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Abstract

Background: High throughput sequencing technologies are able to identify the whole genomic variation of an
individual. Gene-targeted and whole-exome experiments are mainly focused on coding sequence variants related
to a single or multiple nucleotides. The analysis of the biological significance of this multitude of genomic variant is
challenging and computational demanding.

Results: We present PaPI, a new machine-learning approach to classify and score human coding variants by
estimating the probability to damage their protein-related function. The novelty of this approach consists in using
pseudo amino acid composition through which wild and mutated protein sequences are represented in a discrete
model. A machine learning classifier has been trained on a set of known deleterious and benign coding variants
with the aim to score unobserved variants by taking into account hidden sequence patterns in human genome
potentially leading to diseases. We show how the combination of amphiphilic pseudo amino acid composition,
evolutionary conservation and homologous proteins based methods outperforms several prediction algorithms and
it is also able to score complex variants such as deletions, insertions and indels.

Conclusions: This paper describes a machine-learning approach to predict the deleteriousness of human coding
variants. A freely available web application (http://papi.unipv.it) has been developed with the presented method,
able to score up to thousands variants in a single run.
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Background
New sequencing technologies are becoming increasingly
cost effective [1-3]. At the same time, human genomic
data availability is expected to increase due to the grow-
ing number of human genomes being sequenced. As a
matter of fact, targeted sequencing and whole-exome se-
quencing have become nowadays well-established strat-
egies to identify genomic variants related to diseases and
drastically reduce sequencing costs [4-8].
One of the major challenges for these kinds of studies

consists to point out, among the multitude of the identi-
fied variants, those that are related to a target phenotype
or are potentially harmful for the individual health.
A basic approach consists of checking whether a vari-

ant is reported and described in one of the publicly avail-
able resources, e.g. the 1000 Genomes Project database
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(1TGP) [9] with 1092 individual human genome se-
quences along with their coding and noncoding vari-
ants, and the NHLBI GO Exome Sequencing Project
(ESP) [10], reporting only exome variants from 6503
human samples across diverse populations. Phenotype-
related genomic variants resources are also available,
such as ClinVar [11] and Human Gene Mutation Data-
base (HGMD) [12], the latter made of coding variants in
the 75% of cases.
Unfortunately, only a small number of variants of the

human genome have been identified as pathogenic by
family or cohort studies and clinically validated by
experimental evidence [13].
For this reason, several algorithms have been devel-

oped in order to score variants according to the inferred
deleteriousness for their encoded protein. They are gener-
ally based on four different approaches: multiple sequence
alignment (MSA) methods of homologous proteins
[14,15] such as SIFT [16], protein structure information
such as PolyPhen2 [17], comparative evolutionary data
tral. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
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Table 1 Damaging and tolerated variant sets

Damaging (HGMD) Tolerated (1TGP + ESP)

# initial variants 176523 65377

- # SYN 1333 36546

- # FR/SC/SD 77627 929

# final variants 97653 27902

Damaging and tolerated sets after synonymous-SNVs and frameshift,
stop-causing and stop-disrupting variants removal. An instance of the data set
is the coding variant relative to the transcript to which overlaps.
SYN = synonymous, FR = frameshift, SC = stop-causing, SD = stop-disrupting.

Table 2 Three random variant sets

Set Training Test

Damaging Tolerated Damaging Tolerated

# 1 25291 19570 10729 8332

# 2 25318 19570 10861 8332

# 3 17838 13763 7616 5879

Three quasi-balanced variant sets were generated randomly and divided by
training (70%) and test (30%) sets.
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[18-21] and structural or sequence pattern encoding
[22]. Since each algorithm has some limitations, one ap-
proach to detect a deleterious variant consists of testing
several independent methods and checking if at least
one assesses its pathogenicity [23,24]. This strategy has
high sensitivity, but poor specificity, thus leading to low
accuracy. Therefore, a number of algorithms that com-
bine the outputs of several predictors and optimize ac-
curacy on known variant sets have been developed
[25-27]. Moreover, methods that use prior knowledge
(e.g. Human Phenotype Ontology, Gene Ontology) in
combination with functional predictions in order to
rank variants on the basis of a given phenotype [28,29]
have been successfully implemented, as well.
In this scenario, due to the importance of having more

