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Abstract
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Background: Point mutations can have a strong impact on protein stability. A change in stability may subsequently
lead to dysfunction and finally cause diseases. Moreover, protein engineering approaches aim to deliberately modify
protein properties, where stability is a major constraint. In order to support basic research and protein design tasks,
several computational tools for predicting the change in stability upon mutations have been developed. Comparative
studies have shown the usefulness but also limitations of such programs.

Results: We aim to contribute a novel method for predicting changes in stability upon point mutation in proteins
called MAESTRO. MAESTRO is structure based and distinguishes itself from similar approaches in the following points:
(i) MAESTRO implements a multi-agent machine learning system. (ii) It also provides predicted free energy change
(AAG) values and a corresponding prediction confidence estimation. (iii) It provides high throughput scanning for
multi-point mutations where sites and types of mutation can be comprehensively controlled. (iv) Finally, the software
provides a specific mode for the prediction of stabilizing disulfide bonds. The predictive power of MAESTRO for single
point mutations and stabilizing disulfide bonds is comparable to similar methods.

Conclusions: MAESTRO is a versatile tool in the field of stability change prediction upon point mutations.
Executables for the Linux and Windows operating systems are freely available to non-commercial users from http://
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Background

Point mutations can have a strong effect on the thermody-
namic stability of proteins. In consequence, this change in
stability may have an impact on the protein’s function and
subsequently may cause diseases [1]. Deliberately increas-
ing the stability of a protein or keeping it stable while
changing certain other protein properties is often a goal
in biotechnology, e.g. to optimize industrial processes,
or also in drug design or basic research. Experimentally,
directed molecular evolution [2] is a valuable tool for
designing such stable variants. Also rational design may
lead to the desired results. However, wet lab approaches
are costly and time consuming endeavors.
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The need of powerful in-silico methods to predict the
effect of point mutation on the protein stability is obvi-
ous. Therefore, several tools have been developed in
the last two decades. They can roughly be divided into
sequence based and structure based methods, where the
latter implicitly also use sequence information. Sequence
based methods such as MuStab [3] or iPTREE-STAB [4]
usually utilize machine learning approaches such as sup-
port vector machines, neural networks or decision trees.
Their advantage is that no structure is required. How-
ever, their performance is rather limited. I-mutant2.0 [5]
and MUpro [6] operate sequence based in principle but
can include structural information if available. Struc-
ture based tools AUTO-MUTE (7], CUPSAT [8], Dmu-
tant [9], FoldX [10], Eris [11], PoPMuSiC [12], SDM [13]
or mCSM [14] usually perform better than the sequence
based counterparts. Recently, SDM and mCSM have been
integrated into a new method called DUET [15], which
further improves the predictive power compared to the
single methods. Stability prediction methods can also
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be divided into classifiers, which predict if a mutation
is stabilizing or destabilizing, or into AAG predictors
which aim to quantify the extent of the (de)stabilization.
The performance of different predictors regarding clas-
sification and AAG values was investigated by Khan
and Vihinen [16] and Potapov et al. [17] respectively.
The authors of both studies indicate that the methods
are useful but also that there is still room for improve-
ments.

Structure based methods require a 3d structure of the
wild type protein in order to perform the prediction,
which poses a major restriction in their applicability.
However, Gonnelli et al. [18] applied the PoPMuSiC pre-
dictor to a series of models of different degree of accu-
racy. They have shown, that even models built on remote
homologs can be used as input for PoPMuSiC with-
out a substantial loss of predictive power. The wild type
structure does not necessarily need to be experimentally
resolved.

The goal of our study was to improve the accuracy,
robustness and range of applicability of change in sta-
bility predictions in the structure based AAG delivering
method category. For this purpose we (i) implemented sta-
tistical scoring functions (SSF, also known as statistical
energy function, SEF) as the main prediction compo-
nent, (ii) defined an ensemble prediction strategy employ-
ing various concepts from the field of machine learning,
(iii) assembled a clean training data set from ProTherm
database [19], (iv) tested and validated our method on the
basis of this data and other widely used data sets, and (v)
compiled an easy to use standalone program which pro-
vides different kind of mutation experiments on single
chains and protein complexes.

Below we describe the SSFs and the particular param-
eters optimized for the application in stability predic-
tion and we report the performance of a pure SSF
based approach. To further improve the predictive power

Page20of 13

we combine multiple linear regression (MLR), a neural
network approach (NN) and a support vector machine
(SVM) to a multi-agent method. This allows to incorpo-
rate additional sequence and structure information such
as protein size or solvent accessibility, which proofed to be
useful by several authors [5,12]. Technically, our approach
integrates the concept of ensemble predictors [20] and
multi-agent systems. We name the different prediction
components agents. Derived from the different agent pre-
dictions, our method delivers a confidence estimation for
each change in stability prediction. The performance of
MAESTRO is compared to PoPMuSiC and mCSM, our
main competitor methods.

In terms of applicability MAESTRO facilitates the inves-
tigation of particular chains or biological assemblies as
provided by PDB and the analysis of a whole NMR ensem-
ble in a single run. An easy to use mutation selection
syntax allows to specify mutation sites by amino acid
types, positions or solvent accessibility and the replace-
ment residue by amino acid type. We added a brute force
method, a greedy method and an evolutionary algorithm
based method to search for multiple point mutations. The
MAESTRO software is available as executable for Linux
and Windows.

