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Abstract

Background: The interpretation of the results from genome-scale experiments is a challenging and important
problem in contemporary biomedical research. Biological networks that integrate experimental results with existing
knowledge from biomedical databases and published literature can provide a rich resource and powerful basis for
hypothesizing about mechanistic explanations for observed gene-phenotype relationships. However, the size and
density of such networks often impede their efficient exploration and understanding.

Results: We introduce a visual analytics approach that integrates interactive filtering of dense networks based on
degree-of-interest functions with attribute-based layouts of the resulting subnetworks. The comparison of multiple
subnetworks representing different analysis facets is facilitated through an interactive super-network that integrates
brushing-and-linking techniques for highlighting components across networks. An implementation is freely available
as a Cytoscape app.

Conclusions: We demonstrate the utility of our approach through two case studies using a dataset that combines
clinical data with high-throughput data for studying the effect of β-blocker treatment on heart failure patients.
Furthermore, we discuss our team-based iterative design and development process as well as the limitations and
generalizability of our approach.
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Background
The interpretation of the results from genome-scale
experiments is a challenging and important problem in
contemporary biomedical research. The main purpose of
interrogating experimental systems at genomic scale is to
identify previously unsuspected entities and mechanisms
underlying important biological phenomena. Often, such
experiments identify hundreds or even thousands of
previously unsuspected polymorphisms, gene products,
metabolites, or other entities that play a role in phe-
notypes of interest. Hypothesizing about how and why
the entities identified by experiment are related to the
phenotype is a critical step in taking advantage of genome-
scale technology to gain insights into life and to improve
human health. Understanding and contextualizing results
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involving hundreds of entities can involve finding, inte-
grating, and assimilating information scattered across
potentially dozens of databases and thousands of publica-
tions, arising from many different disciplines and scien-
tific communities.
One approach for analyzing these large and complex

datasets is to create integrated data-knowledge networks
that allow biomedical experts to analyze the results of
an experiment in the context of existing knowledge from
the literature and from databases. A recent article in
the Science Policy Forum on amplifying scientific dis-
covery with artificial intelligence [1] argues that the cur-
rent human bottleneck in scientific discovery could be
reduced by “systems [that] use encoded knowledge of sci-
entific domains and processes in order to assist analysts
with tasks that previously required human knowledge
and reasoning”. The Hanalyzer (high-throughput ana-
lyzer) [2] was one of the first systems to support such a
knowledge-based genome-scale interpretation approach.
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It was designed around biologist end-user needs as
a mechanism for deploying knowledge-based computa-
tional tools to facilitate the analysis of genome-scale
datasets. Hanalyzer has been used to interpret gene
expression mircorarray results in diverse research areas,
including craniofacial development [2], a mouse model
type I diabetes [3], and human heart failure [4].
Integrated data-knowledge networks provide a rich

resource and powerful basis for analyzing genome-scale
data; however, the networks are difficult to explore and
understand since they are overwhelmingly complex. Even
when focusing on pre-specified hypotheses of the under-
lying experiment, the resulting networks often contain
tens of thousands of interactions and relationships. Using
current systems and interfaces, discussed at the end of this
section, it can take months and considerable specialized
expertise to “untangle the hairball” and identify subnet-
works that represent plausible mechanistic explanations
for observed biological phenomena. Through a longitudi-
nal study [5] and collaborations with current users of the
Hanalyzer prototype we identified two major limitations
in the existing analysis workflow: (1) the integrated data-
knowledge networks in Hanalyzer are rigid and difficult to
navigate, and (2) the manual analysis process of the very
dense integrated data-knowledge networks is very slow
and cumbersome.
As our first contribution, we present a set of innovative

approaches using degree-of-interest (DoI) functions to
overcome these limitations; they include DoI-based filter-
ing, graph layout, and a network comparison technique. In
combination, they support the analysis of integrated data-
knowledge networks and help domain experts to discover
new insights and to establish novel hypotheses. The DoI
functions are sensitive to the current state of the knowl-
edge, the particulars of the experiment that generated
the data being analyzed, and to the specific analyst who
explores the data. Our second contribution is the design
and development of the RenoDoI framework, an applica-
tion to untangle (lt. renodare) large and dense networks
using DoI functions, and its integration in the network
visualization framework Cytoscape [6]. We demonstrate
the utility of the RenoDoI framework through two case
studies using a dataset from a clinical trial investigating
different drug treatments for heart failure patients.

Biomedical data and analysis tasks
Our approach supports the analysis of rich biomedical
datasets that can include clinical data, transcriptomic pro-
filing data, and knowledge-based data. Clinical data refers
to tests performed on patients to establish phenotypes and
can also include multiple drug treatment groups. Tran-
scriptomic profiling data refers to the measurement of
gene expression, for example through quantifying mRNA
fragments that encode proteins. Knowledge-based data

refers to existing databases and ontologies with curated
biomedical knowledge as well as the literature. We will
discuss one instance of biomedical data in detail in our
case studies in the Results Section.
We developed RenoDoI through an iterative design

process. Our team consists of visualization experts and
biomedical researchers from the Division of Cardiology
in the CU Medical School. Through this interdisciplinary
work, we were able to develop a deep understanding of
analysis needs and include regular feedback on the succes-
sive prototypes of our tool. Analyzing signaling pathways
and biological function are critical components of our pri-
mary analysis goals. During our iterative design process,
we expanded these goals to more detailed and specific
tasks to answer the following key biological questions.

I: Find genes and gene-gene correlations associated
with phenotype of interest Given the high-dimensional
nature of transcriptomic profiling data, it is often useful
to be able to view candidate genes and gene-gene associ-
ations according to analyst-specified significance thresh-
olds. This task allows for the selection of experimental
data subsets dynamically based on strength association
with specific phenotypes.

II: Identify biological relationships among genes
associated with the phenotype of interest The first step
in developing a general hypothesis to explain patterns of
gene expression associated with the phenotype of interest
is determining whether genes associated with the phe-
notype have shared biological properties. This is accom-
plished by combining knowledge from curated databases
and the biomedical literature with relationships identi-
fied in the experimental data and identifying biological
processes that are represented by statistically significant
genes.

