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Abstract

Background: Reducing the effects of sequencing errors and PCR artifacts has emerged as an essential component
in amplicon-based metagenomic studies. Denoising algorithms have been designed that can reduce error rates in
mock community data, but they change the sequence data in a manner that can be inconsistent with the process
of removing errors in studies of real communities. In addition, they are limited by the size of the dataset and the
sequencing technology used.

Results: FlowClus uses a systematic approach to filter and denoise reads efficiently. When denoising real datasets,
FlowClus provides feedback about the process that can be used as the basis to adjust the parameters of the
algorithm to suit the particular dataset. When used to analyze a mock community dataset, FlowClus produced a
lower error rate compared to other denoising algorithms, while retaining significantly more sequence information.
Among its other attributes, FlowClus can analyze longer reads being generated from all stages of 454 sequencing
technology, as well as from Ion Torrent. It has processed a large dataset of 2.2 million GS-FLX Titanium reads in
twelve hours; using its more efficient (but less precise) trie analysis option, this time was further reduced, to
seven minutes.

Conclusions: Many of the amplicon-based metagenomics datasets generated over the last several years have been
processed through a denoising pipeline that likely caused deleterious effects on the raw data. By using FlowClus,
one can avoid such negative outcomes while maintaining control over the filtering and denoising processes.
Because of its efficiency, FlowClus can be used to re-analyze multiple large datasets together, thereby leading
to more standardized conclusions. FlowClus is freely available on GitHub (jsh58/FlowClus); it is written in C and
supported on Linux.
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Background
Amplicon-based metagenomics studies provide insight
into the numbers and types of organisms in a particular
sample based on DNA sequence analysis of a gene, such
as the prokaryotic 16S ribosomal RNA gene [1]. The com-
bined technologies of PCR and next-generation sequen-
cing have allowed for the study of the rare biosphere by
obviating the need for culturing or cloning. However,
these same advances confound subsequent analysis of the
sequence data. The presence of sequencing errors, PCR
single-base errors, and PCR chimeras leads to inflated es-
timates of microbial diversity [2-7]. To limit the effects of
these artifacts, various analytical tools have been designed.
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Two of the most widely used are AmpliconNoise [6] and
the denoising pipeline in QIIME [3], the microbial ecology
analysis package [8].
In Roche-454 pyrosequencing [9], as well as Ion Torrent

sequencing [10], nucleotides are washed sequentially
across a plate with picoliter-volume wells that each con-
tain a bead attached to identical DNA molecules. If the
flowed nucleotide is complementary to the templates in a
well, a reaction occurs that results in the emission of light
(or, with Ion Torrent, a change in pH) proportional to the
number of nucleotides incorporated. This quantity of light
is called a flow value. For example, if the nucleotide G is
flowed and a well has a flow value of 4, it means that four
Gs were added to the template. However, actual flow
values are not integers; rather, they are floating-point
values, such as 4.13. The flow values of a well over the
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course of a sequencing run, collectively referred to as the
flowgram, are rounded to the nearest integers by the 454
software for sequence interpretation. If the 4.13 flow value
were actually generated from a homopolymer of 5 Gs,
then an incorrect deletion would have been made for that
sequence. Hence, pyrosequencing errors, as well as errors
in Ion Torrent sequencing [11], consist mostly of inser-
tions and deletions, due to the incorrect determination of
these nucleotide lengths, especially for longer homopoly-
mers. Substitution errors are much rarer, since they occur
only as the result of an overcall being followed by an
undercall, or vice versa [9,12].
Reducing the effects of pyrosequencing errors is an

important component in amplicon-based metagenomics,
as well as in the many other applications that utilize
such data [13-16]. In all these fields, various filtering cri-
teria are used to remove entire sequence reads (elimin-
ation) or portions of reads (truncation) that are likely to
contain many errors, while retaining as much sequence
information as possible. Huse et al. [17], in analyzing
first-generation (GS20) pyrosequencing, found that a
relatively small number of reads accounted for the vast
majority of the sequencing errors in their dataset. They
concluded that removing reads that contained an ambigu-
ous base (N) or that were of anomalous length was suffi-
cient to achieve an error rate of 0.20% while retaining
93.3% of reads. In a similar study of second-generation
(GS-FLX) pyrosequencing, Kunin et al. [4] used improved
error estimates and an algorithm that took into account
quality scores to approach the correct result for a known
microbial sample. However, this was achieved at the ex-
pense of throwing out nearly 30% of the reads. With
GS-FLX Titanium, seven variables contribute to the in-
creased error rates of certain reads, including those re-
lating to the location where a read is generated on the
sequencing plate [18].
In amplicon-based metagenomics, there is no agree-

