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Abstract

over the course of development.

applicable to such biological image sets.

Background: Profiling gene expression in brain structures at various spatial and temporal scales is essential to
understanding how genes regulate the development of brain structures. The Allen Developing Mouse Brain Atlas
provides high-resolution 3-D in situ hybridization (ISH) gene expression patterns in multiple developing stages of the
mouse brain. Currently, the ISH images are annotated with anatomical terms manually. In this paper, we propose a
computational approach to annotate gene expression pattern images in the mouse brain at various structural levels

Results: We applied deep convolutional neural network that was trained on a large set of natural images to extract
features from the ISH images of developing mouse brain. As a baseline representation, we applied invariant image
feature descriptors to capture local statistics from ISH images and used the bag-of-words approach to build
image-level representations. Both types of features from multiple ISH image sections of the entire brain were then
combined to build 3-D, brain-wide gene expression representations. We employed regularized learning methods for
discriminating gene expression patterns in different brain structures. Results show that our approach of using
convolutional model as feature extractors achieved superior performance in annotating gene expression patterns at
multiple levels of brain structures throughout four developing ages. Overall, we achieved average AUC of 0.894 +
0.014, as compared with 0.820 =+ 0.046 yielded by the bag-of-words approach.

Conclusions: Deep convolutional neural network model trained on natural image sets and applied to gene
expression pattern annotation tasks yielded superior performance, demonstrating its transfer learning property is

Background
Accurate spatiotemporal control of gene expression drives
the development of brain structure and function. The
development of individual structures and the correspond-
ing neuronal connectivity is the consequence of gene
expression patterns that change spatially and temporally.
Therefore, accurate characterization of the patterns and
levels of gene expression, such as local expression gradient
patterns and levels in various brain structures, is essential
to understanding brain development.

The Allen Developing Mouse Brain Atlas (ADA) con-
sists of 3-D, cellular resolution in situ hybridization (ISH)
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expression patterns of approximately 2,000 genes in sagit-
tal plane across multiple developmental stages [1,2]. In
addition, the Allen Developing Mouse Brain Reference
Atlas (ARA) provides the brain structural ontology based
on developmental neuroanatomy. This makes it possible
to characterize the gene expression signals as patterns
and levels corresponding to the brain structures at mul-
tiple hierarchical levels. Such annotations, which were
currently performed manually using the expertise of neu-
roscientists, enable neuroscientists to explore the intrinsic
mechanism as to how genes regulate the development of
brain at fine structure levels. However, manually annotat-
ing gene expressions over an enormous number of ISH
images is labor-intensive and may result in inconsistence
among different experts [3].
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In this study, we consider the approach of automated
image computing as a way to automate such task [4,5].
To yield discriminative features, a common approach is
to compute local descriptors on a large number of image
patches and then build global representations by using
various approaches such as the bag-of-words method.
Such techniques have yielded promising performance
on various natural and biological image classification
tasks [5].

In contrast, deep learning models are a class of multi-
layer systems that can be trained end-to-end to learn
hierarchical features from raw data. As one of the com-
mon deep learning models, deep convolutional neural
networks (CNN) have gained increasing attention due to
their superior performance on various tasks [6-8]. How-
ever, a large number of labeled examples are required to
train the parameters in CNN. To overcome this limita-
tion, recent studies used the ImageNet data, an image
data set with thousands of categories and millions of
labeled natural images, to train a CNN model. The learned
model was then used as feature extractors for other data
sets. Such transfer learning approach yielded promis-
ing performance on a wide variety of recognition tasks
[9-13]. These studies show that CNN can be used for
transfer learning, where the network is trained on one
data set and used as feature extractor on other data
sets.

In this work, we propose to use CNN for knowl-
edge transfer from natural images to ISH images. We
explored whether the transfer learning property of CNN
observed on natural images could be generalized to bio-
logical images. Specifically, we used trained model from
OverFeat as feature extractors on ISH images. The result-
ing features were subsequently used to train and vali-
date our machine learning method for annotating gene
expression patterns. We compared our results with those
yielded by the bag-of-word method. Results show that
our approach of using convolutional model as feature
extractors achieved superior performance on the tasks
of annotating gene expression patterns at multiple lev-
els of brain structures throughout four developing ages.
We achieved an overall average AUC of 0.894 + 0.014, as
compared with 0.820 £ 0.046 yielded by the bag-of-words
approach.