III: Identify genes that overlap between multiple sig-
naling pathways or biological processes that may be
critical for a specific phenotype The large number of
“interesting” candidate genes makes conventional analy-
sis to identify “hub” genes that affect multiple biological
processes in a table-like format challenging. Identification
of critical genes that regulate molecular and phenotypic
changes requires understanding of relationships between
genes that share biological characteristics.

IV: Identify specific gene-gene correlations in exper-
imental data supported by existing knowledge derived
from analyst-specified knowledge sources Elucidating
the mechanism of experimental findings can be challeng-
ing when the nature of the relationships between “inter-
esting” genes is not yet known. In such situations, viewing
combined knowledge and experimental data using n
knowledge sources (e.g., signaling pathways or biological
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functions) can facilitate the development of hypotheses
regarding the primary relationship between interesting
genes.

V: Compare integrated data-knowledge networks
derived using different knowledge sources Single
knowledge sources may be incomplete or limited in scope
(e.g., functional pathways vs. cellular compartments).
Direct comparison of analyst-specified single knowledge
sources similar in scope may help determine the degree
of support for an annotation. Comparison of overlap
between knowledge between sources with complemen-
tary scope may enhance biological understanding of gene-
gene relationships and may help identify novel hypotheses
(e.g., functional pathways and drug target knowledge
sources).
To support an analyst working on these identified tasks

we integrated three analytical elements in one workflow.
As the aforementioned integrated data-knowledge net-
works are not only large but also very dense, it is difficult
to generate meaningful layouts for these node-link dia-
grams. Therefore, RenoDoI first allows analysts to quickly
filter a complex network to a small set of relevant nodes
and edges by combining multiple DoI functions. As a
second analytical step, we developed an interactive lay-
out approach that (semi-)automatically groups and dis-
plays the nodes of the extracted task-specific subnetworks
according to a user-defined subset of node attributes. The
analyst can influence the resulting layout so that it reflects
how she thinks about the specific subnetwork in the con-
text of the given task. As a third analysis step we support
the comparison of multiple extracted subnetworks to help
analysts examining the data in the context of different
knowledge sources or phenotypes of interest.
In the remainder of this section, we first discuss exist-

ing tools and approaches for knowledge-based analyses
and then review the related work on the application of
DoI functions to networks, set system visualization, and
network comparison techniques.

Knowledge-based visual analytics There exist sev-
eral approaches that can facilitate the knowledge-based
analysis of results from genome-scale experiments, how-
ever, only few are based on a human-centered visual
analysis approach. Traditionally, researchers use statisti-
cal approaches to derive a relatively small set of genes
from experimental results, and then attempt to study
these genes through manual collection and integration of
knowledge from various curated databases and the lit-
erature. This approach is slow and labor intensive and,
therefore, only a small set of genes can be analyzed.
Another set of approaches uses a variety of enrich-

ment techniques. They attempt to characterize the func-
tional classes that are overrepresented in a large group of
genes. Huang et al. [7] reviewed 68 enrichment tools and

classified them into three categories: (1) singular enrich-
ment analysis tools that start with a preselected list of
interesting genes and test the enrichment of each anno-
tation term in a linear mode, (2) gene set enrichment
analysis tools that take all genes from a genome-scale
experiment into account without selecting significant
genes, and (3) modular enrichment analysis tools that
include additional network discovery algorithms by con-
sidering term-to-term relationships. Prominent enrich-
ment tools include the web-based applications DAVID [8]
and GOEAST [9], and the Cytoscape PlugIn BiNGO [10].
Their common limitations include that functional annota-
tions are often incomplete or over-focused, among others
as discussed in [7].
Proprietary systems, such as the Ingenuity Pathway

Assistant, are quite expensive and users often do not trust
them since they act like a black box; it is not transpar-
ent what knowledge sources they contain and how the
embedded algorithms work. The eXamine [11] app for
Cytoscape [6] provides an approach for exploring small
modules in biological networks that are annotated with
various knowledge attributes. It uses a visual set-based
approach (discussed in the set system visualization section
below) to guide the analysis process and relies on a human
analyst to explore the data and interpret the results (in
contrast to the previous statistical-based approaches); it is
the system most similar to our approach.
The Hanalyzer system [2] uses integrated data-

knowledge networks as an analysis basis. It starts from
a list of genes that were implicated in an experiment.
Prior knowledge about those genes and their relation-
ships to each other is extracted from 26 different knowl-
edge sources (including pathways from KEGG [12] and
Reactome [13], gene annotations from ontologies such
as GO [14], and disease annotations from GAD [15]),
plus co-occurrence in PubMed abstracts and certain
types of inferred relationships. The knowledge extrac-
tion results are summarized in knowledge networks that
are then superimposed on weighted data networks—
usually gene-gene correlation networks. The Hanalyzer
PlugIn for Cytoscape supports the user investigating asso-
ciated annotations using a nested context menu. Browsing
through all annotations for all elements is a tiresome task
when searching for relevant genes and interactions. Our
new tool RenoDoI works on the same network model as
Hanalyzer but with advanced interaction and visualization
capabilities.
Application of DoI functions to networks The con-

cept of DoI functions is widely used in scientific visu-
alization for focus-and-context techniques [16], such as
space-distortion techniques, or highlighting based on
blurring, opacity, or color. We differentiate between dis-
crete and continuous (fuzzy) DoI functions, where the lat-
ter describe a gradual transition from the subset of interest
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to the rest. In graph drawing, numerous approaches exist
for computing the DoI based on a user-defined focus. The
user typically defines one or more nodes of interest, based
on which the DoI is diffused over a tree [17] or graph
[18,19]: less interesting parts of the tree or graph can be
aggregated [17,18,20] or faded out using logical filtering
[19,20]. In contrast to previous work, we do not derive the
DoI based on the user’s selection since this approach does
not facilitate our type of analysis. For our tasks, the analyst
explores the data with the goal of identifying genes asso-
ciated with a phenotype of interest and hence these genes
are not known beforehand. Furthermore, we use the DoI
functions not only to fade out uninteresting components,
but also to rearrange the interesting components based
on selected annotations. To our knowledge, this type of
DoI approach has not yet been applied to the biologi-
cal domain, and therefore, there exist no systems that are
directly comparable to ours.

