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Abstract

Background: Minimum dominating sets (MDSet) of protein interaction networks allow the control of underlying
protein interaction networks through their topological placement. While essential proteins are enriched in MDSets,
we hypothesize that the statistical properties of biological functions of essential genes are enhanced when we
focus on essential MDSet proteins (e-MDSet).

Results: Here, we determined minimum dominating sets of proteins (MDSet) in interaction networks of E. coli, S.
cerevisiae and H. sapiens, defined as subsets of proteins whereby each remaining protein can be reached by a single
interaction. We compared several topological and functional parameters of essential, MDSet, and essential MDSet
(e-MDSet) proteins. In particular, we observed that their topological placement allowed e-MDSet proteins to provide
a positive correlation between degree and lethality, connect more protein complexes, and have a stronger impact
on network resilience than essential proteins alone. In comparison to essential proteins we further found that interactions
between e-MDSet proteins appeared more frequently within complexes, while interactions of e-MDSet proteins between
complexes were depleted. Finally, these e-MDSet proteins classified into functional groupings that play a central role in
survival and adaptability.

Conclusions: The determination of e-MDSet of an organism highlights a set of proteins that enhances the enrichment

method of evaluating the core proteins of an organism.

signals of biological functions of essential proteins. As a consequence, we surmise that e-MDSets may provide a new
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Background

The biological importance of a protein is frequently con-
sidered a question of the number of interactions a given
protein is involved in [1-3], suggesting that high topo-
logical centrality is an indicator of a protein’s importance
[4-9]. In addition, such proteins are often involved in a
large number of protein complexes [10], signifying that
their essentiality is a consequence of their complex in-
volvement [5,9,11-14].

Focusing on the determination of nodes that control an
entire network, Liu et al. introduced a maximum matching
approach to predict nodes that allowed the control of vari-
ous technical, social and biological networks [15]. However,
their approach was only applicable to directed networks,
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prompting Nacher and Akutsu to determine minimum
dominating sets (MDSet) of nodes, defined as a set of cen-
trally located nodes that provide control of undirected net-
works [16]. Answering the question of whether nodes that
are predicted to be important for the control of interaction
networks translate directly into functional sets of proteins,
minimum dominating sets were found enriched with dis-
ease related and essential genes in protein interaction net-
works [17,18].

Here, we hypothesize that essential proteins that appear
in MDSets as well (e-MDSet) enhance the enrichment sig-
nals of biological functions compared to essential proteins
alone. Specifically, we considered high-quality protein in-
teractions in S. cerevisiae and H. sapiens that have been de-
termined by large-scale yeast two-hybrid approaches, as
well as a recently released high-throughput binary inter-
action set in E. coli [19]. While highly connected proteins
showed a weak enrichment of essential proteins we recov-
ered a strong correlation between a protein’s degree and its
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tendency to be essential when we focused on essential pro-
teins that appeared in the corresponding MDSet as well
(e-MDSet). The impact of the combination of essentiality
of a protein and its presence in the corresponding MDSet
was further evidenced by our observation that e-MDSet
proteins are more likely to connect protein complexes than
essential proteins alone in all three organisms. Further-
more, we found that e-MDSet proteins predominantly oc-
cupied more central positions in networks and connected
more protein complexes. As a corollary, e-MDSet proteins
were enriched in interactions that occured within com-
plexes, and vice versa. Taking a closer look at functional
classifications we found that e-MDSet proteins enhance
the enrichment signals of functional groups that play a role
in responses to external stimuli and the physiological con-
dition of cells.