ment on a set of filtering criteria that is universally used.
Hence, the filtering step in QIIME allows the user to se-
lect from a variety of criteria based on sequences and
quality scores. In AmpliconNoise, filtering is performed
by analyzing flowgrams only, not sequences or quality
scores. The filtering criteria are fixed and cannot be
easily altered by the user. It has been shown that one
particular criterion (truncating all flowgrams at the first
flow value between 0.50 and 0.70), which remains un-
substantiated, is responsible for most of the eliminations
and truncations of this step. In addition, although the fil-
tering was designed to truncate reads prior to an am-
biguous base, it misses most of these due to the way the
flowgrams are analyzed [19].
With amplicon-based pyrosequences, there is an add-

itional, fundamentally different approach for removing
pyrosequencing errors known as denoising. In denoising,
the reads are actually changed wherever a sequencing
error is judged to have occurred. The principal insight
behind an early denoising algorithm [2] was that the
flowgrams contained information that could be used to
aid in the identification of pyrosequencing errors. This
algorithm’s successors, PyroNoise in AmpliconNoise and
denoiser.py in QIIME, were similarly designed to cluster
flowgrams, while reducing the prohibitive computational
time of the original algorithm. Others have written soft-
ware that further improved computational efficiency by
disregarding flowgrams entirely [20].
Both PyroNoise and denoiser.py have user-selected pa-

rameters that control the denoising process. The default
values for these parameters were chosen based on the
analysis of mock community data, in which the correct
sequences were known. Therefore, the parameters could
be fine-tuned to minimize the error rates of reads. How-
ever, the algorithms were intended to be used in the studies
of real communities. Without knowing the true sequences,
one will not have a basis to choose values for the parame-
ters other than the defaults.
We have previously shown that one can evaluate the

outcomes of these denoising pipelines by considering
how the individual reads have been changed at each step
[19]. When used with the default parameter values, Pyr-
oNoise caused more substitutions than insertions or de-
letions, a pattern that is inconsistent with the known
spectrum of pyrosequencing errors. By increasing one of
the parameters (-s), we were able to achieve a result that
was consistent with these errors. Another issue that arose
was that of the “accordion effect”: since PyroNoise chose
the longest read as the representative for each cluster,
shorter reads had their 3’ ends filled in by sequences that
were sometimes very different from what had been re-
moved by truncation in the previous filtering step. The
analysis was more complicated with denoiser.py in QIIME,
since it also aligned the flowgrams during the denoising
process, so as to allow for the correction of PCR single-
base errors. Therefore, we could only point to the overall
large number of changes (mostly substitutions), which
were reduced with a change in the parameters.
In this paper, we detail our program, FlowClus, which

both filters and denoises amplicon-based pyrosequenced
data. Our goals for the program were fivefold: (1) to
keep the users in charge of their data by allowing them
to specify how the data are analyzed; (2) to provide
feedback to users about how their data are being al-
tered through the filtering and denoising processes, so
they have a basis on which to adjust the parameters; (3)
to avoid the negative side-effects of other denoising
pipelines, such as the accordion effect; (4) to be able to
analyze data generated by all stages of Roche-454
and Ion Torrent sequencing technology; (5) to require
less computational resources than existing denoising
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algorithms, while still leveraging the information con-
tained within the flowgrams.

Methods
Filtering
The different criteria by which certain reads are elimi-
nated or truncated have a profound effect on the out-
come from a denoising pipeline [19]. FlowClus allows
one to choose from a number of criteria based on se-
quences, quality scores, and flowgrams, all of which are
in the sff.txt file (produced by Roche-454 or Ion Tor-
rent) that FlowClus requires as an input. The available
criteria include those used by split_libraries.py in QIIME
and CleanMinMax.pl in AmpliconNoise. The only default
filtering is to require a match to a mid tag and primer,
with the user being able to specify an allowed number of
mismatches to each. Once a read matches a mid tag - pri-
mer, it is further analyzed according to the user-selected
filtering criteria (see Additional file 1). When a read passes
the filtering step, the flows corresponding to the mid tag
and primer are removed from its flowgram, and the 3’ end
of the flowgram is trimmed to match the read’s sequence,
taking into account any truncations that were made.
At the end of the filtering step, FlowClus produces fil-