Set system visualization. One way to visualize set
associations is to encoded the set memberships in the
node positions. There exist several layout approaches that
use set membership to guide the node placement in the
plane but only few consider overlaps between sets. The
approach by Zhang et al. [21] allows for the overlap of gene
ontology annotations by duplicating nodes annotated to
different sets and hence regions. This approach does
not facilitate the task we want to address—identifying
genes that overlap between multiple annotations (Task
III). eXamine [11] models the set-based annotations, e.g.,
pathway and ontology terms, and relationships of a graph
as a hyper-graph and uses a self-organized map approach
to lay out the node-link diagram and contours surround-
ing the sets. The hybrid approach by Itoh et al. [22]
represents clusters using a meta-graph that is laid out
using a force-directed algorithm, where nodes within the
clusters are positioned on a grid. In comparison to these
approaches, our layout approach is semi-automatic and
leaves the user the opportunity to intervene and adjust the
arrangement of groups and their intersections to match
the user’s mental map. Our approach is also different in
regard to the stability of layouts. eXamine [11] adjusts
the layout every time the selection and contour-based
highlighting of annotations changes. The resulting new
layout is derived from the previous layout to avoid severe
changes in the new layout. This approach guarantees an
optimal layout with respect to a few annotations but it is
not possible to re-create the very same layout for the same
annotations as the layout always depends on the initial
position.
Independent from the layout, overlapping sets of nodes

or elements are commonly represented using overlays
including Euler-like diagrams or bounding isocontours in
general, or region-, line-, or glyph-based overlays [23]. As

we do not have a linear order of elements within each
group and node color is used to convey experimental data
information, line-based and glyph-based approaches are
not suitable for our application. Instead, techniques such
as Euler-like diagrams [24,25], overlapping convex hulls
[26], or bounding isocontours [27] are more suitable.

Network comparison techniques. There are four gen-
eral approaches for visual comparison that can also
be applied to networks [28,29]: juxtaposition (showing
objects side-by-side), superposition (overlaying objects),
combinations of juxtaposition with superposition [30-32],
and the explicit encoding of similarities and differences.
Approaches that use juxtaposition or superposition to
compare networks position nodes at similar relative posi-
tions [33] or even at the same positions derived from
the super-graph [34]. However, the node positions them-
selves do not directly reveal which parts of the com-
bined network belong to which of the initial networks
that should be compared. Therefore, superpositions and
juxtapositions are usually combined with the explicit
encoding of the similarities and/or differences in the net-
works. Color, other visual attributes, or coordinated mul-
tiple views brushing [35] can be used as an encoding
or interaction technique. However, the aforementioned
approaches align biological networks [28,31] or single
pathways [30,32,33,35] without considering the overlap
of different annotations (e.g., pathways) available for the
networks under investigation (Task III).

Methods
To support analysts in working on the analysis tasks
described in the previous section, we have developed
RenoDoI and implemented it as an application in
Cytoscape [6]. We now describe the underlying visu-
alization methods and the implementation of the tool.
RenoDoI integrates four visual analytics aspects:

• the DoI-based filtering of a large integrated
data-knowledge network,

• the extraction and rearrangement of subnetworks
with respect to knowledge-based annotation subsets,

• the comparison of two or more subnetworks,
• and the investigation of the underlying experimental

data in the context of subnetworks.

A typical workflow involving these aspects is illustrated
in Figure 1.

Data model
We designed our approach for integrated data-knowledge
networks. We model such a network G = (V ,E) as
a set of vertices V (here genes) and edges E (here dif-
ferent types of relationships between genes). Each gene
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Figure 1 Schematic overview of our approach. (a) Combination of experimental data with knowledge to generate an integrated data-knowledge
network. (b) Filter subnetworks based on continuous and/or discrete degree-of-interest (DoI) functions. (c) Lay out the subnetworks
semi-automatically based on a user-selected set of interesting annotations. (d) Generate the super network for comparison.

(vi ∈ V ) is associated with some transcriptomic profiling
data, e.g., gene expression levels of different samples from
multiple time points, treatment conditions, and subjects.
Further knowledge about each of the genes vi is derived
from k′ integrated knowledge sources Kk . As discussed in
the previous section on the Hanalyzer approach [2], the
integrated data-knowledge network G is constructed by
combining the data network with the knowledge network.
An edge ej may therefore represent data relationships (e.g,
a statistically significant correlation between expression
levels of the two connected genes), knowledge relation-
ships (e.g., relationships derived from one or more of the
integrated knowledge sources Kk), or both.
Our approach uses two types of DoI functions: contin-

uous and discrete DoI functions. In our application sce-
narios, the continuous DoI functions doicontl ∈[ 0, 1] are
based on either node attributes or edge attributes inter-
preted as the DoI of vertices or edges, respectively, where
l′ is the number of available continuous DoI functions.
Our DoI functions have the following semantic meaning:
higher values are interpreted as more interesting, i.e., the
higher doicontl , the more interesting is the gene (node) or
relationship between two genes (edge). For DoI functions
that are built on a different assumption—such as statistical
association based on p-values, for which smaller values are
more interesting—we transform the values accordingly
before loading them into the tool.
Existing approaches that apply the DoI concept to

graphs incorporate a diffusion of the DoI over the graph
based on a subset of interesting elements—mostly defined
by selection [18,19]. In contrast, in our application sce-
nario, we do not have a predefined subset of interesting
elements (since the interestingness depends on the task)
but instead we have l′ DoI values for each graph element,
i.e., each node and each edge. To combine and use the DoI
functions for filtering, DoI values are required for nodes
and edges. As each doicontl is based on either a node or

edge attribute, we extend the node-based a-priori inter-
est values to edge-related interest values and vice versa.
We extend the DoI for vertices doicontl (vi) to the edges by
applying the minimum operator:

doicontl (ej) = min
(
doicontl

(
vi1

)
, doicontl

(
vi2

))
,

where vi1 and vi2 are the two vertices connected by ej.
To make sure that an edge remains only visible if both
of its vertices are interesting, each edge is assigned the
smaller DoI value of the two vertices it is connected to.We
extend the DoI for edges doicontl (ej) to the vertices using
the maximum operator:

doicontl (vi) = max
(
doicontl (ej)