Methods

MAESTRO is a multi-agent prediction system, based on
statistical scoring functions (SSFs) and different machine
learning approaches. First, we discuss the input values and
the design of MAESTRO, followed by a description of
the training strategies and data sets used for this work.
A scheme of MAESTRO’s components and data flow is
shown in Figure 1.

Input values
For all agents nine input values have been used. They
divide into two classes: (i) statistical scoring functions and
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Figure 1 Scheme of MAESTRO's main components and data flow.
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(ii) protein properties such as size or environment at the
mutation site.

Statistical scoring functions
We implemented two types of statistical scoring func-
tions, also known as knowledge-based potentials or
potentials of mean force. The first type are distance-
dependent residue pair SSFs (pSSFs) as described by
Sippl [21,22]. Here, C*-C% and C#-CP SSFs are consid-
ered. The second type of SSFs capture the solvent expo-
sure of protein residues (cSSFs), by scoring the contacts
of C* atoms within a defined radius around each residue
represented by its C* atom [22].

To comply with the terminology of earlier publica-
tions [22] we call the contribution of a certain pair inter-
action an energy, defined as:

Sab (d) )
p(d)

where 8,;(d) is, e.g. in case of pSSFs, the relative fre-
quency for the observed distance d for a certain pair (a4, b)
of amino acids, and p(d) is the relative frequency in the
reference distribution.

The contact SSF is defined as:

E2(c) = —In (5“(c)> @)
p(c)

where a denotes a certain type of amino acid, ¢ denotes
the number of C* atoms within the contact radius, §,(c)
is the relative frequency of ¢ for amino acid @ and p(c) is
the relative frequency in the reference distribution. The
reference distribution p in equations (1) and (2) is the sum
over all single distributions §,;(d) and §,(c) respectively.

For a certain protein, the E?, (d) values for all interac-
tions are summed up to the total Energy E. In order to
use E to compare different sequences in one conforma-
tional state, which is the case when we introduce point
mutations, E needs to be normalized with respect to a
background model [21,23]. The same holds true for all
different pSSFs and cSSFs.

First, an expected value E?, for each observed energy
EY, has to be calculated. Here, E?, is defined as the aver-
age energy that would be reached in the before mentioned
set of known structures and for the given interaction type
(a,b). Let f(d) be the frequency of all observed distances
d between the representative atoms. Then, the expected
value is:

O ) "
“ Yaf (@)

Similar, the expected value for the contact energy E for

a certain amino acid « is then:

Fe_ X (Ea(0)f (©))
“ XS

E°,(d) = —In ( )

(4)
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where ¢ is the number of contacts and f(¢) is the distribu-
tion of all observed contacts.

Among the statistics suitable for detecting shifts of the
mean of distributions, the statistic given in equation (6)
used in the Wilcoxon-Mann-Whitney-Test (U-Test, for
short) is well-known for its power in case of heavy-tailed
distributions [24]. Calculating p-values would rely on
additional assumptions on the data and is not applicable
here. Instead, we only use the statistic as a discrimina-
tive score for the deviation of means. Among several
alternatives, the score function (6) performed best in our
empirical tests. Therefore, we first rank the union of both
sets of energies Ezh and EZb' Then, the rank sum W of the
n observed energies as well as the expected rank mean
and standard deviation oy

_n@n+1) _ 2 (2n+1) 5)
T ow = 12

are used to calculate a z-score like quantity:

W — puw
S =
ow

(6)

The score is computed independently for the two pSSFs
(Ce-c*, CB-CP) and the cSSF. The three scores (SpsSEas
SpSSF» ScssF) act as the first three input values for the pre-
diction agents. In addition the combined score s., based
on the three scores, can be used as alternative stabil-
ity change predictor. For this purpose we use Stouffer’s
z-score method:

o = SpSSFa + SpSSFB + ScSSF
.=
V3

Protein properties

The SSFs are complemented by a selection of global and
local protein properties. As global property we use the
size of the protein. The local environment at the muta-
tion site is described by the secondary structure state and
the accessible surface area (ASA). The secondary struc-
ture assignment is performed with a refined version of
the SABA [25] algorithm. The ASA computation resem-
bles an adaption of the Geometry library algorithm [26].
The substitution is described by the change in mass,
hydrophilicity and isoelectric point. In sum, protein size,
secondary structure state and ASA together with Amass,
Ahydrophilicity and Aisoelectric point are the remaining
six input values for the prediction agents.

7)

Prediction agents
MAESTRO includes prediction agents on the basis of
two different machine learning approaches, namely artifi-
cial neural networks (ANN) and support vector machines
(SVM), and also on multiple linear regression (MLR).

The ANN agents use OpenNN [27], an open source
C++ library. In order to improve generalization, a set of
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ANNEs is utilized rather than a single one. An individual
ANN consists of an input layer with nine nodes, one hid-
den layer and an output layer with a single node. The
number of nodes in the hidden layer is optimized dur-
ing training. Each ANN in this set is trained on different
data. Details are explained below in section “Agent train-
ing” In the prediction phase, their outputs are averaged.
The SVM agents employ libSVM [28] and use an €-SVR
with a Gaussian kernel. The prediction parameters for
the multiple linear regression agents are computed using
the MLR implementation provided by the GNU Scientific
Library [29].