Methods

Allen developing mouse brain atlas

The Allen Developing Mouse Brain Atlas (ADA) pro-
vides a framework for exploring spatiotemporal dynam-
ics of gene expression over the course of mouse brain
development [1]. ISH image data are available for
about 2,000 genes in the sagittal section across seven
developing stages. For each gene, ISH was applied
to multiple sections of the brain to detect a specific
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gene expression covering the entire brain. These ISH
images are subsequently processed by an informatics
data processing pipeline to generate grid-level voxel
data.

Characterizing gene expression patterns, such as local
expression gradients and levels, in brain structures at var-
ious levels throughout multiple developing stages allows
neuroscientists to explore the crucial temporal and spatial
events during development [14]. To characterize struc-
tural level gene expression, a reference atlas was cre-
ated to segment the brain into structures through all
developing stages. The subsequent annotation of gene
expression patterns and levels of intensity and density at
structural levels was then determined manually using the
expertise of neuroscientists [3]. Specifically, the experts
first attempted to identify whether a given gene expres-
sion was detectable in a specified structure. They sub-
sequently annotated this gene expression using pattern,
intensity and density metrics if it is detectable. Oth-
erwise, the gene was labeled as “undetected” for all
three metrics. The pattern metric was scored as full,
regional, and gradient, whereas density and intensity met-
rics were scored as low, median and high, respectively
(Figure 1). Currently, manual annotations have been gen-
erated for four (E11.5, E13.5, E15.5, and E18.5) out of
the seven developing stages by Allen Institute for Brain
Science.

A baseline ISH image representation

In this work, we consider the automated annotation
of gene expression patterns. This requires a compu-
tational representation to encode the expression pat-
terns in the ISH images. We first considered a baseline
approach based on the bag-of-words representation that
has been widely used in modeling natural and biologi-
cal images [5,15-20]. We then proposed to employ a deep
convolutional feature extractor in the following section,
and this new deep representation yielded better perfor-
mance in our experiments.

To obtain robust representations that are invariant to
various distortions on the images, scale-invariant fea-
ture transform (SIFT) descriptors were applied on local
patches of ISH images that were down-sampled by a fac-
tor of 4 to reduce the computational cost [21]. We applied
dense SIFT feature descriptors on the ISH images imple-
mented in the VLFeat software package [22]. This gener-
ated approximately 20,000 SIFT feature vectors from each
ISH image section.

The bag-of-words approach requires a visual codebook
for vector quantization. To this end, we randomly sam-
pled the nonzero descriptors for each image to obtain
a descriptor pool of size 100,000. The K-means algo-
rithm was then applied to cluster the SIFT descriptors
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Figure 1 Illustration of the manual annotations. The figure on the left illustrates the three different metrics. The top-right figure shows the brain
structure ontology at level 5. The bottom-right figure denotes the corresponding manual annotations. The figures were reproduced from [3] with
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into 500 clusters in this pool, and the resulting cluster
centers were considered as visual words in the codebook.
We repeated the K-means algorithm multiple times with
random initializations and used the one with the small-
est within-cluster distance, since initialization may impact
the results of K-means algorithm. In our approach, the
SIFT features were extracted from the ISH images using
three different scales. Accordingly, we constructed three
separate codebooks for all images from a single develop-
ment stage and counted number of occurrences of each
visual word, resulting in multiple bags of visual words
for each image. We concatenated these representations to
form a single representation for the image. In addition, we
used an extra dimension to account for the number of zero
descriptors for each scale.

To represent gene expression patterns covering the
entire 3-D brain, we divided the brain sagittally into seven
intervals. Each ISH image section was assigned to one of
the seven intervals based on its spatial location. The cor-
responding bag-of-words representations of ISH images
assigned to the same interval were averaged to reflect
regional sagittal gene expression. The global representa-
tion was built by concatenating the seven regional bag-of-
words vectors. As a result, the final global representation
for each gene covering entire brain is a feature vector with
size of 10521 (501 x 3 x 7).