Results

We utilized a network of 6,225 high-quality interactions be-
tween 2,640 proteins in S. cerevisiae and 17,523 high-quality
links between 5,926 human proteins that were entirely deter-
mined by yeast-two hybrid approaches [20]. As for E. coli, we
used a recently released, first map of 1,938 interactions
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between 1,203 proteins that were experimentally obtained
with a yeast-two-hybrid approach [19]. As a source of infor-
mation about essential genes, we collected 712 essential
genes in E. coli and 1,110 essential genes in S. cerevisiae from
the DEG database [21], and obtained 2,708 essential genes in
H. sapiens from the online gene essentiality database (OGEE)
[22]. We defined a MDSet as an optimized subset of proteins
in an interaction network from where each remaining (i.e.
non-MDSet) protein can be reached by one interaction.
Therefore, each non-MDSet protein is connected to at least
one MDSet protein (Figure 1A). In all protein interaction
networks we determined corresponding minimum dominat-
ing sets by solving an integer-based linear programming
problem (see Materials and Methods). In particular, we
found 569 MDSet proteins in the yeast interactions network
(21.26%), while there were 352 proteins in the MDSet of E.
coli interactions (29.2%) and 940 MDSet proteins (15.9%) in
the human interaction network. In comparison to all pro-
teins (<ky > = 3.9), the mean degree of MDSet proteins in
the yeast interaction network was significantly increased
(<knipset > = 8.5), an observation that held for the E. coli
(<ka > = 3.2, <knipsget > = 5.6) and human networks as well
(<kar > = 5.3, <kypset > = 15.5). In turn, we observed that
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Figure 1 e-MDSet proteins follow the centrality-lethality rule. (A) In a toy network we defined a minimum dominating set (MDSet) as an
optimized subset of nodes (red square symbol) from where each remaining (i.e. non-MDSet) node (gray circle symbol) can be immediately
reached by one step. Therefore, each non-MDSet protein is connected to at least one MDSet protein. (B) After we calculated the corresponding
MDSets in binary interaction networks of E. coli, S. cerevisiae and H. sapiens, we grouped proteins in bins of logarithmically increasing degree. In
each bin we determined the fraction of essential proteins that participated in the underlying MDSet as well, allowing us to observe that essential
MDSet proteins (e-MDSet) were preferably enriched among highly connected essential proteins in all organisms. In the inset of (C) we calculated
the enrichment of essential proteins as a function of their degree in the binary protein interaction networks of E. coli, S. cerevisiae and H. sapiens.
Generally, essential proteins in binary interactions failed to produce a significant trend in either organism. Focusing on the enrichment of MDSet
proteins, however, we recovered a strong increasing trend that (D) was reinforced by focusing on e-MDSet proteins.
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essential genes had a slightly increased mean degree (E. coli
<Kess. > = 34, S. cerevisiae < Kegs, > = 4.8, H. sapiens < Kegs > =
6.7) compared to the corresponding values of all proteins in
the underlying networks. In particular, we found 91 essential
proteins that participated in the underlying MDSet proteins
in E. coli (e-MDSet), a number that is statistically significant
applying Fisher’s exact test (P =9.2 x 10~). Notably, such an
enirchment pattern applied to the remaining organisms as
well, where we found 179 e-MDSet proteins in S. cerevisiae
(P=23x10") and 209 in H. sapiens (P =53 x 107).

Centrality and lethality

As for a more direct comparison, we grouped proteins into
bins of logarithmically increasing degree and calculated the
fraction of essential genes in each group. Determining the
fraction of e-MDSet proteins in each bin, Figure 1B clearly
shows that e-MDSet proteins were predominantly enriched
in groups of essential proteins that had an increased num-
ber of interaction partners. Considering the enrichment of
essential genes as a function of the degree in the under-
lying interaction networks, we grouped proteins with at
least a certain number of interactions and counted the
number of essential proteins in each bin. To provide a
control, we randomly sampled sets of essential genes as a
null-model and defined the ratio of the observed and ex-
pected number as the enrichment of essential genes in
each group. The inset of Figure 1C indicates that binary
interaction networks of all organisms failed to produce a
viable trend. Hypothesizing that such proteins may be
enriched among highly connected proteins we repeated
our initial enrichment analysis by considering MDSet and
e-MDSet proteins. Indeed, we found an increasing correl-
ation between elevated degree and their presence in
MDSets in all interaction networks of E. coli, S. cerevisiae
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and H. sapiens (Figure 1C). Notably, such trends were rein-
forced when we focused on e-MDSet proteins, confirming
our hypothesis (Figure 1D).

As a different measure of the central placement of essen-
tial proteins, we calculated the betweeness centrality of all
proteins in the underlying networks. We defined a set of
bottleneck proteins as the top 20% of proteins with highest
centrality [23]. As a null-model, we randomly picked essen-
tial proteins 10,000 times and determined the enrichment of
essential proteins in the corresponding sets of bottleneck
proteins. Figure 2A indicates that essential proteins were
weakly enriched among bottleneck proteins. While MDSet
proteins were strongly enriched among bottleneck proteins
in all organisms, we observed a reinforcement of these
trends when we considered e-MDSet proteins, suggesting
that the topological placement of MDSet proteins enhanced
the enrichment signals of essential proteins (Figure 2A).