In addition to their underlying prediction method, the
agents differ on their specialization. We distinguish gen-
eral agents with no specialization and agents specialized
on substitutions which stabilize or destabilize a protein
respectively. The latter ones are trained on either stabi-
lizing or destabilizing mutations. During prediction, the
general agents first predict if a mutation is stabilizing or
destabilizing. Subsequently, the corresponding specialists
are utilized. A flowchart of this process is provided in sup-
plementary Figure S1 in Additional file 1. There, we also
report data on the impact of the specialized agents. Over-
all, MAESTRO employs seven agents (three ANN agents,
three SVM agents and one MLR agent). All seven agents
are used in all experiments reported below in the same
way for all proteins and all types of mutations.

Prediction consensus and confidence estimation
MAESTRO performs a prediction in three main steps: (i)
the computation of the SSF based score and the other
input values, (ii) the prediction by the agents, and (iii)
finally, the calculation of a consensus prediction and a
corresponding confidence score.

Between the steps (ii) and (iii) outlier values of dis-
tinct agent predictions are removed iteratively. In each
iteration the prediction value which differs most from
the mean u, of the other predictions is removed, if the
difference is larger than two standard deviations. This
procedure is repeated as long as an outlier can be found
or only two prediction values are left. The remaining
agent values are then averaged for the final prediction
value.

During the performance tests, we observed that the
standard deviation of the agents predictions o, correlates
with the prediction error. Therefore we implemented an
ad hoc solution, based on o, to provide a confidence esti-
mation (not to be confused with a confidence interval
in the statistical sense) for MAESTRO’s AAG predic-
tions. For an easy interpretation of this measure we relate
o, to a cutoff 0,,,,. The cutoff is defined as four times
the standard deviation of the experimental determined
AAG values in the training sets. A normalized confidence
estimation c¢yyq is the calculated as:
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if 0, > Oax

0
Cpred = { 1- (&> if 0y < Omax ®)
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The confidence estimation is numerically confined to
values between 0.0 and 1.0, where 1.0 corresponds to a
perfect consensus of all agents. As shown in the results,
Cprea Provides a sound estimation of the prediction accu-
racy.

Agent training

All agents are trained independently from each other, but
on the same input data set. As the agent relying on lin-
ear regressions does not depend on a special strategy, only
the training strategies for the ANN and SVM agents are
explained bellow.

ANN agents

An ANN agent utilizes a set of ANNs to perform its pre-
dictions. Each of these ANN:Ss is trained on a subset of the
input data set. For this, the training set is partitioned into
ten subsets. Following a 10-fold cross validation, one of
these subsets is used as generalization set, one is used as
test set, and the remaining eight subsets are used for train-
ing. The best performing ANNs obtained during cross
validation are finally utilized for the predictions. This
reduces the risk of overfitting while no training data are
being wasted.

When comparing the performance of MAESTRO to the
competitor methods, the k-fold cross validation is adapted
as follows: The test set is fixed in a certain fold for the
whole set of ANNs and the training is performed with
randomly selected generalization sets. This ensures a fair
comparison.

SVM agents

In case of SVM agents, a 10-fold cross validation is per-
formed to optimize the parameters gamma and cost, using
the build-in functions of the 1ibSVM library. Finally, the
SVMs were trained on the whole training set. In case of
k-fold cross validation experiments, the data correspond-
ing to the current fold are excluded from the parameter
optimization as well as from the training.

Data sets

We distinguish data sets for (i) the SSF compilation, (ii) the
stability change prediction, and (iii) the disulfide bridge
prediction. An overview of the validation tests is given in
Table 1.

Statistical scoring functions compilation

For SSF compilation, a predefined list of PDB struc-
ture provided by PISCES service [30] was used. The set
includes only structures with a resolution of 1.8 4 or bet-
ter, an R-factor of 0.25 or better and a sequence identity
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Table 1 Overview of the validation data sets used in this work

Data set Size Prediction Validation Source/Ref.
SP1 2648 mutations AAG 5-fold cross validation [12]

SP2 350 mutations AAG Performance test [12]

SP3 1925 mutations AAG 20-fold cross validation [5,7]

SP4 1765 mutations AAG 10-fold cross validation ProTherm
MP 479 multi-point mutations AAG 10-fold cross validation ProTherm
SS1 75 disulfide bonds S-S bond Performance test [32]

SS2 15 engineered disulfide bonds S-S bond Performance test (32]

of less than 25%. We excluded the following structures:
(i) structures with incomplete backbones, (ii) structures
found via a PDB search with the keywords virus or mem-
brane, and (iii) structures with sequence similarity to
proteins in the machine learning training or test sets (see
Table 1) as inferred by BLAST (E-Values cutoff 10.0). The
final set consists of 1302 monomeric and 1812 multimeric
protein structures.

Stability change prediction

Five different data sets (SP1, SP2, SP3, SP4, and MP) were
chosen for the stability change prediction experiments. All
data sets are derived from the ProTherm database [31],
which provides experimental thermodynamic parameters
of protein stability, including the change in Gibbs free
energy (AAG) upon mutations.