Deep convolutional neural networks for feature extraction
Deep learning models are based on the idea that repre-
sentations of observed data are the results of hierarchical
abstraction at many different levels [6,7]. Hence, such
model can learn a hierarchy of features by building high-
level features from low-level ones. Convolutional neural
networks (CNN) are a class of deep models that were
inspired by information processing in the brain. CNN
mimics the receptive field of biological neuron, and each
unit in CNN receives local inputs from lower level. CNN
also uses replicated weight matrix for all units in the
same feature map to compute the same feature from all
locations on the inputs [6,7].

CNN requires a large number of training samples in
order to achieve competitive performance. To overcome
such limitation, recent studies adapted the approach
of transferring knowledge from one image data set to
another, yielding superior performance on a wide variety
of object recognition tasks [9-12].

In this paper, we explored whether the well-performed
feature generalization achieved on natural images could
also yield similar performance when applied to biological
images. Specifically, we used the OverFeat model [23] that
was trained on the ImageNet data as feature extractors
for the ISH images of developing mouse brain. OverFeat
provides two pre-trained models known as the “accurate”
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and “fast” models. The accurate model yields larger fea-
ture vectors. We used the fast model in the experiments
to reduce the computational cost.

The OverFeat architecture contains many stages of lay-
ers, and each stage consists of convolution, rectified linear
units, and optionally max-pooling layers. Specially, the
accurate model contains 7 stages consisting of 22 layers
as shown in Figure 2. Note that we omitted the last soft-
max layer and grouped the last two full connection layers
into one stage for better visualization. The outputs of lay-
ers within each stage are similar. We have experimentally
verified that the features extracted from different layers in
the same stage usually lead to the similar results. We thus
extracted features only from the last layer in each stage.
That is, we used the ISH images as inputs to the network
and extracted features at layers 6, 9, 12, 16, and 18 for each
ISH image. The numbers of feature maps in these layers
are 256, 512, 1024, 1024, and 3072, respectively. The cor-
responding sizes of feature maps are 12 x 12,12 x 12, 12
x 12,6 x 6,and 1 x 1. We flattened all feature maps into
vectors and concatenated them into a single feature vec-
tor for each layer. As a result, the corresponding sizes of
feature vectors for those layers are 36864, 73728, 147456,
36864 and 3072, respectively.

As each ISH experiment generated 15-20 sagittal image
sections, to build a feature vector that represents the
gene expression pattern covering the entire brain, we
extracted features for each section separately and com-
puted element-wide maximum across feature vectors
from all sections of the same experiment. We have also
used element-wide average to combine the vectors, and
this yielded slightly lower performance as can be seen
from Figure 3. The pipeline for feature extraction can
be summarized as follows: First, we resized all images
to 231 x 231 as required by the OverFeat model. We
then extracted feature vectors from each network layer
for each ISH image. Finally, we computed element-wide
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maximum across feature vectors of all section images
of a gene expression. This global feature vector rep-
resents the global gene expression covering the entire
brain and was used to perform gene expression pattern
annotation.

Gene expression pattern annotation

The ISH images were manually annotated with multiple
expression patterns and levels of intensity and density for
each individual brain structure across multiple ontology
levels, ranging from the lowest level 10 to the highest level
1. Using the feature vectors generated from our method,
our task is to automatically annotate gene expression
patterns for a given developing stage. We trained a clas-
sification model to annotate gene expression patterns for
each brain structure. There are 3, 6, 19, 14, 81, 46, 123, 40,
307, 432 structures from level 1 to 10, respectively. Hence,
the total number of classifiers is 1071.

Given a set of training samples {x;,;} ;, where x; €
R? denotes the input feature vector, and y; € {—1,1}
denotes the corresponding output label. In this work, x;
represents the bag-of-words or deep convolutional feature
vector, and y; encodes the annotation of gene expression
for a given brain structure. We employed the following
regularized learning formulation for classification:

n
min Z LwIx; 4 b,y) + AQ2(w),
w
i=1

(1)

where w € RP and b € R denote the model weight
vector and bias term, respectively, Q2 (w) denotes the reg-
ularization term, and X is the regularization parameter. In
this study, we employed the logistic regression loss func-
tion and the ¢3-norm regularization Q2 (w) = ||w]|; as this
model has been shown to yield competitive performance
in classification tasks.