tered flowgram files that are prepared for denoising, and
a corresponding fasta file. It also creates a detailed report
that lists the filtering criteria and the number of reads
truncated and eliminated due to each, as well as the num-
ber of mid tag - primer matches and reads that passed the
filtering for each sample. This report can be used to deter-
mine the effects of the filtering criteria on the data, and if,
for example, a particular criterion has a biased effect on
the reads derived from certain samples.

Denoising
Clustering
To correct pyrosequencing errors, denoising algorithms
such as the PyroNoise component of AmpliconNoise per-
form clustering of flowgrams. It is critical to understand
what the meaning of such a clustering is. By clustering
two flowgrams together, the algorithm is declaring that
the two reads are so similar that the only differences be-
tween them are due to pyrosequencing errors. Therefore,
it is acceptable to have them map to the same flowgram,
even if that means changing one or both of them in some
way to make them the same. Those changes are what the
algorithm considers pyrosequencing errors.
The denoising part of FlowClus is based on similar

logic. If two reads are so similar that the only differences
between them are due to pyrosequencing errors, the two
reads must have the same flow values at each position
throughout their flowgrams, to within some margin of
error. If any of the flow values differ by more than a given
threshhold, then the reads probably contain differences
beyond pyrosequencing errors, and they should not be
clustered together. On the other hand, if each pair of flow
values is not significantly different, then the reads are
likely to be the same, except for pyrosequencing errors.
Those reads can be clustered together and declared to be
the same.
During denoising, FlowClus compares each read to the

existing cluster centers in turn. If there are no significant
differences between its flow values and that of a cluster
center, it joins that cluster, and its flow values are aver-
aged into the cluster center’s (based on a weighted aver-
age). If it does not match any of the existing clusters, it
begins its own cluster.
Recalculating cluster centers in this manner can lead

to drift, where early reads no longer match clusters
whose centers have drifted away, and other reads that
were not placed into clusters now are within the range.
To address this issue, FlowClus iterates the process as fol-
lows. The first time through the reads, the cluster centers
are created as described above. Next, the clusters centers
are sorted based on the number of reads that map to
them, from most populous to least. Then, the process be-
gins again; each read is checked against the existing clus-
ter centers. If its flow values are not significantly different
from those of a cluster center, it joins that cluster, but the
cluster center is not recalculated. Since the clusters are
sorted by size after the first iteration, the reads will map to
the most populous clusters possible.
At the end of the denoising process, FlowClus recon-

stitutes the reads by interpreting the clusters’ flowgrams.
FlowClus rounds all flows ending in “.50” down, as the
454 software does most of the time, and adds an N when-
ever there are three consecutive flows of insufficient signal.
The length of each read’s filtered flowgram is taken into
consideration when its sequence is produced, so as to avoid
the accordion effect [19]. In addition to this denoised
fasta file, FlowClus produces output files that can be
used for de novo PCR chimera checking by UCHIME
[21] or Perseus [6].

Trie
An alternative usage for denoising with FlowClus is to
utilize a trie data structure, in which the edges contain
the flow values. Instead of comparing a query read to
each of a set of clusters, the read is simply placed into the
trie based on the same comparisons of flow values. As
reads are placed, the flow values of the trie are updated,
again based on a weighted average. In cases where a query
flow value is within the denoising distance of multiple
child edges, it is added to the closest edge.
Denoising with this method has greatly reduced compu-

tational requirements compared to the clustering ap-
proach, at the cost of some precision. In particular, there
is no second iteration with the trie, making the denoising
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more sensitive to the choice of distance. Also, the abun-
dance information provided for chimera checking is less
apparent compared with clustering; the abundance of each
leaf node is given by the number of reads that map to it or
any of its ancestor nodes.