The first set (SP1) published by Dehouck et al. [12],
provides AAG values for a set of 2648 single point muta-
tions in 131 globular proteins. The set is limited to values
of mutations that destabilize the structures less than 5
kcal/mol. The set contains measurements for various pH
values and temperatures, but with a preference to pH
values close to 7 and temperatures close to 25°C. In accor-
dance with previous studies of Dehouck et al. [12], Worth
et al. [13] and Pires et al. [14], we used a subset (SP2)
of 350 point mutants for comparisons with other meth-
ods, where the remaining 2298 point mutants were used
as training set. A 5-fold cross validation experiment was
performed with the whole SP1 set.

The SP3 set published by Masso et al. [7] is a set of 1925
stability change measurements in 55 different proteins. It
is based on a set published by Capriotti et al. [5]. In con-
trast to the SP1 set, it contains multiple AAG values for
some mutations. Thus the set contains only 1299 distinct
mutations. As in the studies of Pires et al. [14] and Masso
et al. [7] we used this set for 20-fold cross validation.

We then derived two new data sets (SP4, MP) from the
ProTherm database. In total the sets provide 2244 distinct
mutations and the corresponding change in free energy
of unfolding in water (AAGgo). The SP4 set consists
of 1765 single point mutants, while the MP set provides
479 mutants with multiple mutations. Both sets were
restricted to entries with a pH value between 5.5 and 8.5.

In cases where ProTherm provides multiple AAG values
for a certain mutation we chose the entry experiment con-
ditions closer to 25°C and a pH of 7. In case of entries
with equal conditions, we chose the median value or in
case of two entries the older one. We carefully checked
all entries in the two data sets by consulting the original
articles and corrected or removed erroneous data. Data
sets SP4 and MP are listed in Additional files 2 and 3
respectively.

Disulfide bridge prediction

Two recently published data sets [32] were used to investi-
gate the power of the disulfide bridge prediction. The first
set, SS1, includes 75 single chain X-ray structures with
a resolution of 1.54 or higher. Furthermore, each of the
structures contains exactly one disulfide bridge. For the
prediction experiments the cysteine residues responsible
for the disulfide bonds were exchanged to alanine by sim-
ply keeping the main chain and C# coordinates, removing
the §¥ and changing the residue type to ALA in the PDB
file. We then relax the structures in a similar way as Salam
and coworkers. We therefore added missing loops with
MODELLER [33]. Subsequently, we performed an energy
minimization using UCSF Chimera [34] with 5000 steps
steepest descent and 1000 steps conjugate gradient. The
second set, SS2, provides 13 proteins with 15 engineered
disulfide bonds and represents a subset of the 24 proteins
published by Dani et al. [35].

Mutation scan

Besides the change in stability prediction of given point
mutations, MAESTRO provides a scan mode for the most
stabilizing or destabilizing combination of point muta-
tions. Three different algorithms are implemented for this
task: (i) an optimal search, (ii) a greedy search, and (iii) an
evolutionary algorithm. For all three algorithms mutation
constraints, like the allowed substitutions or the number
of mutation points, can be defined.

In case of an optimal search, all possible combinations
of point mutations, which fit the given constraints, are
calculated. This approach guarantees optimal results, but
it is possibly very time-consuming, depending on the size
of the protein and the given constraints.
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The second algorithm, greedy search, is an iterative
approach, where in each iteration a mutant is extended by
the most stabilizing or destabilizing point mutation. This
algorithm is fast, but cannot guarantee an optimal search
result.

The evolutionary algorithm (EA) is implemented as
a multi-population system with fitness driven parent
selection, crossing over, point mutations and migration
between the populations. The parameters mutation rate,
migration rate and population size have been optimized.

Disulfide bond scan

The disulfide bond scan is similar to the optimal mutation
scan. First, all residue pairs with a CP-CP distance within
5 A are considered as potential binding partners. Then all
possible pairs are subsequently mutated to cysteine and
the mutants are rated by a score called Sg. This score
includes three components, the predicted stability change
AAG and two penalties which describe the geometric
setup in the site considered for mutation.

The penalties are calculated from a distance distribution
analysis of C* and C# atoms of disulfide bonded cysteines
in 20711 PDB structures. The data set is derived from the
PISCES service [30] and includes structures with a resolu-
tion of 2.5 A or better and a sequence identity of less than
60%. The first penalty is Pg = 1 — f(dcpcs), where f(d) is
the relative frequency of the occurrence of a certain C#-
CP distance. The second penalty Pyg = 1 — fldcece —
dcpcp) describes the differences between the C*-C% and
CP-CP distances respectively. For the final disulfide bond
score Sg, the predicted values for AAG, Pg and Pyg are
transformed to their respective z-scores for all potential
binding partners:

ZANG *+ Zpy + Zp,,

NG

The potential binding partners are ranked by Sg.

Sgs = )
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Results and discussion

We conducted a series of experiments to test the perfor-
mance of MAESTRO and to compare it with other state
of the art methods. First, we show the predictive power
of our approach on protein stability data and we analyze
the influence of the three types of predictions agents on
the consensus prediction. We then explore the pros and
cons of the three different mutation scan methods. Finally,
we assess the adequacy on the prediction of disulfide
bonds.

In addition to the AAG prediction, MAESTRO pro-
vides a AScore value, based on the SSFs described before.
Below, results labeled with MAESTRO-Score correspond
to the AScore values, while results labeled with MAE-
STRO correspond to the AAG predictions.

The meaning of the sign of a AAG varies from data set
to data set. We defined negative AAG as an increase in
the stability of a protein, while positive values indicates a
destabilization. For the following analyses we adapted all
data sets to this definition.