3@231x231 96@24x24 256@12x12 512@12x12 1024@12x12 1024@6x6 3072@1x1
Convoluti Comvoluti Convol Convoluti Convol c Foll
Size 11x11 Size 5x5 Size 3x3 Size 3x3 Size 3x3 Size 6x6 4096x1x1
Stride 4x4 Stride 1x1 Stride 1x1 Stride 1x1 Stride 1x1 Stride 1x1 -
RelU RelU RelU RelU RelU RelU RelU
Max pooling Max pooling Max pooling Full
Size 2x2 Size 2x2 Size 2x2 1000%1x1
Stride 2x2 Stride 2x2 Stride 2x2 .
[
v W y v v
L6 L9 L12 L16 L18
Figure 2 The architecture of the OverFeat “fast” model. This model consists of 22 layers. Each column represents one stage consisting of
convolution, rectified linear units (ReLU), and optionally max-pooling. We extracted features from layers 6,9, 12, 16, and 18.
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Figure 3 Performance achieved by element-wide average across all feature vectors of section images (AVE) versus those of element-wide
maximum (MAX). Features were extracted by OverFeat at layer 12. The numbers in the x-axial label indicate the corresponding anatomical ontology

level of the mouse brain.
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Results and discussion

Experimental setup

To train and evaluate our methods, we built four data
sets, one for each developing stage. Each data set consists
of global gene expression feature vectors corresponding
to about 2,000 genes. Manual annotation of the Allen
Developing Mouse Brain Atlas was performed by neu-
roanatomists at Allen Institute for Brain Science. Three
different metrics (pattern, intensity, and density) were
used to characterize different aspects of gene expression.
In addition, the manual annotation was performed at mul-
tiple levels of the ontology hierarchy [3] as depicted in
Section “Methods”.

Figure 4 shows the statistics of data distribution at each
of the pattern and level categories. We observed that
the class “undetected” dominated all metrics of manual
annotation. To alleviate this class imbalance problem, we
simplified the classification tasks to a set of binary-class
problems, where one class corresponds to the undetected
category, and the other class includes all remaining cate-
gories. In addition, training and test samples were selected
by maximizing the class balance. That is, at a given ontol-
ogy level, we randomly selected training samples from
the data set and checked whether the ratios between two
classes among all structures were above a certain thresh-
old. We repeated this process for a maximum of 5,000
times and then decreased the threshold if the ratio was not
satisfied. Thus, the final thresholds are different for dif-
ferent data sets. By converting the annotation tasks into
a two-class problem, the three metrics (pattern, intensity,

and density) resulted in the same set of classification tasks.
We thus focused on the pattern metric in our experiments.

To compare our proposed image representations with
other methods, we also obtained the grid-level voxel fea-
tures generated by the Informatics Processing Pipeline of
Allen Institute for Brain Science. Given the training set
and test set, the goal of our tasks is to annotate gene
expression for all brain structures at a specified ontology
level. We partitioned the entire data set into training and
test sets so that 2/3 of the data were in the training set,
and the remaining 1/3 were in the test set. For all differ-
ent features, the same training and test sets were used. For
each annotation task, we used the area under the ROC
curve (AUC) as the performance measure. We reported
the overall AUC values for annotation tasks on all brain
structures at each given ontology level.