accurate and exhaustive variant functional predictors, we
here propose a new phenotype-free method based on
pseudo amino acid composition (PseAAC) [30] and evo-
lutionary conservation in combination with other two
well-established and commonly-used approaches (Poly-
Phen2 and SIFT). We believe that our approach may
provide a valuable addition to the worldwide research
efforts devoted to predicting the role of uncharacterized
variants.
PseAAC is a feature encoding method allowing both

compositional and positional amino acid pattern repre-
sentation of peptide primary sequence in a discrete
model. Given a peptide sequence, PseAAC is computed
by modeling pairwise relationships between amino acids
using residues chemical properties (see Methods). In
particular, we used amphiphilic PseAAC, based on nor-
malized hydrophobicity and hydrophilicity: the arrange-
ment of these two indices along a protein chain play an
important role in protein folding, catalytic mechanism
and protein interaction with other molecules and envir-
onment [31]. For example, hydrophobicity is often a
major contributor of binding affinity between a protein
and its ligand [32], hydrophilic residues such as Arg,
Asp, Lys, and Glu have the highest protein-surface
frequencies [33], and intrinsically disordered regions
(IDRs) usually have few large hydrophobic residues but
favour polar and charged amino acids [34].
Previous studies [35,36] analysed human coding vari-

ants in terms of amino acid substitution both in disease
and natural background variant datasets, such as HGMD
and 1TGP. Such studies showed that disease-associated
variant distributions are radically different from neutral
amino acid ones and that disease-associated variants ex-
hibit more extreme differences in terms of physicochem-
ical properties such as amino acid volume, charge and
hydrophobicity.
We therefore coupled hydrophobicity and hydrophil-

icity PseAAC feature encoding with machine learning
to develop a model able to learn pseudo amino acid
composition substitution patterns following coding
variants that can alter protein function and/or struc-
ture, leading to disease.
The difference in terms of PseAAC between wild and

mutated protein sequences together with evolutionary
conservation scores of the altered bases have been used as
features to train a Random Forest (RF) [37] with the aim
to score coding variants into protein-damaging or toler-
ated class. Since PseAACs model amino acid relationships
in terms of hydrophobicity and hydrophilicity arrange-
ments within the wild and mutated sequences, RF is sup-
posed to learn from substitution patterns occurring at
amino acid composition level in terms of frequency and
order. A variant is therefore implicitly evaluated within its
sequence context.
We finally combined the RF output with PolyPhen2

and SIFT by a voting strategy. Despite the advantages of
combining PolyPhen2 and SIFT have been previously
reported [27], we show the RF inclusion is able to fur-
ther increase prediction performances.
The overall algorithm, called PaPI, provides predic-

tions even for those variants that the other tools cannot
process (e.g. because of lack of data) and it is able to
deal with any variant type, including single nucleotide
variants and insertion or deletion of several nucleotides.
While RF classifiers have been already used in Gen-

omics, from GWAS to RNA-protein binding prediction
[38], to our knowledge, this is the first time that
PseAAC is applied to protein variant prediction.
Results and discussion
Hereby we denote with the term indel the following vari-
ants: insertions, deletions, insertions followed by deletions



Table 3 Performances of RF and LR on the three test sets

Test Set Tool AUC Accuracy [IC95%] Sens Spec PPV NPV F-m MCC

# 1 RF .8988 .8314 [.8381-.8246] .8354 .8274 .8298 .8331 .8326 .6629

LR .8770 .8118 [.8188-.8047] .8410 .7825 .7957 .8301 .8177 .6246

# 2 RF .90 .8310 [.8377-.8242] .8370 .8250 .8282 .8340 .8325 .6621

LR .8752 .8121 [.8190-8049] .8464 .7775 .7931 .8340 .8189 .6255

# 3 RF .9035 .8344 [.8422-8262] .8406 .8280 .8311 .8377 .8358 .6687

LR .8833 .8168 [.8250-.8083] .8459 .7875 .8003 .8355 .8225 .6346

Performances of the Random Forest (RF) and Logistic Regression (LR) on the three test sets. Area under the curve (AUC), accuracy with 95% confidence interval,
sensitivity (Sens), specificity (Spec), Positive Predictive Value (PPV), Negative Predictive Value (NPV), F-measure (F-m) and Matthews correlation coefficient (MCC)
are reported for each method.
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(or vice-versa) and multi-nucleotide variants. We refer to
single nucleotide variants (SNVs) in case of non-
synonymous single nucleotide variants that lead to a single
amino acid change. Finally, we denote as in-frame and
frameshift indels those variants causing the insertion/dele-
tion of one or more amino acids and those altering the
open reading frame of the coding sequence, respectively.
Known coding disease-related variants (damaging)