Stability change prediction upon mutations

Five different stability data sets were used (see Table 1).
Four of these sets provide data on single point mutations
(SP1, SP2, SP3, and SP4). The MP set provides data on
multi-point mutations. Detailed per mutation results are
listed in Additional file 4.

Single point mutations

We first compare the performance based on the largest
data set (SP1) and the associated subset (SP2). In the first
experiment, a 5-fold cross validation on the SP1 set was
performed. MAESTRO achieved a Pearson’s correlation
coefficient of p = 0.68 with standard error of o = 1.10
kcal/mol (see Figure 2), compared with a correlation of
p = 0.69 with ¢ = 1.06 reported by Pires et al. [14] and
p = 0.63 with 0 = 1.15 reported by Dehouck et al. [12].

Stability Change Prediction (SP1)

P
6=1.1 (Kcal/mol)

Predicted AAG

Predicted AAG

-6 12

0 6
Experimental AAG

Figure 2 Correlation with experimental data. Regression results for MAESTRO on the single mutation data sets SP1 (left) and SP3 (right).

Stabiltiy Change Prediction (SP3)

12

0 6
Experimental AAG
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Several authors use the SP2 subset of 350 Mutants to
compare their method for stability change prediction.
Thus we also performed a benchmark on SP2 and trained
MAESTRO on the remaining 2298 mutations in the SP1
set. It has to be noted that some of methods failed to
compute some mutations, resulting in a subset of 309
predictions in common. Additionally, mutations with a
high impact on the protein stability are frequently of
special interest. Therefore, a second subset of SP2 con-
sisting of mutations with [AAG| > 2 kcal/mol is also
considered. Results are shown in Table 2. In summary,
MAESTRO yields a better correlation than most of the
competitors. Besides the good results of our AAG pre-
diction, also the AScores provide a reasonable perfor-
mance, which is even more remarkable since the underly-
ing SSFs are not specifically trained on a certain SP data
set.

We performed a 20-fold cross validation experiment on
the third widely used data set SP3. MAESTRO achieved
a p = 0.84 with 0 = 1.03 on this set (see Figure 2). In
comparison to p = 0.79 with ¢ = 1.10 reported by Masso
et al. [7] and p = 0.82 with ¢ = 1.00 reported by Pires
etal. [14].

As mentioned before, we introduced a new data set on
single point mutations (SP4). In a 10-fold cross valida-
tion experiment, MAESTRO achieved a p = 0.68 with
o = 1.31 on this set. Therewith the results on this set are
similar to the results on the other single point sets.

In addition to the regression experiments, we performed
classification tests. MAESTRO achieved an accuracy of
0.82 on the SP1 set, an accuracy of 0.84 on the SP3 set and
an accuracy of 0.83 on the new SP4 set. ROC curves and
AUC values for the data sets SP1 and SP3 are provided
in Figure 3. Detailed results and a comparison with other
methods are shown in Table S1 (Additional file 1).

Table 2 Performance comparison using the SP2 set
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Similar to the work of Pires et al. [14] we performed sev-
eral blind tests to investigate the generalization qualities
of our approach, when (i) a certain mutation site, (ii) a cer-
tain wild type amino acid, (iii) a certain exchange amino
acid type and (iv) a certain protein is never used in the
training.

A comparison with the method mCSM on the cases (i)
and (iv) is given in Table 3. In both cases the loss in the
prediction power is considerably smaller than reported by
Pires et al. [14]. Further results are given in Tables S2,
S3 and S4 (Additional file 1). In all tests for case (i), (ii)
and (iii) the performance decreases marginally. Only case
(iv) shows a notable performance decrease, indicating that
there is some overfitting in terms of structural features. In
sum, on all single point mutation data sets, MAESTRO is
competitive to the leading prediction services.

Multi-point mutations

To our knowledge, none of the competitive services listed
in Table 2 provides a stability change prediction on multi-
point mutations. Tian et al. [36] report the prediction
software Prethermut for multi-point mutations, as well as
a training set derived from the ProTherm database and
results for a 10-fold cross validation experiment on that
set. From our point of view, this training set has some
serious quality issues: First, the authors did not check the
data derived from the ProTherm database for erroneous
inputs, as recommended at the ProTherm website. We
checked the top ten stabilizing and the top ten destabiliz-
ing mutations as well as a random sample of 100 mutants
of the data set. In these samples we found eight entries
which are listed with wrong sign for AAG. In the worst
case the difference between AAG in the data set and the
published AAG is 27.4 (see Table S10, Additional file 1).
Second, the authors did not strictly follow their own rules

Method #Predictions®

Pearson’s pP o (kcal/mol)®

AUTOMUTE 315
CUPSAT 346
Dmutant 350
Eris 334
[-Mutant-2.0 346
PopMUSIC-2.0 350
SDM 350
mCSM 350
MAESTRO-Score 350
MAESTRO 350

0.46/0.45/0.45 1.43/1.46/1.99
0.37/0.35/0.50 1.91/1.96/2.14
0.48/0.47/0.57 1.81/1.87/2.31
0.35/0.34/0.49 4.12/4.28/3.91
0.29/0.27/0.27 1.65/1.69/2.39
0.67/0.67/0.71 1.16/1.19/1.67
0.52/0.53/0.63 1.80/1.81/2.11
0.73/0.74/0.82 1.08/1.10/1.48
0.56/0.57/0.68 —/=/—=

0.70/0.69/0.76 1.13/1.17/1.67

Results except for MAESTRO are taken from Dehouck et al. [12] and Pires et al. [14] respectively. @The test set contains 350 entries, however several methods failed to
compute the AAG prediction for some mutants, resulting in a reduced number of predictions. In these cases AAG was set to 0.0 kcal/mol for calculating the correlation
coefficient. PThree values are given for Pearson'’s p as well as for the associated standard errors. They correspond (i) to the whole validation set, (i) the subset of 309
mutants for which all methods provide a result, and (iii) the subset of 87 mutants with an experimental AAG > 2 kcal/mol or AAG < 2 kcal/mol respectively.
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True Positive Rate (Sensitivity)

95%Cl 0.97 - 0.