Performance of automated annotation

We performed the tasks of gene expression annotation
for all brain structures at various ontology levels ranging
from 1 to 10. Due to the high cost of manual annotations,
ground truth data is only available for four embryonic
developing stages. We thus used data sets from developing
stages E11.5, E13.5, E15.5, and E18.5. The detailed perfor-
mance achieved by different methods are compared and
reported in Table 1 and Figure 5. To illustrate the objective
of automated annotation, the manual annotations gener-
ated at ontology level 5 for some sample genes were com-
pared with those of automated annotations using features
extracted from OverFeat layer 12 in Figure 6.
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Table 1 Overall AUC values achieved using different
features across all ontology levels

Voxel BOW L6 L9 L12 L16 L18

E11.5 0759 0841 0898 0903 0905 0898 0876
E13.5 0768 0800 0880 088 0889 0881 0859
E15.5 0754 0768 0870 0875 0876 0871 0840
E18.5 0764 0873 0893 0901 0.905 0898 0873
Overall 0761 0820 0885 0891 0.894 0888 0862

“BOW” and “Voxel” denote the performance achieved by the bag-of-words and
grid-voxel level data, respectively. “Lx” denotes the performance of deep
convolutional features, where “x” indicates the network layer from which the
features were extracted. Note that L12 achieved the highest overall AUC in
comparison with those achieved by other layers. BOLD- L12 achieved the
highest overall AUC in comparison with those achieved by other layers.

In comparison with grid-level features, the BOW rep-
resentation achieved higher performance. Note that the
BOW methods have been successfully applied to biolog-
ical image applications in the past. However, few studies
have used this approach for the processing of 3-D gene
expression data sets to characterize gene expressions at
fine anatomic brain structure levels.

For the deep convolutional network features, we can
observe from Table 1 and Figure 5 that features extracted
from layer 12 achieved the best overall performance. In
addition, the features of all 5 layers outperformed the
bag-of-words as well as grid-level features at each of 4
developing stages. To examine the performance of indi-
vidual brain structures, we showed the ROC curves for
three brain structures at ontology level 5 with the highest,
median and the lowest AUC values in Figure 7.
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Figure 5 Performance comparisons of different features. Each figure shows the annotation performance for one developing stage. “BOW" and
“Voxel” denote the performance achieved by the bag-of-words and grid-voxel level data, respectively. “Lx" denotes the performance of deep
convolutional features, where “x" indicates the network layer from which the features were extracted.
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Figure 6 Examples of gene expression annotation at anatomical ontology level 5. Top row figures illustrate the expression pattern for the gene
Fxyd6 at developing stage E18.5, and bottom row shows the gene Tnc at developing stage E15.5. The left column figures are manual annotation,
and the right column figures illustrate the corresponding automated annotation by our proposed approach with features extracted at layer 12 of
the deep convolution model.
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Figure 7 ROC curves for brain structures r6R, p2F and isR
corresponding to the highest, median and the lowest AUC achieved
among all brain structures at ontology level 5.

Comparison between bag-of-words and convolutional
features

Our results showed that, while the baseline BOW repre-
sentations yielded higher performance than the grid-level
voxel data, the convolution model achieved the best per-
formance over all developing stages. Despite the fact that
the performance of the BOW representations increases
in stage E18.5, it is still lower than the performance
by the convolutional model. In addition, it can be seen
from Figure 8 that, although the performance of the
BOW representations correlates with those achieved by
the deep convolutional features across four developing
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stages, the BOW approach showed a larger variation in
terms of extracting discriminative features across differ-
ent stages. This indicates that the BOW representations
are less robust to variation in the data sets as compared
to the convolutional feature extractors. Overall, deep con-
volution models that were pre-trained by natural images
exhibited impressive feature generalization power when
applied to these biological image sets, yielding discrimi-
native features superior to those extracted by the BOW
methods.

Comparison among different developing stages

We noticed that the relative performance of different
methods differs across different developing stages. To
ease the comparison, we grouped the results of differ-
ent developing stages belonging to the same structural
ontology level together in Figure 8. It can be observed
that, for both the bag-of-words and convolutional feature
representations, features obtained from stage E13.5 and
E15.5 are less discriminative, yielding lower AUC for gene
expression annotation tasks than those obtained from
stage E11.5 and E18.5. Overall, annotation tasks in stage
E18.5 achieved the highest AUC followed by stage E11.5.
Those tasks in stage E15.5 yielded the lowest performance
among all stages.