were retrieved from HGMD, including SNVs and indels.
We assumed that frequent genomic variants are less
suitable of being deleterious, therefore, tolerated variants
were retrieved by combining 1TGP and ESP selecting
only polymorphic (frequency higher than 0.05) and
unique variants. Due to the unbalancing between dam-
aging versus tolerated variants of the resulting dataset
(Table 1), we randomly split it into three quasi-balanced
sets. We further split each into a training (70%) and test
(30%) set (Table 2). The whole process is explained in
the Methods section.
For each variant, the difference in PseAAC between wild

(reference genome) and mutated amino acid sequence
Table 4 Performances of RF, PolyPhen2, SIFT and PaPI on the

Test Set Tool AUC Accuracy [IC95%]

# 1 PaPI .9207 .8621 [.8553-.8685]

RF .8941 .8262 [.8189-.8334]

PolyPhen2 .9137 .8425 [.8354-.8493]

SIFT .8682 .8045 [.7968-.812]

# 2 PaPI .9196 .8618 [.8550-.8683]

RF .8960 .8275 [.8202-.8346]

PolyPhen2 .9121 .8401 [.8330-.847]

SIFT .8677 .7994 [.7917-.807]

# 3 PaPI .9239 .8648 [.8568-.8724]

RF .8999 .8289 [.8202-.8373]

PolyPhen2 .9185 .8416 [.8331-.8497]

SIFT .8688 .7999 [.7906-.8088]

Performances of the Random Forest (RF), PolyPhen2, SIFT and PaPI (RF + PolyPhen2
confidence interval, sensitivity (Sens), specificity (Spec), Positive Predictive Value (PP
coefficient (MCC) are reported for each method. Test sets were filtered in order to r
was computed, resulting in a set of quantitative features,
used to train and test a machine learning classifier. Three
evolutionary conservation scores and three full length pro-
tein attributes were included in the feature set as well (see
Methods).
An RF and a Logistic Regression (LR) models were

built upon the resulting training sets, while perfor-
mances were measured on each relative test set. The RF
achieved an average area under the curve (AUC) of
0.897 and an average accuracy of 0.832 on the three sets,
resulting in performances higher than the LR ones
(AUC = 0.878, accuracy = 0.813, see Table 3 and see
Additional file 1: Figure S1). The gap between the two
classifiers can be explained by the complexity of the
feature set: given its non-linear nature, RF is more suitable
to detect hidden structures in data with respect to the LR.
In order to quantify the contribution of PseAAC fea-

tures in classification we measured the performance of
the RF trained on the aforementioned training sets with-
out evolutionary conservation scores and full length pro-
tein features (see Additional file 1: Table S1). In other
three test sets

Sens Spec PPV NPV F-m MCC

.8580 .8663 .8688 .8553 .8633 .7242

.8286 .8238 .8291 .8233 .8289 .6524

.8533 .8314 .8392 .846 .8462 .6849

.7724 .8376 .8307 .781 .8005 .6108

.8572 .8665 .869 .8545 .8631 .7236

.8319 .823 .8292 .8257 .8305 .6549

.8486 .8314 .8387 .8417 .8436 .6801

.7625 .8376 .829 .7735 .7944 .6013

.8570 .8729 .8745 .8553 .8657 .7298

.8358 .8218 .8289 .8289 .8323 .6577

.8501 .8328 .8401 .8432 .8451 .6831

.7558 .8454 .8348 .7701 .7933 .603

+ SIFT) on the three test. Area under the curve (AUC), accuracy with 95%
V), Negative Predictive Value (NPV), F-measure (F-m) and Matthews correlation
etain only those variants that both PolyPhen2 and SIFT were able to predict.