To measure a protein’s impact on an interaction net-
work’s resilience, we performed a robustness analysis. We
sorted all e-MDSet proteins according to their degree in
the interaction networks of both organisms. Starting with
the most connected protein we gradually deleted proteins
and calculated the number of connected components after
each deletion step. In comparison, we considered sets of
equal size of most connected, essential proteins. Figure 2B
indicates that the successive deletion of e-MDSet proteins
had a higher impact on network topology by producing
more connected components while removing fewer inter-
actions than the most connected essential proteins in E.
coli, S. cerevisiae and H. sapiens.

Protein complexes
Moving to a higher level of cellular organization, we calcu-
lated the complex participation coefficients of proteins, a
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Figure 2 Centrality of e-MDSet proteins. (A) We determined the betweeness centrality of each protein in the interaction network of E.
coli, S. cerevisiae and H. sapiens and chose the top 20% of proteins with highest betweeness centrality as sets of bottleneck proteins.
Randomly sampling such sets 10,000 times, we observed that bottleneck proteins were weakly enriched with essential proteins in all
organisms. In turn, MDSet and e-MDSet proteins were significantly enriched with bottleneck proteins. (B) Utilizing the subset of e-MDSet
proteins in E. coli, S. cerevisiae (both in the inset) and H. sapiens, we sorted proteins according to their degree. Starting with the highest
connected protein, we successively deleted proteins and calculated the number of connected components. To compare, we applied this
procedure to a set of highest connected essential proteins of the same size in each organism. Our results suggest that the removal of
e-MDSet proteins led to a lower number of deleted interactions and a higher number of connected components.
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value that indicates a protein’s tendency to interact with
different complexes through their interactions. The com-
plex participation coefficient tends toward 1 if the given
protein predominantly interacts with proteins in the same
complex and vice versa. In particular, we utilized a set of
517 protein complexes in E. coli [24], 430 protein com-
plexes in S. cerevisiae [25] and 1,843 protein complexes in
H. sapiens [26]. Since essential proteins tend to connect
more complexes than non-essential proteins, we hypothe-
sized that the topological placement of MDSet proteins will
enhance this statistical characteristic of essential proteins.
The comparison of the frequency distributions of the
corresponding participation coefficients in Figure 3A
clearly confirmed our assumption. Indeed, e-MDSet
proteins in all interaction networks largely reached
into a higher number of different protein complexes
compared to all essential proteins alone. On the basis
of this finding, we wondered whether interactions be-
tween essential proteins are enriched within single
complexes or between complexes (Figure 4A). Specif-
ically, we counted the number of inter- and intra-
complex interactions and randomly assigned the same
number of proteins to each corresponding complex
10,000 times as a random null model. Generally, we
observed that interactions between essential proteins
connecting complexes appeared less frequently than
expected in all organisms (P<107% Figure 4B). In
turn, interactions between proteins within the same
complex occurred more frequently than expected in
all organisms (P < 107%, Figure 4B). Focusing on inter-
actions between MDSet proteins, we found a similar,
albeit slightly weaker, signal. In turn, these trends that
were largely enhanced when we considered e-MDSet
proteins in all organisms (P < 10™*, Figure 4B).
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Functional classes