Denoising distance
The denoising process of FlowClus, whether by clustering
or trie, is dependent on the choice of a distance thresh-
hold, the maximum difference at which flow values are
considered significantly different. This distance is deter-
mined by the user. One can choose a constant value, such
as 0.50, which means that, for example, query flow values
between 0.59 and 1.59 will not be considered significantly
different from a reference flow value of 1.09. This is simi-
lar to how the 454 software interprets a flow value, except
that 454 calls bases using integers as its reference values.
Another possibility is to specify variable denoising dis-
tances. One can use distances based on the standard devi-
ations of Balzer et al. [22], which increase with larger flow
values and may better reflect 454 pyrosequencing errors.
Or, one can use a set of custom distances that suit a par-
ticular dataset.

Outcome evaluation
The best way to evaluate the outcome of denoising is to
ascertain whether or not the changes to the individual
reads are consistent with the known spectrum of pyrose-
quencing errors. This is the same method we recom-
mended for judging the outcomes of other denoising
algorithms [19]. FlowClus provides an additional way for
the user to assess the denoising process. As flow values
are being compared, the program records these values
whenever they are judged as being distinct, based on the
user-specified denoising distance value. At the end of the
denoising step, the user can visualize a levelplot of these
“misses” to gain further insight as to whether the denois-
ing value should be altered for a particular dataset.

Datasets
For our primary analysis, we used a previously published
dataset [19] derived from the microbiomes of fourteen
individual nematodes. Two regions of the bacterial 16S
ribosomal RNA gene (V3-V5 and V6-V8) were PCR amp-
lified and sequenced using the Roche-454 GS FLX plat-
form with the Titanium protocol (800 flows), resulting in
just over 40,000 reads.
To calculate error rates, we retrieved the Titanium

mock community dataset of Quince et al. [6], which was
used to validate AmpliconNoise, as well as other
denoising algorithms [23]. The 62,873 reads were de-
rived from PCR amplification of the V4-V5 region of
the 16S gene, using 91 plasmid clones as the source
DNA (mock community). The set of original reads
(“Stage 0”) was determined by filtering only for mid tag
and primer sequences and allowing one and two mis-
matches to them, respectively. The initial error rate was
calculated by finding the best match of each read to the
90 reference sequences (see Additional files 2 and 3)
using ClustalW [24] with a reduced gap-opening pen-
alty (-gapopen=1). In this and other error-rate calcula-
tions, we counted only insertions and deletions, which
are the dominant form of errors in Roche-454 pyrose-
quencing [9]. We filtered the reads with FlowClus (ver-
sion 1.1) using criteria similar to those recommended
with the QIIME denoising pipeline and denoised with a
constant value of 0.90. The dataset was also processed
through the equivalent steps of AmpliconNoise V1.27
[6] and the denoising pipeline in QIIME 1.8.0 [8].
To evaluate scalability, we analyzed the large datasets

from Krych et al. [25]. In this study of the human gut
microbiome, the V3-V4 region of the 16S gene was amp-
lified by PCR and sequenced on the Roche-454 GS FLX
Titanium platform. The total number of reads for all three
groups (baseline, synbiotic, and placebo) was 2.2 million.

Results and discussion
We used FlowClus to filter and to denoise a previously
published dataset [19].

Filtering
With our dataset, 40,627 reads matched one of 56 different
mid tag - primer combinations (14 samples, two ampli-
cons, sequenced bidirectionally). We used several common
filtering criteria, resulting in the elimination of 14.9% of
the reads (Table 1). Most of these eliminations were due to
reads that were shorter than the specified minimum se-
quence length of 200 bp, or that were truncated prior to
this length by having a window of 50 quality scores
whose average was less than 25. This sliding window
criterion also resulted in the truncation of nearly half of
the 34,592 reads that passed this step. The 12,486 reads
that were truncated by removal of the reverse primer
were almost exclusively from the shorter of the two
amplicons, as would be expected.

Denoising
Clustering
We denoised our dataset with FlowClus using a constant
value of 0.50 for the maximum allowed difference between
flow values. This resulted in 13,139 clusters of varying
sizes. We determined what changes had been made at this
step, using the same process we used to evaluate other
denoising pipelines [19]. For the reference, we used the fil-
tered reads whose flowgrams had been reinterpreted by
FlowClus; these reads had 424 changes (mostly deletions)
compared to the regular filtered reads, due to the round-
ing of flow values ending in “.50” down. The denoised



Table 1 Results of the filtering step of FlowClus

Min. sequence
length (200)

Max. sequence length
for elimination (600)

Max. ambiguous
bases allowed before
truncation (0)

Reverse primer
removed

Min. window quality
score (length = 50,
qual = 25.0)