Figure 1 ROC curves of the RF, PolyPhen2, SIFT and PaPI (RF +
PolyPhen2 + SIFT) ROC curves of Random Forest (RF), PolyPhen2,
SIFT and their ensemble (PaPI) on the three test sets. Variants that
PolyPhen2 and/or SIFT were not able to predict were filtered out.
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words, we assessed a RF model based on PseAAC only.
Notably, the RF trained solely on PseAAC reached, on
average, an AUC and accuracy of 0.88 and 0.82 respect-
ively. This is only about one percent less than the RF
holding the complete feature set.
We finally combined the RF model with PolyPhen2 and

SIFT scores through the implemented voting scheme. In
order to independently measure performances of the three
algorithms on the same data, test sets were filtered out for
variants that PolyPhen2 and/or SIFT were not able to pre-
dict. The combined approach, which we called PaPI, in-
creased the overall performances: AUC, accuracy and
Matthews correlation coefficient (MCC) are increased in
average by 2, 3 and 7 percentage points respectively when
compared to the RF model alone. Sensitivity, specificity
and other performance metrics of the RF, PolyPhen2, SIFT
and PaPI on the three test set are reported in Table 4
while receiver operating characteristic (ROC) curves are
reported in Figure 1. Being PaPI an ensemble method
based on three classifiers, we also analysed the predic-
tion consistency among the three tools. The great ma-
jority of the correct predictions (over 75%) finds RF,
PolyPhen2 and SIFT in agreement. More details are sum-
marized by the Venn diagrams reported see Additional
file 1: Figure S2.

Performances on unpredictable variants for PolyPhen2
and SIFT
We further proceeded to evaluate PaPI performances on
those variants of the test sets for which both PolyPhen2
and SIFT were unable to give a prediction, resulting in a
total of 416 tolerated and 974 damaging missed vari-
ants. In these cases, PaPI classes and scores coincide
with the RF predictor ones. The average area under the
curve (AUC) of the RF was equal to 0.94 while the aver-
age accuracy on the three variant sets was equal to 0.87
(see Table 5 for the performance metrics and Additional
file 1: Figure S3 for ROC curves).

Comparison with other variant prediction tools
PaPI’s performances were compared to the following vari-
ant predictors: Carol [27], PROVEAN [39], FATHMM
[15], MutationAssessor [14], LRT [21], PolyPhen2 and
SIFT. A brief description of each algorithm is reported
in Additional file 2.
Thanks to the RF model, PaPI is capable to score vari-

ants of any kind up to 60 nucleotides (see Methods).
PolyPhen2, SIFT, FATHMM, MutationAssessor and LRT
only classify SNVs, while PROVEAN deals with in-frame
but not frameshift indels (see Additional file 3). Further-
more, these tools may be unable to provide some pre-
dictions due to lack of information (e.g. when only few
homologous sequences exist or remain after their filter-
ing). Therefore, in order to obtain a fair comparison, we



Table 5 PaPI performances on the unpredictable variants by PolyPhen2 and SIFT

Test Set Tool AUC Accuracy [IC95%] Sens Spec PPV NPV F-m MCC

# 1 PaPI (RF) .9368 .8676 [.8420-.8896] .9171 .8245 .8198 .9196 .8657 .7405

# 2 PaPI (RF) .9418 .8611 [.8352-8836] .9214 .8077 .8095 .9205 .8619 .7296

# 3 PaPI (RF) .942 .8830 [.8523-9080] .9256 .845 .8421 .9271 .8819 .7699

PaPI performances on the three test retaining only those variants unpredictable both for PolyPhen2 and SIFT. In this case, PaPI coincides with RF. Area under the
curve (AUC), accuracy with 95% confidence intervals, sensitivity (Sens), specificity (Spec), Positive Predictive Value (PPV), Negative Predictive Value (NPV), F-
measure (F-m) and Matthews correlation coefficient (MCC) are reported for each method.

Table 7 Missing rates on the three unfiltered test sets

% Missing rate

Set #1 Set #2 Set #3

PolyPhen2 7.66 7.68 7.34

SIFT 10.41 10.39 9.8
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removed from the aforementioned test sets those vari-
ants that other algorithms were unable to score
(Table 6). While PaPI scored every variant, missing rates
of the other prediction tools on the three sets ranged
from 7.34% to 23%, as reported in Table 7.
The average AUC and balanced accuracy of PaPI were

of 0.926 and 0.864 respectively, reporting an average in-
crease of 1.5 and 3.3 percentage points in balanced ac-
curacy and MCC when compared to the second best
predictor (Carol). Negative/positive predictive values and
other performance metrics are reported in Table 8. ROC
curves of each predictor are reported in Figure 2.