=0.73 (95%Cl 0.74' - 0.72
—MAESTRO-Score SP3: AUC=0.72 (95%CI 0.73 - 0.71
0.00 0.25 0.50 075 1.00

False Positive Rate (1-Specificity)

95%Cl 0.85 - 0.84;
90

Figure 3 Binary classification. Classification performance of
MAESTRO-Score and MAESTRO on the data sets SP1 and SP2. The
data are derived from n-fold cross validation experiments.

they described for treating multiple ProTherm entries for
the same mutation. Therefore, no objective comparison
with Prethermut could be performed.

We assessed the performance of MAESTRO on our own
sets in two 10-fold cross validation experiments. In the
first experiment we joined the SP4 and MP set, to test how
well MAESTRO performs on multi-point mutations, if it
is trained on a mixed set of single and multi-point muta-
tions. In this experiment our method achieved a Pearson’s
correlation coefficient of o = 0.71 with a standard error
of 0 = 1.52 for multi-point mutations, and a p = 0.69
with 0 = 1.36 on the whole mixed set. In the second
experiment we performed the 10-fold cross validation on
the MP set, which only includes multi-point mutations.
Here, MAESTRO achieves a p = 0.77 with 0 = 1.41
for multi-point mutations. In Table 4 the performance on

Table 3 Performance comparison on blind tests
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different numbers of mutations is shown. While the cor-
relation increases significantly, the classification accuracy
on the MP set increases only slightly from 0.89 to 0.90, in
case of a separated training.

These results indicate, that the prediction power can
be improved if the training is performed on separated
data sets for single point and multi-point mutants respec-
tively. Overall, the predictive power on multi-point muta-
tions is slightly better than on single point mutations.
This outcome implies that MAESTRO can be used to
scan a protein for multi-point (de)stabilizing mutants
per se.

Mutation scan

We use the term n-point mutation below to indicate the
final number of sites where a substitution was introduced.
The number of allowed sites exposed to mutations a is
either simply the sequence length or a subset of residues.
For the purpose of scanning for n-point mutation three
methods were implemented, an optimal search, a greedy
search and an evolutionary algorithm (EA).

As the number of combinations is growing exponen-
tially with the number of allowed sites, the optimal search
is potentially very time consuming. Thus experiments
with the optimal search were limited to 3-point mutations
and a < 30. This results in a maximum of 2.8-107 combi-
nations. The other methods were also tested with a larger
number of allowed sites. For the test set we randomly
selected eight protein structures of any size and two struc-
tures with exactly 30 residues from the PDB database.
Additional selection criteria were: (i) The structure was
resolved by X-ray with a resolution of 24 or better. (ii) The
structure may not contain DNA or RNA. (iii) Virus and
membrane proteins were excluded.

In case of a small number of allowed mutation sites
(a < 30), the EA search was able to find the optimal result
in all test cases, the greedy search failed in two cases.
Further experiments with the greedy and EA search were
performed, without restrictions in the allowed mutation
sites and n = 3, 5, or 10. In these experiments the EA

Method Data set Validation Pearson’s p o (kcal/mol)
mCSM@ SP1 5-fold Position® 0.54 123
MAESTRO SP1 5-fold Position® 067 1.12
mCSMm? SP1 5-fold Protein® 0.51 1.26
MAESTRO SP1 5-fold Proteind 063 117
mCSM? SP1351¢ Blind Position 067 119
DUETP SP1351¢ Blind Position 071 113
MAESTRO SP1351¢ Blind Position 0.71 1.16

2Results derived from Pires et al. [14], supplementary material. ®Results derived from Pires et al. [15]. 5-fold cross validation on position level. All mutations of a
certain mutation site are either in the test or training set. 95-fold cross validation on protein level. All mutations of a certain protein are either in the test or training set.
€Blind test on a subset of the SP1 data set, provided by Pires et al. [14]. The set includes 351 mutants, whose positions are not in the remaining training set.
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Table 4 10-fold cross validation results for our own data sets SP4 (single point) and MP (multi-point), as well on a joined

data set which include the mutations of SP4 and MP

Number of mutations Number of entries SP4 set MP set Joined set
o o o o o o

1 1765 0.68 131 0.68 132
> 1 479 0.77 141 0.71 152
2 285 0.70 1.56 0.64 1.69
3 109 0.84 1.06 0.80 1.14
>4 85 0.88 1.27 0.84 1.37
> 1 2244 0.69 1.36

search performs better than the greedy search. Detailed
results are shown in Table S9 (Additional file 1).