We noted that the ISH images provided by the Allen
Developing Mouse Brain Atlas contain the whole embryo
from stage E11.5 to stage E15.5. In contrast, the ISH
images in stage E18.5 contain only the brain. Thus, we
suspect that such image differences might be a factor that

PSRN JNC - TN -TEN RS SR TN TN N SR S S N

Figure 8 Performance achieved using features generated by the bag-of-words (BOW) and layer 12 of the OverFeat network for predicting gene
expression at the brain structures of multiple ontology levels. The numbers in the x-axial label indicate the corresponding anatomical ontology level

of the mouse brain.
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resulted in the performance difference achieved by the
bag-of-words and convolutional representations in stage
E18.5 as compared to other three stages.

Gene expression patterns are best represented in the
intermediate layers of CNN

The deep learning model is constructed in such way that
a hierarchical feature representation is formed from low
level to high level as the depth of network increases.
When such networks are trained with natural images such
as the ImageNet data set, the feature representations in
the lower layers are expected to be generic features such
as edge and corner detectors. In contrast, the features
in higher layers are expected to represent objects spe-
cific to the training set. Hence, for the task of natural
object recognition, the features extracted from higher lev-
els usually yielded better discriminative power [10]. In
our experiments, the discriminative power increases from
layer 6 to layer 12, and then drops afterwards as the depth
of network increases. This indicates that gene expression
features are best represented in the intermediate layers of
CNN that was trained on natural image sets. This might
be explained by the fact that the high-level features mainly
capture data set specific object information such as the
natural objects from the ImageNet data set. Whereas, the
task of identifying gene expression patterns of brain struc-
tures from ISH images is based on small portions of ISH
images, and our current study only identified gene expres-
sion as either detected or undetected. Such tasks are likely
to rely on texture-like information. Such type of local
and texture-like information is usually represented in the
intermediate layers of networks.

This observation raised an interesting point. That is, as
the number of annotated ISH images increases for differ-
ent model organisms, such as fruit fly, worm, fish, and
mouse, we may be able to train a CNN using these images.
We anticipate that the CNN trained with ISH images
would achieve better performance than that trained with
natural images.

Functional annotation of genes

Inspired by the results that our approach of employing
CNN outperformed the bag-of-words approach on the
task of annotating gene expression patterns, we expand
the application of CNN to the tasks of gene ontology
functional annotation to show the generalization power of
CNN pre-trained on natural images. In [17] such anno-
tation was achieved using the bag-of-words approach on
adult mouse brain. Similar to the approach described in
Section “Methods”, we extracted features using the bag-
of-words and CNN methods on adult mouse ISH image
sets. We then compared the performance on the task of
gene ontology annotation using these two types of fea-
tures over 100 terms with the highest numbers of positive
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annotations. Our results show that CNN could achieve
an average AUC of 0.5966 £ 0.0294 over 100 terms. In
comparison, the bag-of-words features yielded an average
AUC of 0.5746 =+ 0.0240 (p < 1.16 x 10713, Wilcoxon
signed rank tests). These results demonstrated that the
features extracted from CNN are robust and can be used
in different annotation tasks.

Conclusion

In this study, we proposed methods for annotating the
mouse brain gene expression patterns automatically. Alto-
gether, the results showed that advanced computer vision
and machine learning techniques we used are capable
of achieving high accuracy. In addition, gene expression
annotation can be achieved at various levels of brain struc-
tures without providing explicit spatial information. This
is likely due to the robust properties of SIFT and deep
convolution neural networks in producing invariance fea-
tures. More interestingly, CNN model learned on natural
image sets and applied to gene expression annotation
tasks yielded superior performance, demonstrating its
transfer learning property is applicable to such biological
image sets.

Due to the high cost of manual annotation, expert
annotation data are only available for four out of the
seven developing stages. We will explore transfer learning
techniques to predict the annotations in the other three
stages by leveraging the knowledge in the currently anno-
tated four stages. Due to the class imbalance problem in
data set and the tremendous amount of high-resolution
ISH images, we employed a binary-classification scheme
in this work. However, the other gene expression levels
and patterns would be more informative as they provide
detailed information about gene expression of brain struc-
tures. We will explore advanced techniques to overcome
the class imbalance problem and formulate the annotation
problem into a set of multi-class classification tasks in the
future.
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