)
,

∀ej for which vi is a source or target. Each vertex is
assigned the highest DoI of all edges it is part of, which
ensures that a node remains visible as long as any of its
edges is visible. The analyst can define a threshold θl ∈
[ 0, 1] ,∈ R for each doicontl function and apply it as a filter
to the network.
The discrete DoI functions doidisck ∈ {0, 1} are derived

from the k′ knowledge sourcesKk—a subset of the knowl-
edge sources used to generate the knowledge networks,
including, e.g., KEGG, Reactome, and the Gene Ontol-
ogy (GO-BP, GO-CC, and GO-MF). For each gene vi that
has at least one annotation in Kk , e.g., any KEGG path-
way fromKKEGG, doidisck (vi) = 1, otherwise 0 (if it has no
annotation). For each relationship ej between two genes,
the DoI is derived from the two vertices vi1 and vi2 it con-
nects, where doidisck (ej) = 1, if vi1 and vi2 have at least one
annotation inKk in common, e.g., if they share any KEGG
pathway, and doidisck (ej) = 0 otherwise.
We allow analysts to interactively define additional

continuous DoI functions based on a combination of
weighted discrete DoI functions. For this purpose ana-
lysts can assign a degree of importance impk ∈[ 0, 1] to
each Kk . We normalize these importance values such
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that
∑

impk = 1. The DoI values for nodes vi of the
knowledge-based continuous DoI are derived using the
following product:

doicontl (vi) = 1 −
∏(

1 − impk
)
, ∀doidisck (vi) �= 0.

We use the analogous product to derive the DoI values for
the edges ej.

DoI-based filtering
To support analysts in finding relevant genes (Task I and
II), we integrate the concept of DoI-based filtering. In
particular, analysts can select a set of continuous DoI
functions to dynamically create subsets based on spe-
cific conditions in the experimental data (Task I) (see
Figure 1(b)). To identify genes that share particular bio-
logical properties derived from the integrated knowledge
sources (Task II), discrete DoI functions can be used for
filtering as well. As both tasks – Task I and Task II –
are coupled in Task IV, analysts also need to combine
both types of filters. Therefore, RenoDoI supports analysts
in combining an arbitrary number of a-priori DoI func-
tions to capture interest according to a certain application
domain or analysis task.
The discrete DoI functions can be combined using stan-

dard first-order logic (∧, ∨) [18,36]:

doidisc =
{ ∧ : doidisc1 ∧ doidisc2

∨ : doidisc1 ∨ doidisc2
In contrast, the combination of continuous DoI functions
requires first-order fuzzy logic operations (∧, ∨) [37]:

doicont=
{ ∧ : doicont1 ∧ doicont2 =min

(
doicont1 , doicont2

)
∨ : doicont1 ∨ doicont2 =max(doicont1 , doicont2)

Before combining the selected continuous DoI functions
we apply the user-defined threshold θl for each doicontl ,
i.e., if doicontl < θl, doicontl = 0. The operators (∧,∨) can
be chosen for both function types individually. During our
iterative design process and collaboration, it became clear
that for the combination of continuous DoI functions the
AND operator is preferred, whereas for the combination
of discrete DoI functions the OR operator is preferred.
Finally, both types of DoI are combined using AND:

doi = min(doidisc, doicont),

i.e., a node (an edge) is only visible if doidisc = 1, where
the resulting fuzzy DoI value (doi) depends on doicont.
The resulting fuzzy DoI can be used for filtering, i.e., only
elements with doi > 0 remain visible.

Annotation-based layout of subnetworks
To support the task of identifying “hub” genes that affect
multiple biological processes (Task III) RenoDoI allows
analysts to semi-automatically create annotation-based
layouts for the currently filtered subnetwork (see

Figure 1(c)). Our layout approach makes use of the dis-
crete DoI functions (knowledge sources): for each selected
doidisck function and hence knowledge source Kk , we
extract the set of annotations from Kk that are associated
with any vi ofG, with doi(vi) > 0, i.e., with any gene that is
part of the subnetwork. Hence, we derive a set A of anno-
tation groups Am = Vm, Vm ⊆ V , that overlap, because
vertices do often have multiple annotations in each Kk .
Analysts can choose a set of annotation groups A′ ⊆ A
(see Figure 2(a)) for the subnetwork of interest. The lay-
out of the subnetwork is then computed with a two-step
layout approach based on the selected annotation groups
Am ∈ A′ as described in Algorithm 1.

Algorithm 1 Calculate the layout of subnetwork
1: Gsubset ← extractSubsetGraph(A′)

{extract subset graph Gsubset, where vsubsetn ∈ Gsubset
represent annotation groups Am
or their intersections; N=|V subset| ≥ |A′|}

2: L ← layout(Gsubset) {lay out subset graph}
3: for all n=1 to N do
4: Ln ← sublayout(Gsubset

n ) {lay out all vi associated
with vn′}

5: integrate Lk into L
6: end for

Since we want to visualize the different intersection
groups explicitly, we developed an approach similar to that
of Itoh et al. [22]; however, our approach is based on a
different subset graph (meta-graph) and uses a different
layout within the intersection groups. We derive the sub-
set graph Gsubset from the selected annotation groups Am
by applying a formal concept analysis [38] (see Figure 2(a)
and (b)). The nodes of the resulting subset graph rep-
resent non-empty sets and intersections of them (see
Figures 2(c)). Before we compute the layout with the force-
based model by Fruchterman and Reingold [39], we assign
edge weights to each of the edges in Gsubset, which are
indirectly proportional to the size of the two subset nodes
vsubsetn they connect (in Figure 2(c), these edge weights are
mapped to shades of gray).
We achieve our goal of positioning “hub” genes in-

between the groups they are associated with, since our
subset graphs are sparse, i.e., they represent a subgraph of
the concept lattice graph. We visualize the subset graph
as an intermediate result to provide analysts the opportu-
nity to adjust the layout to their needs. Once the analyst
is satisfied with the layout of the subset graph, each
group of nodes, i.e., all vi ∈ vsubsetn , is laid out individ-
ually within an area around the position of the respec-
tive subset node vsubsetn using a force-directed layout (see
Figure 2(d)).
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Figure 2 Schematic overview of the layout approach. (a) Formal context describing the association of vertices vi to different annotations Am .
(b) Result of the formal concept analysis. The final subset graph is derived based on the formal concept, excluding empty subset nodes that occur
as we assign vertices only to one subset group (see colored vi ’s). Additional edges (dashed links) are added to connect subsets that are more than
one hierarchy level apart. (c) Our subset graph is laid out using a force-directed layout approach considering edge weights (mapped to shades of
gray). (d) Each subset node is replaced by the group of vertices it represents, which is laid out independently from the other groups using a
force-directed approach.