Confidence estimation
As described before, MAESTRO provides a confidence
estimation for a prediction, which is based on the stan-
dard deviation of the single agent predictions. As shown
in Figure 4, the deviation between experimentally deter-
mined and predicted AAG values and therewith the
standard error decreases with higher confidence values.
Especially in combination with a mutation scan, the
confidence estimation is a simple but effective tool to
assess a prediction.

Prediction agents

The basic idea behind a multi-agent prediction was to
improve the prediction power in relation to a single
machine learning method and on the other hand to limit
the risk of outliers and overfitting. We tested the pre-
diction power of each agent, based on the n-fold cross
validation experiment as well as the performance test
based on the SP2 set, shown before.

We performed ten runs for each data set and report
average, minimum and maximum for correlation coef-
ficient and standard error (Table S5, Additional file 1).
Depending on the data set and the run either the NN
agents or the SVM agents performed better. The MLR
agents performs nearly equally good on each data set,

42
8 . 33
1379
319
6 - 255
. . 1446 data set
- 49 © 29 : - SP1
(<] R . .
= 2217
| :
c 340 . E SP3
kel . ' : 82
T 4- — ' i .
K HE 8 | 1 48 EI SP4
a L o :
N . : E MP
v i
2l .
0 o I
c<0.75 0.75<c <0.85 0.85<c <0.95 0.95<c <1
Estimated Confidence (c)
Figure 4 Confidence estimation and prediction error. Deviation between experimental determined A AG values and the predictions for different
confidence value ranges. The prediction error is defined as the absolute difference between the experimental determined AAG and the predicted
AAG. Data are given for the three main single point mutation sets (SP1, SP3, SP4) as well as the multi-point mutation set (MP). The numbers of
prediction per group are shown at the top. In all cases, the deviation shrinks with higher confidence values.
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except on the MP set. Without the specialized agents, the
performance decreases considerably. In some cases, the
NN or SVM agents alone would even perform better than
the combined AAG prediction. However, the ANN and
SVM have larger variations in p than the combined score
in the different runs. The ranges for p are given in Table S5
in Additional file 1. Overall, by integrating various predic-
tors the method gains robustness compared to the single
agents.

Utilizing the three different methods, ANN, SVM and
MLR in combination also increases the efficiency of
the confidence estimation. We performed an experiment
using an ensemble of seven ANNSs instead of the seven
MAESTRO agents for deriving the confidence estima-
tion. In comparison to MAESTRO results (Figure 4), this
approach exhibits a less pronounced relationship between
high confidence values and correct predictions, as shown
in Figure S2 in Additional file 1.

The final version of MAESTRO was trained on set SP4
and MP. Alternative configurations trained on SP1 and
SP3 are available on our web pages.

Disulfide bond prediction

MAESTRO provides a special mode for the prediction
of suitable disulfide bonds to stabilize a protein struc-
ture. In two experiments we show the performance of our
approach on this task. For both cases, we trained MAE-
STRO on the single point data sets (SP1, SP3, and SP4).
The best performance was obtained with set SP3. The cor-
responding results are reported below and in Additional
file 1.

The first experiment was performed on the SS1 set,
where the cysteine pairs in disulfide bonds were mutated
to alanine. The goal in this experiment was to find the
original binding partners out of all possible binding can-
didates. As mentioned before, the set of possible binding
partners include all residue pairs in a structure with a C#-
CP distance within 5 A. We performed the test on both,
the original PDB structures, where only the residue type
was changed from cysteine to alanine while keeping the
coordinates as in the PDB file, and on the relaxed struc-
tures. The relative rank given below is the absolute rank
of the considered native bond divided by the number of
possible binding partners. For the unchanged PDB struc-
tures the average/median relative rank of MAESTRO is
0.08/0.06 compared to 0.06/0.03 of the method of Salam
et al. [32]. The corresponding absolute average/median
ranks for MAESTRO are 7.2/5.0 (Salam et al. [32] does not
provide absolute ranks). In 13 cases MAESTRO ranked
the native bond on top compared to 16 cases of the
method of Salam et al. From the relaxed structures of test
set SS1, in two of the 75 proteins the C#-C# distance of
the mutated cysteines is larger than 5A4. For the remain-
ing 73 proteins, in 25 cases the relative rank decreases, in

Page 10 0of 13

48 it increases. In six cases MAESTRO ranked the native
bond on top. The relative average/median rank increases
to 0.13/0.08 (absolute rank: 13.5/8). The major reason for
the increase is that after loop modelling and minimization
additional alternative positions with a C#-C# within the
cutoff 54 appear. The scores and geometric penalties for
the native cysteine pair positions are to an almost equal
amount better or worse in the relaxed structures. Detailed
results are provided in Table S7 (Additional file 1). When
comparing our results to those of Salam et al. it has to be
considered, that Salam et al. used this set in a cross val-
idation experiment. In contrast, for MAESTRO these 75
proteins where not included the training data.

Energy minimization after introducing the cysteine to
alanine mutation allows the structures to relax towards
a conformation which is not constrained by the disul-
fide bridge. To which extend these models resemble the
native fold is debatable. Moreover, it is unclear whether
these proteins can adopt a stable fold without the disulfide
bonds.