PaPI exploits pseudo amino acid composition substitution
patterns for disease-related variant prediction
We hereby show the case of a disease-related variant for
which the RF is the solely to correctly assign the right
prediction in contrast to PolyPhen2, SIFT and the other
cited tools. This example shows therefore how the RF
can positively contribute to a correct variant evaluation
by exploiting pseudo amino acid composition substitu-
tion patterns in specific protein-coding regions.

GUCY2C - Asp387Gly
Romi et al. [40] identified a single mutation p. (Asp387Gly)
in the guanylate cyclase 2C (GUCY2C) transmembrane
receptor causing meconium ileus (MI), an intestinal ob-
struction in newborns. GUCY2C has an extracellular
domain that is activated by ligands (guanylin and related
peptide uroguanylin or E.coli heat-stable enterotoxin
STa). The p. (Asp387Gly) mutation is within an essential
region of its extracellular ligand-binding domain and is
adjacent to seven other pivotal amino acids for the
ligand binding [41]. The resulting significant reduction
of ligand-binding leads to a reduction in guanylate cyclase
Table 6 Filtered test sets

Set Damaging Tolerated All

# 1 5189 3631 8820

# 2 5105 3631 8736

# 3 3618 2553 6171

The three filtered-variant set used for comparison with PolyPhen2, SIFT, Carol,
PROVEAN, FATHMM, MutationAssessor and LRT. Test sets are divided by
Tolerated and Damaging set.
activity and activates a signalling cascades that finally leads
to MI.
The GUCY2C extracellular domain belongs to the

periplasmic binding protein-like I superfamily domain and
corresponds to the extracellular ligand-binding receptor,
IPR001828 in InterPro database [42]. The same domain is
shared by other 157 human proteins (including the one
encoded by GUCY2C). Among the disease variant set
used for RF training, 242 disease variants belonging to
the IPR001828 domain and related to 7 proteins are
present. We suppose that the RF learned the model of
substitution patterns in the extracellular domain of
these proteins and therefore it was able to assign the
correct prediction for p. (Asp387Gly) in the GUCY2C
encoded protein.

PaPI leads to right prediction in case of PolyPhen2 and
SIFT conflict
Here we report an example that shows how PaPI can
correctly classify variants for which PolyPhen2 and SIFT
are discordant in prediction.
Tchernitchko et al. [43] compared PolyPhen and SIFT

considering several variants known to be responsible for
affecting the products of hemoglobin and glucose-6-
phosphate dehydrogenase genes, leading to several forms
of sickle cell anemia and G6PD deficiency, respectively.
In the results in that paper, PolyPhen and SIFT had
discordant predictions on ten pathogenic variants, for
Carol 11.05 11.44 10.98

PROVEAN 9.85 9.89 9.34

FATHMM 7.64 7.72 7.09

MutationAssessor 9.78 9.72 9.58

LRT 22.99 22.82 22.23

PaPI 0 0 0

Missing rates (i.e. algorithm unable to provide prediction) of considered
algorithms on the three unfiltered test sets.



Table 8 Performances of different prediction tools on the three filtered test sets