Total

Reads eliminated 2226 0 107 n/a 3702 6035

Reads truncated n/a n/a 1359 12486 15199 29044
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reads had only 47 substitutions of the 4,225 total changes
from the reference reads, with the remaining changes be-
ing slightly in favor of more deletions than insertions. This
pattern is consistent with the known spectrum of pyrose-
quencing errors. In fact, of the 47 substitutions, 24 were
conversions of an N (that had been interpreted by Flow-
Clus after filtering) to a regular base.
We further determined the effect of altering the con-

stant value parameter of FlowClus. As this value (specified
by the -j parameter) was increased, the numbers of inser-
tions and deletions increased, as expected (Figure 1A).
The number of substitutions remained much lower until
the denoising value was increased above 0.80.
We also denoised using variable denoising distances

based on the standard deviations of Balzer et al. [22].
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Figure 1 Effects of altering the denoising distance parameter
of FlowClus. The numbers of changes to the reads made during
denoising using different values for the maximum allowed distance
between flow values. A: Effects of changing the constant denoising
value (-j). B: Effects of using different multiples (-k) of the distances
based on the standard deviations of Balzer et al. [22].
When using different multiples of those distances (speci-
fied by the -k parameter), the changes were similar to
those of specifying a constant denoising value, with the
number of substitutions not increasing significantly until
the multiple rose above six (Figure 1B).
Although the best way to evaluate the outcome of

denoising is to examine the changes to the reads, as we
have done, FlowClus also allows one to visualize the set
of flow values that were judged as being distinct during
the denoising process. When we examined these denois-
ing “misses” after using a constant distance value of 0.50,
we saw an even white stripe that represented the flow
values that were judged as not being different (Figure 2A).
The denoising misses were concentrated around flow
values close to integers, such as where the cluster had a
flow value around one and the query read had a flow value
close to zero. Between these local maxima and along the
central stripe were blue and green “close” misses that sug-
gested that using a larger constant denoising value might
better suit this dataset. When denoising with a multiple of
five for the distances of Balzer et al. [22], most of those
close misses, especially at larger flow values, were not seen
(Figure 2B).
Trie
With our dataset, the effects of altering the denoising
values were similar to those of the clustering approach,
except that the numbers of changes increased more
sharply at larger distances (Additional file 4). Part of this
volatility resulted from the trie analysis’ not including a
second iteration through the reads.
After denoising with the trie and a constant value of

0.50, the misses did not have the clean white stripe down
the middle that was seen previously (Additional file 5).
This was due to cases where the query flow value was
within the denoising distance of more than one child edge.
A similar effect was seen when denoising with a multiple
of five variable distances (Additional file 5).
Benchmarking
Computational time
For our dataset, the filtering step of FlowClus required
just over one minute (Table 2). This was 35 times faster
than the filtering step in QIIME, and nearly 90 times
faster than that of AmpliconNoise. Part of this discrep-
ancy was explained by the fact that split_libraries.py (in



Figure 2 Denoising “misses” with FlowClus. As FlowClus denoises
flowgrams by comparing pairs of flow values, it records the flow
values of the cluster and the read each time they are judged as being
distinct. The set of these “misses” for a denoising run can be visualized
as a levelplot, such as those shown here. The red-orange colors
represent a large number of misses at those particular pairs of
cluster and read flow values. A: Denoising using a constant distance
value of 0.50. B: Denoising using a multiple of five distances based
on the standard deviations of Balzer et al. [22].
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QIIME) and SplitKeys.pl (in AmpliconNoise) needed to
be run for each of the four primers for this dataset sep-
arately, whereas FlowClus analyzed them all at once.
When denoising by clustering with FlowClus, the run-

time depends on the number of filtered reads, as well as
Table 2 Comparison of the run-times (in seconds) of different