Comparing subnetworks
RenoDoI also provides a feature for comparing subnet-
works derived by using different sets of annotation groups
A′ based on different or the same discrete DoI functions
doidisck (Task V). A set of subnetworks could be com-
pared using the available subnetwork views in Cytoscape
by arranging them next to each other (juxtaposition) and
using explicit encoding based on coordinated multiple
views brushing (the selection of nodes in one subnet-
work will highlight these nodes in all other subnetworks
in which they are present). However, using simple juxta-
position, similarities and differences are hard to capture.
Therefore, we use the superposition concept instead and

provide the analyst with an additional network view show-
ing the super-graph of the to be compared subnetworks
(see Figure 1(d)). Since we want to support the analyst in
maintaining the mental map, we need to minimize layout
changes in the super-graph compared to the underlying
subnetworks. To achieve this goal, we compute a zlayout
using the largest subnetwork as a reference. We first ini-
tialize the super-graph as a copy of the reference subset
graph Gsubset. Next, any group (subset node vsubsetn

′) that
is not yet part of the reference subset graph is added to
the super-graph Gsuper. Every vsubsetn

′ will thereby be posi-
tioned close to those—already existing—subsets vsubsetn it
overlaps with, preferably those with high overlap or with
a high number of topological connections. Therefore, any
vsubsetn

′ is connected with at least one or more subsets
vsubsetn it overlaps with, where the edge weights depend on
the size of the overlap

(∣∣∣vsubsetn
′ ∩ vsubsetn

∣∣∣) or—in case of
similar sizes of overlaps—the number of edges connect-
ing vertices vi from the added subset vsubsetn

′ with vertices

from the overlapping subsets vsubsetn . The super-graph is
then laid out using the same edge weighting and layout
approach as we used for the individual subset graphs, with
the restriction that only the added nodes vsubsetn

′ (the ones
that are not part of the reference subset graph) are allowed
to change their position. Similar to the two-step layout
approach for individual subnetworks, in the second step,
each group of nodes (all vi associated with a vsubsetn

′) is laid
out individually, where only the node groups of the added
subsets vsubsetn

′ are laid out.

Analysis of experimental data
Once, genes and biological relationships among them
that are associated with the phenotype of interest have
been identified, the analyst moves on to investigate the
transcriptomic profiling data for these genes. To under-
stand the molecular mechanism of clinical response to a
treatment, it is necessary to investigate the experimen-
tal data used to generate the data-based relationships, i.e.,
the transcriptomic profiling data (Task II and IV). This
involves, e.g., the investigation of statistical measures such
as the gene-expression correlation or the difference in
gene expression between conditions. RenoDoI allows ana-
lysts to map one of the available numerical attribute of
the genes (or the relationships between them) to the color
of nodes or edges (see Figures 3, 4 and 5). As most of
these attributes include negative as well as positive val-
ues, which—according to our biomedical collaborators—
should be easily distinguishable, we selected a diverging
color scale from ColorBrewer [40]. RenoDoI allows ana-
lysts not only to investigate the statistical summaries of
the experimental data but also the individual transcrip-
tomic profiling data, e.g., details for individual patients.
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RenoDoI integrates the functionality to open a heat-map
view for a set of selected genes, where rows represent
conditions, such as patients or treatments, and columns
represent genes.

Interaction
Each subnetwork view includes an interactive legend
that shows all annotation sets Am ∈ A′, each labeled
with its name and discrete DoI function doidisck , which
corresponds to the knowledge source Kk to which it
belongs. For the super-graph, the legend additionally
includes a network label for each of the subnetworks
included in the network comparison the super-graph
represents.
The legend is linked to the main-network and all sub-

networks via brushing and linking such that the selection
of any Am within the legend results in the highlighting
of all associated nodes (genes) vi ∈ Vm, Vm ⊆ V , in
these network views (see Figures 3 and 4). The subnetwork
labels can be used to highlight all nodes of the respec-
tive subnetwork or—in case two or more such labels are
selected—the intersection between these networks (see
Figure 5). Nodes are highlighted by drawing them slightly
bigger and by adding a thick black border. (We cannot use
the default feature of yellow highlighting for nodes since
we already map other attributes to the node color.) To
visualize the set memberships each selected set of nodes
will be surrounded by an isocontour based on the Bubble-
Sets approach [27]. We decided against using convex hulls
or Euler diagrams, as these types of contours may include
nodes that are actually not associated with the underlying
group and therefore could lead to confusion.
By selecting a node vi within a subnetwork, each anno-

tation set Am or network label it is associated with (i.e.,
each Am with vi ∈ Am) will be highlighted in the legend of
the respective subnetwork view and the respective isocon-
tours will be shown. Each annotation and hence isocon-
tour is assigned a color based on a qualitative colormap
created with ColorBrewer [40]. The heat-map views are
also linked to the network views in such a way that the
selection of one or more columns and hence genes in
the heat-map will highlight the respective nodes in the
networks and vice versa.

Results
In this section we describe in two case studies how
RenoDoI was used by a biomedical researcher to analyze
a complex dataset that combines clinical data with high-
throughput data. We first describe the biomedical goals
of the studies and provide the details of the underlying
dataset; following we describe the high-level workflow for
the analytical scenarios. A more detailed description of
the stepwise workflow of both case studies is included in
the supplemental material. The accompanying video—a

screencast of the interactive analysis of the heart failure
study using RenoDoI—illustrates the interactive features
of our system (http://youtu.be/yeJaSYkA0-Q).