These striking network patterns are consistent with proteins
that have high level regulatory functions. Therefore, we took
the logical next step of grouping our protein sets according
to broad functional classes that were defined by clusters of
orthologous groups (COGs) [27,28]. Specifically, we counted
the occurrence of essential, MDSet, as well as e-MDSet pro-
teins in these groups (Figure 5) while we randomly assigned
the same number of functional classes to each protein
10,000 times as a null model. On an organism specific level,
essential, MDSet, and e-MDSets proteins roughly appeared
enriched/depleted in the same functional groups in all or-
ganisms, apart from certain striking cases while enrichment
patterns in the different organisms were largely incongruent.
Notably, enrichment signals of essential proteins that were
involved in RNA processing (group A) cell cycle control
(D), transcription (K), post-translational modification (O),
intracellular transport (U) and the cytoskeleton (Z) were en-
hanced by considering e-MDSet proteins in S. cerevisiae.
Conversely, e-MDSet proteins were exceedingly depleted in
aminoacid (A), carbohydrate (G) and lipid (I) transport and
metabolism as well as chaperone and turnover activities (P)
compared to essential proteins alone. While such enrich-
ment patterns largely differ from E. coli and H. sapiens, we
found that amino acid transporations and metabolism (E)
and chaperones and turnover functions (P) were depleted in
all organisms. In comparison to essential proteins and
MDSet proteins, e-MDSet proteins in E. coli enhanced the
enrichment signal of proteins that play a role in translation
(J)- In turn, cell cycle control proteins were enriched with
essential proteins (D), a signal that was mitigated by e-
MDSet proteins. In H. sapiens, we found that e-MDSet pro-
teins enhance the enrichment signals of essential genes with
transcription (K), replication (L) and signal transduction
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Figure 3 Essential and MDSet proteins in protein complexes. We calculated the complex participation coefficients of all proteins in the binary
interaction networks of E. coli, S. cerevisiae and H. sapiens. Specifically, e-MDSet proteins reached into more complexes compared to essential proteins in
E coli (P=19x10"* Wilcoxon test), S. cerevisiae (P =3.5x 10°°) and H. sapiens (P=96x 10""").
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in interaction sets between e-MDSet proteins (P < 1079.
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Figure 4 Enrichment of interactions within and between protein complexes. (A) Schematic illustration of interactions that appear
between and within complexes. In (B) we determined the number of interactions between MDSet, essential or e-MDSet proteins in the same
complex as well as within complexes in E. coli, S. cerevisiae and H. sapiens. As a random null model, we resampled proteins in complexes
10,000 times. Generally, we found that interactions between complexes appear diluted while interactions in the same complexes seemed to
be enriched. While they appeared significant in sets of interactions between essential proteins we observed that such signals were enhanced

functions, while transportation (E,H,BU) and translation (J)
functions were depleted.

Discussion and conclusions

Here, we determined minimum domainting sets (MDSets)
of proteins in the underlying binary interaction networks
of E. coli, S. cerevisiae and H. sapiens that have been en-
tirely determined by yeast two-hybrid approaches. We de-
fined MDSets as the smallest group of strategically placed
proteins from where each remaining protein (i.e. non-
MDSet protein) can be immediately reached through a
single interaction. Therefore, each non-MDSet protein in-
teracts with at least one MDSet protein. In other words, a
MDSet is the smallest possible set of proteins that allows
us to ‘cover’ all remaining proteins in the underlying net-
works. We hypothesized that the topological placement of
MDSet proteins may correlate well with the presence of
essential proteins in the underlying protein interactions
networks. Indeed, we found that MDSet proteins were
enriched with essential proteins in all interaction net-
works. Despite an absence of a correlation between the
number of interaction and a protein’s tendency to be es-
sential, we anticipated that the ability to cover other pro-
teins may allow us to find that highly connected MDSet
proteins are increasingly essential for the survival of the
organism and its adaptability [17]. Indeed, we recovered a
strongly ascending correlation between a protein’s lethality
and its number of interactions in all organisms when we
considered e-MDSet proteins.

The ability of a MDSet to ‘cover’ all proteins in a network
is not just a question of finding the most connected pro-
teins, but necessitates the determination of the lowest num-
ber of strategically placed proteins [17]. Such a concept
again highlights the idea that MDSets will capture proteins
that are involved in adaptability as well as lethality. While
essential and MDset proteins appear enriched in bottleneck
protein sets, respectively, we found that the topological
placement of e-MDSet enhanced the initial trends. Further-
more, such e-MDSet proteins predominantly connect more
protein complexes than essential and MDSet proteins alone,
confirming our hypothesis. As for functional aspects, our
analysis revealed that e-MDSet proteins broadly fell into
functional classes that are vital for survival and reproduction
such as cell cycle control, trafficking, cytoskeletal, transla-
tional and posttranslational modifiying functions. These
functional groupings are highly dynamic in their responses
to external stimuli and the physiological conditions of cells.
As such, the MDSet provides an optimized set of topologic-
ally central proteins that may be contributing to the essenti-
ality of genes, including those necessary for continued
survival through a changing environment.

Notably, our results were organism-independent and
strongly suggested that MDSet proteins provide a statis-
tical enhancement of the topological and functional charac-
teristics of essential genes. We may think of MDSet proteins
as the “vital essential” set, scoring significantly higher than es-
sential proteins alone, enhancing their topological parameters
in the underlying networks. Furthermore, from a network
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_

resilience aspect, we directly compared e-MDSets with sets
of essential protein hubs of equal size. Notably, we found that
the deletion of e-MDSet proteins had a higher disruptive ef-
fect on the underlying networks in both organisms than the
deletion of essential hub proteins alone. Taken together our
results demonstrate the topological and central relevance of
proteins that are involved in MDSets as well as being essen-
tial in protein interaction networks, a characteristc that is not
just a matter of highest connectivity.