FlowClus, min. filtering F

Number of reads denoised 40627 3

Filtering 63 6

Denoising clustering: 16 c

trie: 3 tr

*Filtering options as shown in Table 1.
**Denoising by the PyroNoise step only.
the number of clusters formed. With our dataset that had
been filtered, the denoising time was eight seconds, com-
pared to 4.6 hours and 9.9 hours required by Amplicon-
Noise and QIIME, respectively (Table 2). FlowClus utilized
a maximum of 64.4 MB memory, while PyroNoise and
denoiser.py both needed more than twice that amount
(145.5 MB and 235.9 MB, respectively).
It is important to note that AmpliconNoise, in addition

to analyzing fewer reads due to its stringent filtering
criteria, also denoised the reads by mid tag and primer
separately (56 different bins for this dataset). QIIME and
FlowClus both denoised by primer (four bins), which is a
computationally more expensive approach, in time and
memory usage. It is conceptually better to denoise data in
as few groups as possible, allowing for error correction of
reads derived from rare taxa [19].
With the dataset that had undergone minimal filtering,

the denoising run-time of FlowClus doubled to 16 sec-
onds. This was due to the increased number and lengths
of reads, which in turn resulted in more clusters being
formed. A maximum of 78.7 MB memory was required.
To assess scalability, we analyzed the “baseline” dataset

of Krych et al. [25]. The 789,635 reads were filtered by
FlowClus in two minutes, and denoising by clustering,
with a constant distance of 0.50, required less than two
hours and 2.6GB of memory (Additional file 6). Amplicon-
Noise, despite denoising 20.2% fewer reads (which were
then binned by sample) and being parallelized over 16
cores, needed 2.6 days and 13.7GB of memory to process
this dataset. The denoiser in QIIME, which was similarly
run on 16 cores, took 7.9 days (Additional file 6), although
running it on each sample separately (using the -S option)
reduced the run-time to 1.4 days.
We further applied FlowClus to the combination of all

three datasets (baseline, synbiotic, and placebo) of Krych
et al. [25]. The 2.2 million raw reads were filtered in
5.5 minutes. Less than twelve hours and 7.1GB of mem-
ory were used to complete the denoising with a constant
distance of 0.50 (Additional file 6).
When denoising by trie with FlowClus, the computa-

tional time becomes linear with respect to the number of
reads. The time to denoise our filtered dataset was reduced
to two seconds (Table 2), with only 8.5 MB of memory re-
quired. For the datasets of Krych et al. [25], the “baseline”
denoising pipelines

lowClus, with filtering* AmpliconNoise** QIIME

4592 31868 36281

4 5568 2211

lustering: 8 16536 35796

ie: 2
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reads were denoised in 36 seconds (423.6 MB memory),
and the nearly 1.5 million filtered reads of the combined
dataset were denoised in 97 seconds (1.2GB memory)
(Additional file 6).

Error rates
In order to determine how effective a denoising algo-
rithm has been in removing or correcting errors, one
must analyze a dataset in which the correct sequences
are known. To this end, datasets derived from mock
communities are often used. Mock communities are cre-
ated by combining known plasmid sequences or known
bacterial genomic DNA. These DNA mixtures are then
processed like a typical environmental sample, by PCR
and sequencing.
We examined the performance of FlowClus in correct-

ing pyrosequencing errors in the Titanium mock com-
munity dataset of Quince et al. [6]. The set of original
reads (“Stage 0”) was determined by filtering only for
mid tag and primer sequences. The combined insertion
and deletion error rate of these reads was just over 0.4%
(Figure 3). We then filtered the reads with FlowClus
using criteria similar to those recommended with the
QIIME denoising pipeline. This resulted in a drop in
the error rate by more than half, while losing 11.5% of
the sequence information. We denoised the reads by
clustering, using a constant 0.90 as the denoising dis-
tance, which was the largest value that did not cause a
significant (>5%) change in the substitution error rate.
After denoising, the in/del error rate was further re-
duced, to less than 0.1%.
We processed the mock community dataset through

the equivalent steps of AmpliconNoise. The initial error
rate was nearly identical to that of FlowClus, although
there were fewer sequences, since SplitKeys.pl requires
FlowClus AmpliconNoise
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Figure 3 Analyzing a mock community dataset. A comparison of
the error rates (solid lines) and total sequence alignment length
(dashed lines) of the Titanium mock community dataset (Quince
et al. [6]) analyzed by FlowClus and AmpliconNoise.
an exact match of the mid tag and primer [19]. After fil-
tering with CleanMinMax.pl, the error rate was reduced
further than with FlowClus, but this was achieved at the
expense of losing nearly twice as much sequence informa-
tion (Figure 3). The PyroNoise step of AmpliconNoise,
which is designed to correct only pyrosequencing errors,
brought the error rate down nearly to the level of Flow-
Clus. However, it is important to note that this error rate
was artificially deflated, because of the positive 3’ gap of
PyroNoise [19], as shown by the increase in sequence in-
formation (Figure 3).
We also analyzed this mock community dataset with