Biomedical goals
Heart failure (HF) is the leading cause of hospitalization in
US patients age > 65, and approximately 50% of patients
die within 5 years of diagnosis despite great advances in
treatment over the past 15 years [41]. β-blocker ther-
apy has been shown repeatedly to improve outcomes, but
only 60–70% of patients with systolic HF demonstrate
improvement. High-throughput gene expression profiling
may provide additional insight into the mechanisms of
β-blocker response and possibly identify diagnostic candi-
dates to predict β-blocker response.We have worked with
a group of cardiologists who obtained biopsies of heart
tissue from HF patients as they started on β-adrenergic
receptor blockers, a standard heart failure therapy. Kao
et al. [42] describe the details of the clinical trial, its study
design, and the results from a statistical analysis. Through
weekly meetings over the course of several months, we
identified three primary analysis goals in collaboration
with one of the domain experts.

Understand the molecular mechanism of clinical
response to β-blocker therapy The specific targets
of β-blockers are well described, and the effectiveness
of β-blockers in HF is proven. However, the mecha-
nism by which β-adrenergic receptor blockade results in
improved myocardial contraction is incompletely under-
stood. Better understanding of the molecular mechanisms
of β-blocker response may allow improved prediction of
likelihood of response and identify potential new thera-
peutic targets for HF.

Understand pathological molecular changes associ-
ated with HF HF is associated with reversion of expres-
sion of several signaling and contractile genes to a fetal
gene program. However, only a small number of genes
have been characterized in this manner. Whole tran-
scriptomic analysis could greatly expand the number of
genes whose expression levels change with HF, potentially
allowing improved insight into the determinants of these
changes.

Identify medical interventions that may increase the
likelihood of β-blocker response in HF. Approximately
one-third of HF patients who receive β-blocker treatment
do not show improvement in cardiac function. How-
ever, the molecular determinants of individual response
to β-blockers are not known. Based on a comprehensive
analysis of gene expression changes, it may be possible to
identify determinants of β-blocker response amenable to
medical therapy. If so, it may be possible to augment or
increase the likelihood of β-blocker response.

http://youtu.be/yeJaSYkA0-Q
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Biomedical data
Our data includes clinical data and transcriptomic profil-
ing data and knowledge-based data. Clinical data refers
to tests performed on HF patients during the study.
For this analysis, the most relevant elements include
presence of HF, assignment to one of three β-blocker
treatment arms, and left ventricular ejection fraction
(LVEF) measured at baseline, 3 and 12 months following
initiation of β-blockers. LVEF response was defined as
an increase from baseline of ≥ 8 units at 12 months
or if no 12 month value was available, ≥ 5 units
at 3 months. This study was conducted between 2000
and 2008 at the Universities of Colorado and Utah
in accordance with the Declaration of Helsinki and
included a Data Safety Monitoring Board. The study
was approved by institutional review boards at both
sites (Colorado Multiple Institutional Review Board pro-
tocol 00-242), and all subjects gave written informed
consent.
Transcriptomic profiling data refers to longitudinal

measurement of myocardial gene expression in HF
patients during the study. Gene expression is measured
by quantifying mRNA fragments called transcripts that
encode proteins. Changing the quantity of mRNA frag-
ments is one component of regulating the amount of
a given protein is produced. In the case of HF, it has
been previously shown that transcript levels of certain
genes in HF patients more closely resemble levels in
the developing heart prior to birth (‘fetal gene program’)
than normal adult heart tissue. Furthermore, transcript
levels of these genes return to an adult pattern when
heart function improves as a result of β-blocker therapy.
Enrolled patients had myocardial biopsies performed at
baseline, 3 and 12months in coordination with LVEFmea-
surements. Gene transcript levels were quantified using
the Affymetrix HGU-133 Plus 2 microarray. Differences
in gene expression between LVEF responders and non-
responders were tested using the R statistical package and
SAS.
Transcriptomic profiling data may be compared

between groups of clinically distinct patients, in this
case between LVEF responders and non-responders, in
order to identify potential mechanisms of positive drug
response. Integrating signaling pathway and molecular
function knowledge can enrich these comparisons by
identifying groups of genes with known biological rela-
tionships that are relevant to the phenotype of improved
cardiac function.

Comparing myocardial gene expression findings with
components of the β1-adrenergic signaling network
As our analyst was specifically interested in comparing
experimental findings with known components of the β1-
adrenergic signaling network, he selected 711 genes for

analysis based on prior work suggesting a relationship
between β1-AR activity and gene expression or β1-AR
signal transduction. (These genes were identified by mea-
suring myocardial gene expression in transgenic mice
over-expressing β11-Arg389 and β11-Gly389 adrener-
gic receptors compared with littermate control animals.)
An integrated data-knowledge network comprising these
711 genes and 74,373 relationships between them (see
Figure 3(a)) was constructed as described in the data
model section. We used 26 different knowledge sources
and derived 10 discrete DoI functions. A detailed descrip-
tion and illustration of the analysis steps for the first case
study are available as Additional file 1.
In order to focus on findings relevant to the primary

analytical question, the analyst first focused on the visual-
ization of relevant experimental data (Task I). He reduced
the complexity of the data by filtering genes whose expres-
sion is associated with the phenotype—here left ventric-
ular ejection fraction (LVEF) response. In particular, he
used the statistical association of gene expression with
LVEF response as a DoI function (the corresponding p-
values were transformed as described in the Methods
Section to match the semantic meaning of our DoI func-
tions) that permitted dynamic filtering of nodes with low
p-value. He started with a very strict threshold (a p-value
of < 0.01 for expression change in responders compared
with non-responders was considered significant) and then
iteratively relaxed it until the filtered network had a rea-
sonable size (p-value of ≤ 0.05). To focus on genes with
evidence of meaningful correlation, he added a second
DoI function allowing dynamic filtering of high gene-gene
correlation values (using a threshold θ ≥ 0.5). Both DoI
functions are based on the measures of the last obser-
vation carried forward. In addition, the difference in the
magnitude of change in gene expression was then mapped
to the color of nodes and the gene expression correlation
to the color of edges (see Figure 3(b)), respectively.
To explore which biological processes and pathways