Data Set Tool AUC Balanced Accuracy Sens Spec PPV NPV F-m MCC

# 1 PaPI .9218 .8575 .8518 .8631 .8989 .803 .8747 .7084

Carol .9120 .8492 .821 .8774 .9054 .7742 .8611 .689

Provean .8938 .8264 .7894 .8634 .892 .7415 .8375 .643

SIFT .883 .8142 .7633 .8651 .8899 .7189 .8218 .6185

PolyPhen2 .9144 .8425 .8503 .8348 .8803 .796 .865 .6806

FATHMM .8301 .7517 .6267 .8766 .8789 .6217 .7317 .502

LRT .8455 .8249 .8009 .8488 .8833 .749 .8401 .6409

MutAssessor .8899 .812 .7578 .8662 .89 .7144 .8186 .6141

# 2 PaPI .9246 .863 .8623 .8637 .8989 .8169 .8802 .7209

Carol .9121 .8442 .811 .8774 .9029 .7675 .8545 .6794

Provean .8984 .8354 .8074 .8634 .8926 .7613 .8479 .6623

SIFT .8836 .8091 .7532 .8651 .887 .7137 .8146 .6094

PolyPhen2 .9183 .8491 .8635 .8348 .8802 .813 .8717 .6957

FATHMM .8355 .7603 .6441 .8766 .8801 .6366 .7438 .5187

LRT .8506 .8317 .8147 .8488 .8834 .7651 .8477 .656

MutAssessor .8923 .8134 .7606 .8662 .8888 .7202 .8197 .6178

# 3 PaPI .9332 .8721 .8751 .8692 .9046 .8308 .8896 .7398

Carol .9239 .8551 .8187 .8915 .9145 .7763 .8639 .7004

Provean .9159 .8444 .8156 .8731 .9011 .7697 .8562 .6797

SIFT .8911 .8166 .759 .8743 .8953 .7191 .8215 .6238

PolyPhen2 .9303 .8542 .8729 .8355 .8826 .8226 .8777 .7068

FATHMM .8436 .7643 .6410 .8876 .8899 .6356 .7452 .527

LRT .8682 .8408 .8289 .8527 .8886 .7786 .8577 .6744

MutAssessor .8988 .8273 .7772 .8774 .8998 .7354 .8341 .6449

Comparison of PaPI, PolyPhen2, SIFT, Carol, PROVEAN, FATHMM, LRT and MutationAssessor on the three test sets filtered for unpredictable variants by the other
prediction tools. Area under the curve (AUC), balanced accuracy (sensitivity/2 + specificity/2), sensitivity (Sens), specificity (Spec), Positive Predictive Value (PPV),
Negative Predictive Value (NPV), F-measure (F-m) and Matthews correlation coefficient (MCC) are reported for each method. Highest values for each set are
marked in bold.
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which experimental evidence was reported. We therefore
run PaPI on the same variant set and we correctly classi-
fied all of them as damaging. Five variants were pre-
dicted both by PolyPhen2 and SIFT (thanks to updated
versions now available) as damaging while for the other
five variants there were still discordant predictions be-
tween these tools (Table 9). For these cases, the RF vote
allowed obtaining the right class assignment. Notably,
SIFT is able to assign the right class for each variant as
well, despite we show that RF and SIFT have the lowest
concordance rate in prediction in case of PolyPhen2
conflict (see Additional file 1: Figure S2). The complete
variant list is reported in Additional file 4.

Web accessible tool
PaPI software is freely available online (http://papi.
unipv.it) as a web accessible tool.
The user interface allows to submit a single variant or

to perform queries in bulk by uploading a plain text file
with a list of variants.
Users can choose between the RF and LR model. Al-
though we showed LR is less accurate than RF, it is faster
and can be used for a quick response.
Two different gene annotation models are available

(RefSeq and GENCODE) and a variant score is given for
each different transcript.
Results are reported in a tab-delimited text file and

can be sent by email: PaPI prediction (damaging or tol-
erated) along with its confidence score plus prediction/
scores of RF/LR, PolyPhen2 and SIFT. Each variant
comes with information about transcript, gene, type
(missense, synonymous, frameshift etc.) and evolutionary
conservation scores. Prediction runtime takes, in aver-
age, between 0.3 and 0.7 seconds per variant.

Conclusions
We developed a new method, called PaPI, to classify and
score human coding variants potentially leading to func-
tional alterations of related proteins. Since the algorithm
has been trained on HGMD database, which is intended

http://papi.unipv.it/
http://papi.unipv.it/


Figure 2 ROC curves comparison between prediction tools. ROC
curves of PaPI, PolyPhen2, SIFT, Carol, PROVEAN, FATHMM, LRT and
MutationAssessor on the three filtered test sets.
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for the analysis of human Mendelian diseases, we expect
PaPI to be more accurate for such class of diseases.
The main novelty of the approach is the introduction