the QIIME denoising pipeline, and we found that the error
rates through each step were similar to those of FlowClus
(Additional file 7). Here again, though, the final error rate
of just over 0.1% was artificially reduced because of the
positive 3’ gap of denoiser.py. The lowest error rate was
produced after filtering using the -g option in QIIME, but
this also resulted in the loss of 25.6% more sequence infor-
mation (Additional file 7).
In all these analyses, factors other than sequencing er-

rors also contributed to the in/del error rate. These in-
cluded in/dels derived from PCR errors and the possibility
of some incorrect reference Sanger sequences (Additional
file 2). In addition, the presence of reads derived from con-
taminants [23] and PCR chimeras also increased the error
rates. We found that removing reads classified as chimeras
by UCHIME [21] had a small and equivalent effect on the
in/del error rates for each of the denoising pipelines.
Despite these issues, we performed no manipulation or
exclusion of individual reads, beyond what was done by
the denoising algorithms.
In analyzing this dataset, FlowClus had a greatly

decreased run-time compared to the other pipelines
(Additional file 6). It filtered and denoised in just over
twenty seconds. AmpliconNoise required more than nine
hours, despite analyzing 13.4% fewer reads. The QIIME
denoising pipeline used nearly seven hours, although
some of this time was used to correct PCR single-base er-
rors, which denoiser.py does simultaneously with address-
ing pyrosequencing errors.
When used with the trie denoising option, FlowClus re-

quired just two seconds (Additional file 6). The error rates
across constant denoising distances ranging from 0.3 to
0.8 were similar to those when denoising by clustering
(Additional file 8). However, the trie error rates greatly in-
creased at denoising distances above 0.8. This underscores
the sensitivity of the trie denoising option to larger denois-
ing distances, which is consistent with the spectrum of
read changes seen previously (Additional file 4).

Conclusions
The importance of accounting for errors stemming from
PCR and sequencing in amplicon-based metagenomic
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studies is well-established [2-7]. However, existing denois-
ing programs have negative side-effects [19] and do not
allow one to evaluate the outcome when they are used to
analyze real-world data. In addition, they are computa-
tionally prohibitive for many larger datasets.
We have described a new program, FlowClus, that

filters and denoises pyrosequenced amplicons. Our goal
was to have a program that would keep the users in charge
of their data by providing detailed information about the
filtering and denoising processes, and that would be prac-
tical for use with current and future datasets, including
those generated by Ion Torrent sequencing.
For filtering, FlowClus provides a wide variety of cri-

teria that will eliminate or truncate reads based on se-
quences, quality scores, and flowgrams. The user can
select any or all of these criteria, and the program ana-
lyzes the reads according to a strict order of operations.
When the filtering step is completed, FlowClus provides
an accounting of the effects that the chosen criteria
have. If a particular criterion has a biased effect on cer-
tain samples, for example, the user will be made aware
of this and may consider altering the filtering parameters
accordingly. Although this step was also designed to pre-
pare the flowgrams for denoising, those analyzing other
pyrosequenced datasets may choose to filter their data
using FlowClus, simply because of the value of the infor-
mation that is reported back and the systematic ap-
proach that is employed.
The denoising process in FlowClus is designed to cor-

rect pyrosequencing errors. Like other denoising pro-
grams, it does this by clustering flowgrams whose only
differences are judged as being pyrosequencing errors.
With FlowClus, the user controls the clustering process
by setting the maximum distance allowed between flow
values. After the denoising has completed, the effects of
denoising can be assessed by ascertaining whether or
not the changes to the individual reads are consistent
with the known spectrum of pyrosequencing errors. This
is the same method we recommended for judging the out-
comes of other denoising pipelines [19]. An additional
way one can evaluate denoising with FlowClus is to exam-
ine a levelplot of the flow values that were considered
different during the clustering process. Both of these
methods provide for the user information that can be used
to adjust the parameters to suit the particular dataset
being analyzed.
The feedback provided for the filtering and denoising