may be associated with β1-adrenergic signaling-related
genes and LVEF response (Task II), the analyst created a
subnetwork based on shared gene properties. In particu-
lar, he selected specific knowledge sources (discrete DoI
functions) of interest—KEGG and Reactome—and cre-
ated an intermediate subnetwork from visible genes based
on shared annotations from these knowledge sources only.
To identify “hub” genes (Task III) he then rearranged the
genes of this subnetwork of individual genes to reflect the
existing knowledge of the filtered genes and their rela-
tionships in myocardial contractile function. In particular,
he used the annotation- and knowledge-driven layout
approach to generate a layout of the subnetwork based
on KEGG and Reactome pathways that are involved in
heart function (see Figure 3(c)), e.g., muscle contraction
and calcium processing.
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(a) (b)

(c)

-1 +1
node: expression change

edge: expression correlation

Figure 3 Comparing myocardial gene expression findings with components of the β1-adrenergic signaling network. (a) The integrated
data-knowledge network comprising 711 genes and 74,373 relationships between them. (b) Filtered subnetwork after applying two continuous DoI
functions. In particular, the analyst used the statistical association of gene expression with LVEF response and the gene-expression correlation as DoI
functions. In addition, the difference in the magnitude of change in gene expression was then mapped to the color of nodes and the gene
expression correlation to the color of edges. (c) Further filtering and layout of the subnetwork in (b) based on two discrete DoI functions of interest:
KEGG and Reactome. The subnetwork was laid out based on KEGG and Reactome pathways that are involved in heart function. Annotations related
to metabolism, extracellular matrix organization, calcium signaling, or muscle contraction are selected to highlight genes associated with them.

Based on this layout and the evidence of change in a
number of metabolic genes and extracellular matrix pro-
teins, the analyst could identify several genes implicated
in the β1-AR network that have been suspected to be

relevant to LVEF improvement, but were not previously
characterized. In combination with the color mapping,
he could conduct a rapid survey of coordinated and cor-
related expression changes in various pathways (Task
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IV). Correlated up-regulation of contractile and calcium
handling genes is apparent, although there is also clear
coordinated up-regulation of several metabolic genes
and correlated down-regulation of extra-cellular matrix
proteins, which is consistent with improved myocardial

efficiency and slowing of pathologic remodeling. The
analyst indicated that these findings in particular and
the ability to explore these data in the context of spe-
cific knowledge sources will provide hypotheses for future
confirmatory clinical studies regarding diagnostics and

(c.1)(a)

(b) (c.2)

(d.1)
(d.2)

(e) (f)

-1 +1
node: expression change

edge: expression correlation

Figure 4 Integrating and comparing knowledge from multiple sources to explore novel findings in experimental data. (a) The complete
data-knowledge network. (b) Filtered subnetwork after applying two continuous DoI functions. Again, the analyst used the statistical association of
gene expression with LVEF response and the gene-expression correlation as DoI functions. Next, two discrete DoI functions are applied to extract
subnetworks based on different knowledge sources (c.1) and (c.2). Individual subnetworks based on similar terms from KEGG (d.1) and Reactome
(d.2) were created to analyze gene annotations individually. (e) Integrated data-knowledge network for comparison and analysis of the overlap.
Genes contained in both subnetworks are highlighted by the black border (in (d.1), (d.2), and (e)) and both sets of genes—one set for each
network—are surrounded by a contour. The analyst determined that the expression of multiple extracellular matrix proteins—highlighted and
surrounded by a contour—according to both expert sources were correlated with LVEF response—confirmed using the heat-map view (f). In
(c)-(e), the same color mapping is applied as in Figure 3.
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the likelihood of LVEF response to β-blockers as well
as possible interventions to increase the effectiveness of
β-blockers.

Integrate and compare knowledge from expert sources to
explore novel findings in experimental data
Multiple statistical analyses identified expression of a
cholesterol modifying protein (CETP) as being strongly
associated with LVEF response [43]. Not only was choles-
terol trafficking not expected to have a role in recovery
of heart function, but the gene product is the target of a
new class of cholesterol-loweringmedications currently in
development, raising the possibility that these new drugs
may impact heart failure. Therefore, the analyst explored
the plausibility and possible mechanisms of this novel
hypothesis using an integrated data-knowledge network
comprising 328 genes and 11,081 relationships between

them (see Figure 4(a)). We used again 26 different knowl-
edge sources and derived 10 discrete DoI functions. This
network was composed of genes whose expression was
most highly correlated with CETP in all patients at all time
points. Also for the second case study, a detailed descrip-
tion and illustration of the analysis steps is available as
Additional file 2.
For the analysis of this network, the analyst used the

same two DoI functions as before: first, he used the sta-
tistical association of gene expression with LVEF response
as a DoI function with a p-value of ≤ 0.05 and, sec-
ond, the gene expression correlation using a threshold
θ2 ≥ 0.5 (see Figure 4(b)). Again, he mapped the dif-
ference in the magnitude of change in gene expression
to the color of nodes and the gene expression correla-
tion to the color of edges (in Figures 4(c)-(e) and 5),
respectively.