The second experiment was performed on the SS2 set
comprising 13 proteins without disulfide bonds in the
wild type, where variants with stabilizing disulfide bonds
have been engineered. As shown in Table 5, our method
reaches an average/median relative rank of 0.20/0.16,
whereas Salam et al. [32] reported an average/median
rank of 0.31/0.23 for this task. The corresponding absolute
average/median ranks are 24/11 and 31/19 respectively. In
addition, we evaluated the SS-bond scoring components
separately, AAG only, score only and geometrics penalty
only. For AAG the average/median ranks increase to
0.32/0.30 (absolute 35/30), for the score only to 0.38/0.32
(absolute 42/40) and for the geometric penalty only to
0.29/0.23 (absolute 35/17). Adding the geometric penalty
to the AAG and energy based score respectively improves
the performance considerably. Interestingly, the geomet-
ric penalty alone performs as good as the method of Salam
etal. [32].

These experiments on SS2 resemble the real application
of the predictor, to provide a list of potentially stabilizing
SS-bonds for a given protein of known structure. How-
ever, disulfide bonds introduced on other positions might
result in as good or even better stability. It would be cer-
tainly interesting to have experimental data on the top
ranking prediction for each of the test proteins.

MAESTRO provides competitive results on this pre-
diction task. In opposite to Salam et al., our method is
not specially trained on disulfide bond data. Therewith,
MAESTRO cannot possibly overfit on this task. Further,
MAESTRO performs no minimization or other manipula-
tion of the structure for its prediction but simply operates
on the plain PDB file. No third party software is required
and the run time is just in the order of a few seconds
to minutes. In the experiments on the data sets SS1 and
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Table 5 Prediction of disulfide bonds in 15 structures with known engineered disulfide bonds

PDBID Mutation? MAESTRO MAESTRO-Score Salam et al.
Abs.Rank Rel.Rank Abs.Rank Rel.Rank Abs.Rank Rel.Rank

1FG9 Glu7:A-Ser69:A 1 0.04 0 0.00 15 0.71
1LMB Tyr88:3-Tyr88:4 10 0.20 9 0.18 32 048
TRNB Ala43-Ser80 2 0.03 9 0.14 3 0.07
TRNB Ser85-His102 33 0.52 40 0.63 0 0.00
1SNO Gly79-Asn118 3 0.04 4 0.05 22 0.34
TXNB Ser100-Asn148 1 0.01 13 0.10 8 0.08
2CBA Leu60-Ser173 66 0.45 68 046 55 047
2CI12 Thr22-Val82 5 0.18 4 0.14 0 0.00
2LZM lle9-Leu164 31 044 38 0.54 13 0.21
2RN2 Cys13-Asn44 14 0.16 21 0.24 25 0.33
2ST1 Thr22-Ser87 37 0.16 30 0.13 44 0.23
3GLY Asn20-Ala27 104 0.39 163 0.62 187 0.82
3GLY Thr246-Cys320 35 0.13 34 0.13 19 0.08
4DFR Pro39-Cys85 1 0.10 1 0.10 16 0.13
9RAT Ala4-Val118 8 0.15 10 0.19 25 0.68
Average 24 0.20 30 024 31 0.31
Median 1 0.16 13 0.14 19 0.23

Abs.Rank: absolute rank, Rel.Rank: relative rank. 2The letter or digit after the colon denotes the chain(s) used in case of multi-chain PDB entries.

SS2, the average run time per structure was about 3
seconds, but not longer than 25 seconds, on a standard
desktop PC.

Conclusions

MAESTRO is a freely available versatile tool in the field
of stability change prediction upon point mutations. The
performance is comparable to mCSM, our main competi-
tor method. MAESTRO offers additional features, which
extends its range of applicability compared to other meth-
ods. First, it performs predictions on multi-point muta-
tions. Second, it allows massive scans for stabilizing and
destabilizing mutants under given restrictions such as
amino acid types or solvent accessibility. Third, it utilizes
a special mode for stabilizing disulfide bond prediction.
The performance thereof is comparable to the recently
published method of Salam and coworkers.

Like all structure based prediction methods MAE-
STRO’s applicability is limited by the availability of a
reliable 3d structure. Luckily, the PDB database increases
rapidly in size delivering more and more suitable input.
For the competitor method PoPMuSiC it has been shown
that also structures created by comparative modeling can
be sufficient for stability prediction [18]. To which extent
this is also true for MAESTRO is still an open question
and shall be investigated in a future study.

A second limitation of MAESTRO, as of all machine
learning approaches, is the limited amount of experimen-
tal data for training and validation. ProTherm provides a
relatively large data set with some caveats which can be
resolved by a careful selection protocol. However, many
data are derived from a few model proteins which are
often used for biochemical and biophysical investigations.
Thus, the content of ProTherm may not be considered as
representative, and in comparison to PDB, ProTherm is
growing rather slow. This last point is possibly also the
reason for the observed overfitting on the wild type struc-
ture. If a certain protein was not present in the training at
all, the average performance decreased.

All leading methods reach correlation coefficients
between 0.7 and 0.8 on the different data sets. One can
speculate that currently there is not more (precise) infor-
mation in the training data which can be pulled out
by machine learning approaches. A solely energy based
approach may help to overcome this problem. It is cer-
tainly desirable to develop better energetic models.

Especially for the disulfide bond prediction but also to
some extent for the single point mutation we observed
some complementarity between different methods. So
probably a meta method might further improve the pre-
diction accuracy. At least, for users of stability prediction
software it is recommended to consult different services
to gain confidence.
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