Most research into protein interaction networks seeks
to better understand a disease mechanism or evolution-
ary development question. As our data collecting tech-
niques become more sophisticated, we can ask more
intricate questions of the data being collected. We con-
clude that the identification of MDSet proteins in this

context may be crucial in elucidating the possible roles
of certain genes in a pathway where they might be caus-
ing even slight perturbations.

Methods

Determination of a minimum dominating set (MDSet)

We defined a set S € Vof nodes in a network G = (V, E)
as a minimum dominating set if every node v & V'is ei-
ther an element of S or adjacent to an element of S
(inset, Figure 1A). In a binary integer-programming
problem we assigned a binary variable x, =1 when a
protein v € V that participates in interactions E in a pro-
tein interaction network G = (V, E) is an element of the
MDSet, and x, =0 otherwise. The smallest set of MDSet
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nodes is obtained by minzvev xy, subject to the con-
straint x, + Zwef(v) x,>1 where I'(v) was the set of

interaction partners of protein v. Since the domination
problem in graphs is NP-complete no algorithm ne-
cessarily exists that allows the determination of a
minimum dominating set in arbitrary graphs in poly-
nomial time [29]. We utilized a branch-and-bound al-
gorithm [30] as implemented by library IpSolve of the
R programming language to solve our binary integer-
programming problem.

Protein-protein interactions of E. coli, S. cerevisiae and H.
sapeins

We collected 1,938 interactions between 1,203 proteins
that were experimentally determined using a yeast-two-
hybrid approach in E. coli [19]. As for S. cerevisiae we
collected 6,225 high-quality interactions between 2,640
proteins that were entirely determined by large-scale
yeast-two hybrid approaches from the HINT database
[20], including [2,31,32]. Furthermore, we assembled a
network of 17,523 high-quality interactions in H. sapiens
between 5,926 proteins from the HINT database [20].
Specifically, this set of protein interactions has been en-
tirely determined by large-scale yeast-two hybrid ap-
proaches, including [33-36].

Protein complexes in E. coli, S. cerevisiae and H. sapiens
We utilized a set of 517 protein complexes in E. coli from
a co-affinity purification study that was followed by mass
spectrometry analyses [24]. As for S. cerevisiae, we utilized
430 protein complexes compiled in [25], including the
SGD Macromolecular Complex GO standard [37], the
CYC2008 protein complex catalogue [38] and a set of
manually curated protein complexes. Furthermore, we uti-
lized 1,843 protein complexes in H. sapiens from the
CORUM database [26].

Protein complex participation coefficient

For each protein that is part of at least one protein com-

plex, we defined the protein complex participation coef-
2

ni.s
ficient of a protein i as P; =) ., ZA;:' where 7;; is
is
§=1

the number of links protein i has to proteins in complex
s out of N total complexes. If a protein predominantly
interacts with partners of the same complex, P tends to
1 and vice versa [39].

Enrichment analysis as a function of degree
We binned proteins in groups N. ; where each protein
had at least k interactions and calculated the corre-

sponding number of essential proteins i, N;.. Ran-
— Nk
N;zk

domly picking essential genes we defined E; >x as
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the enrichment of essential proteins where N;. was
the corresponding random number of essential pro-
teins among all N, proteins in the corresponding bin.
After averaging E; over 10,000 randomizations E; >1
pointed to an enrichment and vice versa, while E; ~ 1
indicated a random process [40].

Bottleneck proteins

As a global measure of a nodes centrality, we calculated
its betweenness centrality, indicating a proteins appear-
ance in shortest paths through the whole network. In
particular, we defined betweeness centrality cg of a pro-

as(v)
sztzveV oy

tein v as cg(v) = , where o, was the num-

ber of shortest paths between proteins s and ¢ while oy,
(v) was the number of shortest paths running through
node v. We defined a set of bottleneck nodes as the top
20% of interactions with highest node betweeness cen-
trality [23].

Functional classes

Proteins were grouped according to broad functional
classes that were defined by clusters of orthologous
groups (COGs) [27,28]. COGs provide a consistent clas-
sification of bacterial and eukaryotic species based on
orthologous groups.
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