierarchy seem to have a
change in their function and relative importance. The lit-
erature supports this conclusion, although more research
should be performed to assess the exact functions of these
genes in these specific cell types at different stages in cell
development.

STAT5 is another gene that moves up the hierarchy
in the erythroid cell lineage. When active STAT5 is
expressed in embryonic stem cells, the cells are more
likely to undergo formation of hematopoietic stem cells
(CD34+) [33]. STAT5 is suggested to be important for
cell proliferation in hematopoietic stem cells. Overex-
pression of STAT5 in hematopoietic stem cells resulted
in greater cell growth of these cells through the PI3-
kinase/AKT pathway [34]. Furthermore, if STATS5 is over
expressed in hematopoietic stem cells (CD34+) there is
increased renewal of these cells and the hematopoietic
stem cells are much more likely to acquire erythroid
cell fate [35]. Other researchers have found that in ery-
throid cells STATS5 is in its active, phosphorylated state
and when STATS5 expression is knocked out, these cells
exhibit reduced growth in vitro [36]. One gene that moves
down in the erythroid cell lineage is GFI1. In embryonic
stem cells, GFI1 and GFI1B are downstream targets of
RUNX signaling and when RUNX is knocked out, GFI1
along with GFI1B promote hematopoiesis as in the stud-
ies with RUNX-/-, the cells display increased expression of

Table 5 Number of genes that move up, move down, stay
same, or fluctuate in hierarchy rankings in different cell
lineages during the cell development

Cell type Move up Move down Stay same Fluctuate
K562 52 105 317 18
Thi 64 104 332 8
CN20+ 53 118 328 8
SKMC 44 119 337 16
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the hematopoietic cell marker CD41 as well as a rounded
shape [37]. This study suggests that in normal embryonic
stem cell development, RUNX expression causes GFI1
expression to be reduced. Since GFI1 may prevent pro-
liferation of hematopoietic stem cells [38], and GFI1 is a
downstream target of C/EBP«, which prevents cell prolif-
eration when GFI1 levels are low not all cells will become
hematopoietic [39]. Thus the roles for the STAT5 and
GFI1 genes are changing through development and it is
likely that the hierarchy levels of these genes are con-
sequently changing in the gene regulatory network. Our
analysis suggests that the STAT5 gene moves up in hierar-
chy, and GFI1 moves down in the hierarchy. The literature
cited above is not clear about the relative importance of
these genes in different cell types. So, our method’s predic-
tions suggest potentially new experiments to elucidate the
changing role of these genes in different cell types. Clearly,
a thorough experimental study is needed to find the rela-
tive position of these genes in the regulatory hierarchy in
different cell types.

Discussion and conclusion
Biological systems are tightly controlled, and more impor-
tantly, they are affected by dynamic changes in the gene
regulatory networks. Because of that, understanding the
dynamic changes in gene regulatory networks is criti-
cal for a true comprehension of biological systems. One
particularly important organizational feature of the gene
regulatory networks is the hierarchy of the interactions.
Hierarchy in gene regulatory networks describes the flow
of control in biological systems. Major experimental and
computational efforts are performed to establish the gene
regulatory networks; however finding hierarchy in these
networks is very challenging. There have been studies
to discover the hierarchy in gene regulatory networks,
however these studies mainly focused on static networks.
In this study, we presented a novel method named
D-HIDEN for discovering hierarchy in dynamic gene reg-
ulatory networks. To the best of our knowledge, this
is the first method which can incrementally update
the hierarchy in a sequence of dynamically evolving
networks. D-HIDEN formulates the hierarchy level
assignment problem as a local mixed integer linear pro-
gramming problem. We compared the D-HIDEN method
to five currently available methods, namely BFS, Vertex-
Sort, HINO, HIDEN and DC-HIDEN, on synthetic and
real gene regulatory networks. Our analysis on these net-
works demonstrated that the D-HIDEN method outper-
forms the other five methods in terms of minimizing the
conflicting edges in hierarchy. In addition to the superior
accuracy level of D-HIDEN methods, the running time for
this method was also faster than the DC-HIDEN method,
which is the next best method in terms of accuracy.
Application of the D-HIDEN method to the human gene
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regulatory networks shows that human genes’ hierarchy
levels change dynamically. These changes in the hierar-
chy levels are not random and reflect functional changes
in the network. This method could be applied to other
biological datasets such as in cancer biology or neuronal

development.
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