Figure 5 Integrating and comparing knowledge from multiple sources to explore novel findings in experimental data: Combined network of the
derived subnetworks using the experts Gene-Ontology Cellular Compartment and Reactome. Genes contained in both subnetworks are
highlighted by the black border to investigate the overlap between these two experts. NPPA is one of the genes with extracellular products we
identified that might be used as diagnostics in peripheral circulation. The same color mapping as in Figures 3 and 4 was applied.
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In the first phase, the analyst wanted to identify path-
ways associated with genes whose expression is correlated
with CETP (Task II). Because essentially nothing is
known about CETP in heart failure, he identified genes
with consistent pathway annotations. He created indi-
vidual subnetworks based on similar terms from Reac-
tome and KEGG (Task III; see Figures 4(d.1) and (d.2)).
He then created a combined network (see Figure 4(e))
and dynamically viewed gene annotations from each
expert individually, in union, and the intersection between
the two networks (Task V; see Figures 4(d.1), (d.2),
and (e)). Based on these operations he determined that
expression of multiple extracellular matrix proteins and
metabolic proteins according to both expert sources
were correlated with LVEF response (see Figure 4(e))
and confirmed this finding using the heat-map view
(see Figure 4(f )).
In order to explore relationships between correlated

genes along multiple axes the analyst combined another
two subnetworks (Task V). In particular, he visualized
both the cellular localization of each gene as well as
their functional/pathway annotations by creating subnet-
works using the Gene-Ontology Cellular Compartment
expert and the Reactome functional annotations (Task
III; see Figure 5). By exploring the overlap between
these two experts in a combined network, he found
clusters of correlated genes within specific compart-
ments, within specific pathways, and functionally related
genes localized to the same compartment. These find-
ings can (a) support confirmatory translational experi-
ments by identifying specific candidate genes in specific
cellular compartments to isolate and (b) identify genes
with extracellular products (such as NPPA) that might
be used as diagnostics in peripheral circulation. Incor-
poration of pharmaceutical target experts would also
allow the identification of candidate therapeutic targets
to support drug repurposing or novel drug application
development.

Discussion
Our visual analytics approach implemented in RenoDoI
supports the investigation of large and dense integrated
data-knowledge networks; until now, these types of anal-
yses were time-consuming and costly since it was not
possible to perform all the steps necessary for the analysis
in an efficient and integrated workflow. We now discuss
our development process, limitations of the tool, and its
generalizability.

Iterative design and development process
We developed RenoDoI through an iterative design pro-
cess using formative evaluation that bears resemblance to
the pair analytics approach [44]; we closely collaborated
with a group of biomedical researchers from the Division

of Cardiology in the CU Medical School. Due to our
regular meetings—typically on a weekly basis—we were
able to develop a deep understanding of the analysis
needs and to include regular and early feedback dur-
ing the development process. In comparison to Hana-
lyzer and other knowledge-based approaches, RenoDoI is
much more flexible and supports a data-driven as well as
knowledge-driven analysis approach. RenoDoI supports
the interactive and fast extraction of relevant subnetworks
based on DoI functions within seconds or at most min-
utes, provided that suitable DoI functions representing
the analyst’s interest are available.

Tool limitations
RenoDoI still has some limitations that we plan to
address in the future. Although, compared to Hanalyzer, it
improves the analytical flexibility with respect to the size
of the network, scalability can still be further improved.
Ideally, analysts would like to extract middle-sized net-
works with hundreds of nodes—as analyzed in our case
studies—from the complete dataset (in our dataset are
about 20,000 genes) directly within RenoDoI using addi-
tional knowledge or data sources but independent from
its visualization. This is not possible with the current
implementation. We tested RenoDoI on a larger network
with more than 2,600 nodes and 600,000 edges on a stan-
dard desktop computer with 16GB of memory. While the
computational speed for applying DoI functions was still
acceptable (in the range of 2 to 3 seconds), the render-
ing of the resulting networks could take between 7 and
50 seconds (depending on the network size and whether
graphics details are rendered) and therefore no longer
supports an interactive workflow. The integration of addi-
tional statistical methods could further improve the over-
all utility of RenoDoI. It would support analysts not only
in hypothesis generation but also creating publishable sta-
tistical results to enhance the more qualitative findings
from the network analysis. Finally, a feature for network
subtraction could complement the network comparison
feature and allow analysts to study the differences in net-
works representing different patient groups, e.g., female
vs. male patients.

Generalizability
Even though we derived the analytical tasks from a
selected use case, they are not bound to a specific dataset
but are generalizable to a large set of knowledge-based
analyses. RenoDoI can be applied to any experimental data
that produces measurements on genes, gene products, or
for which the measurements can be mapped onto genes
as it was done in previous applications of the Hanalyzer
[2-4]. Our collaborators are already analyzing additional
networks constructed to investigate the role of the
HOX gene family, previously unstudied in heart failure,
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and gene expression variation associated with adrener-
gic receptor genotypes. We recently also began a new
collaboration in which we use RenoDoI to analyze and
explore proteomics data in the context of spinal coord
injury.

Conclusion
Scalability is often a serious bottleneck for visualization
approaches in the context of big data; genome scale data
is certainly no exception. Especially in molecular biology,
there is a surfeit of available information, and visualiz-
ing all of it at once reduces the value of a visualization or
makes it even unusable for analytical purposes. The over-
whelming nature of many contemporary biological net-
work visualization approaches has led to the widespread
recognition of the problems of understanding or even just
navigating “hairballs”. Therefore, a critical problem is the
need to reduce the complexity of displayed information by
prioritizing and displaying only what is important to the
analyst for solving a specific task. We addressed this prob-
lem by integrating DoI functions for filtering with graph
layouts based on group associations, and a network com-
parison technique, to support analysts in untangling dense
biological networks.
RenoDoI is the first approach that supports the

integrated visualization and analysis of both existing
knowledge (from databases and the literature) and experi-
mental data in a dynamic, task-driven, customizable fash-
ion. We demonstrated the utility of RenoDoI in two case
studies using a large and complex dataset from a clinical
trial that contains clinical data as well as transcriptomic
profiling data. These types of datasets reflect current data
analysis needs frommultiple areas, including translational
research, systems biology, and molecular biology. Our
collaborators are excited about the analytical capabilities
of RenoDoI and believe it can significantly enrich and
speed-up the analysis of their data.

Availability and requirements
RenoDoI is implemented in the Java™programming lan-
guage as an application in Cytoscape [6]. It is available in
the Cytoscape App Store http://apps.cytoscape.org/apps/
renodoi as a free component, along with a manual and a
demo video. It requires Cytoscape version 3.2 or later to
run.

Additional files

Additional file 1: Case Study 1. Detailed description of the analysis
workflow of the first case study: Compare myocardial gene expression
findings with components of the β1-adrenergic signaling network.

Additional file 2: Case Study 2. Detailed description of the analysis
workflow of the second case study: Integrate and compare knowledge
from expert sources to explore novel findings in experimental data.
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