steps of FlowClus applies to datasets generated from
real-world samples. That is, the user does not need to
know the true sequences to judge the effects that the
program has had on the data. This is an important dis-
tinction, because other denoising algorithms were vali-
dated based on their abilities to achieve the “correct”
results with mock community data. The problem is that
these results are not necessarily reflective of how well
the algorithms will perform with data derived from real
communities. In a real-world sample, there are rare var-
iants of more dominant species, and it is not certain
that these true sequences will not be considered errors.
It is also unclear how well a denoising algorithm that
was validated with mock community data at one stage
of sequencing technology will continue to perform as
the technology improves, generating more and longer
reads per run.
Nevertheless, we processed a mock community dataset

through FlowClus. It produced a lower error rate than
AmpliconNoise and the QIIME denoising pipeline, while
retaining more sequence information. Another import-
ant result from this analysis was the extent to which fil-
tering reduced the error rates far more than denoising
in each of the pipelines. This highlights the importance
of continued study of filtering criteria, which does not
seem to be keeping pace with new advances in sequen-
cing technology.
FlowClus does not address sources of error arising

from PCR artifacts directly. There are already numerous
programs available that are used to identify PCR chimeras.
Due to the importance of removing chimeras in amplicon-
based metagenomics, we designed FlowClus to produce
files that can be fed to de novo chimera-checking pro-
grams, which require abundance information (reference-
based programs can be used in any case). On the other
hand, we do not believe that PCR single-base errors con-
tribute substantially to noise, nor do we believe there is a
valid model that can distinguish such errors from the nat-
ural diversity inherent in real-world samples [19].
With all the datasets, FlowClus completed the analysis

in a fraction of the time required by AmpliconNoise and
the QIIME denoising pipeline. Our small dataset was
processed in under two minutes. Less than twelve hours
were required for a large dataset of 2.2 million reads.
Those who are analyzing such large datasets can consider
using FlowClus with the trie denoising option, which is
even more efficient, at the cost of some precision. There is
no second iteration with the trie, making the denoising
more sensitive to the choice of distance, and the abun-
dance information provided for chimera checking is less
precise compared to that from clustering.
As sequencing technology has progressed, reads have

increased in length and in quantity. FlowClus was not
written for a particular implementation of Roche-454 se-
quencing, so it can analyze reads generated from any
number of flows and any flow order (including flow pat-
tern B). With the impending demise of pyrosequencing,
Ion Torrent has gained popularity in the field; FlowClus
can process data from this sequencing platform as well.
This is particularly important in addressing the need to
re-analyze multiple large datasets that may have been
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generated at different stages of sequencing technology.
Because of its flexibility and efficiency, FlowClus is uniquely
suited to be able to perform this task.

Availability of supporting data
The dataset for our primary analysis, taken from Gaspar
and Thomas [19], is available in the NCBI Sequence Read
Archive, accession SRR653182. The Titanium mock com-
munity dataset of Quince et al. [6] is available in the SRA,
accession SRR068370. The datasets of Krych et al. [25] are
available in the SRA, accessions SRR550157-68.

Additional files

Additional file 1: The filtering criteria and order of operations used
by FlowClus.

Additional file 2: Notes on the mock community dataset that was
used.

Additional file 3: The 90 reference sequences of the mock
community dataset.

Additional file 4: Effects of altering the parameters of FlowClus
when using a trie. The numbers of changes to the reads made during
denoising with a trie was determined. A: Effects of changing the constant
denoising value. B: Effects of using different multiples for the distances
based on the standard deviations of Balzer et al. [22].

Additional file 5: Denoising “misses” with FlowClus when using a
trie. Levelplots of the flow values that were judged as being distinct,
based on the following user-selected parameters. A: A constant value of
0.50. B: A multiple of five distances based on the standard deviations of
Balzer et al. [22].

Additional file 6: Comparisons of the run-times (in seconds) of
different denoising pipelines. A: Titanium mock community dataset
of Quince et al. [6]. B: Baseline dataset of Krych et al. [25]. C: Combined
dataset (baseline, synbiotic, and placebo) of Krych et al. [25].

Additional file 7: Analyzing a mock community dataset by the
QIIME denoising pipeline. A comparison of the error rates (solid lines)
and total sequence alignment length (dashed lines) of the Titanium
mock community dataset [6] analyzed by the QIIME denoising pipeline,
with and without the -g filtering option.

Additional file 8: Comparisons of the error rates when denoising
by clustering vs. by trie at different denoising distances.
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