of features based on the difference in pseudo amino acid
composition between snippets of wild and altered pro-
tein sequences where coding variants occur. Hydropho-
bicity and hydrophilicity pairwise relationships between
amino acids are encoded by these features. Evolutionary
conservation scores and quantitative descriptors at the
whole protein level were included in the feature set as
well. A RF classifier was trained on these features to
mine disease and neutral pseudo amino acid compos-
ition substitution patterns and classify unseen coding
variants into damaging or tolerated class.
Despite it has been shown that the combination of

variant classifiers is not always beneficial [44], we
showed that the implemented voting strategy between
PolyPhen2, SIFT and our RF model improves perfor-
mances in terms of area under the curve, accuracy and
other reported metrics in comparison to the ones of
each predictor alone. Considering only those variants
that PolyPhen2 and SIFT are unable to predict, PaPI
maintains high performances thanks to the RF model.
Moreover, it has to be noted that in case of prediction
by both PolyPhen2 and SIFT, PaPI is biased toward se-
quence conservation, because of the majority voting sys-
tem between the RF and these two tools [45].
We compared PaPI with other variant prediction tools

(PolyPhen2, SIFT, Carol, PROVEAN, FATHMM, Muta-
tionAssessor, LRT) and we showed that PaPI perfor-
mances were the highest on the data sets used. Notably,
PaPI is able to score any variant, including the ones that
the other mentioned methods were unable to predict.
We have reported an example for which the RF model

is the only algorithm that predicts the correct class,
thanks to its capability of exploiting potential disease-
related pseudo amino acid composition substitution
patterns such as protein ligand-binding domains. We
also showed several examples where the RF model vote
leads to a correct prediction, in case of conflict between
PolyPhen2 and SIFT.
To our knowledge, PseAAC has never been used in

variant prediction. We are confident that the algorithm
can be further improved by optimizing other parameters
(e.g. length of sequence snippets surrounding variants)
or by exploring other PseAAC descriptors (e.g. including
amino acid side chain mass property).

Methods
PaPI is an ensemble classifier consisting of a voting
scheme that includes a RF classifier, PolyPhen2 and SIFT.
The RF model have been trained on PseAAC differences
of mutated and wild protein sequences, evolutionary
conservation scores and several full-length protein



Table 9 Examples of known disease-related variants

Gene Protein PP2 SIFT RF Related Phenotype PaPI

HBB p.E7V B (0.002) D (0.01) D (0.891) Sickle cell anemia D (0.901)

p.E122Q B (0.007) D (0.01) D (0.975) Severe sickle cell syndromes D (0.975)

p.E122K B (0.109) D (0.0) D (0.96) D (1.0)

p.E7K B (0.006) D (0.01) D (0.94) D (0.94)

G6PD p.S188F B (0.039) D (0.04) D (0.988) G6PD deficiency D (0.988)

Known disease-related variants reported by Tchernitchko et al. for which occurs a different outcome in prediction by PolyPhen2 (PP2) and SIFT. For these cases,
the RF is able to vote for the right class leading PaPI to the correct prediction as well. In brackets the score for each variant predictor is reported.
B = tolerated, D = damaging.
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attributes. Figure 3 depicts the workflow through
which a new variant is classified and assigned a score,
representing its risk of being protein damaging.

Psuedo amino acid composition
An amino acid sequence can be represented by a set of
discrete numbers mapping the patterns of its amino acid
physico-chemical properties into a fixed number of
features.
Traditional amino acid composition approach has

been widely used in predicting protein structural class
[46,47] and it merely records amino acids frequencies in
a protein sequence.
PseAAC adds a number of position-related features and

therefore it reflects both compositional and sequential
order. We utilized, in particular, amphiphilic PseAAC,
Figure 3 Feature encoding scheme. A genomic variant is translated into w
PseAAC features is computed and is given as input to the trained RF mode
protein attributes. PolyPhen2, SIFT and RF results are finally combined toge
based on normalized hydrophobicity and hydrophil-
icity [31].
In brief, given a protein sequence P with L amino acid

residues:

P ¼ A1A2A3A4A5A6… AL

it is possible to convert it into a finite set of number P’

P’ ¼ p1; p2; p3; p4; p5;…; p20; p20þ1;…; p20þ2λ

� �

where the first 20 numbers are functions of the frequen-
cies of the 20 amino acids within P and the remaining
2λ are a set of correlation factors that reflect different
hydrophobicity and hydrophilicity distribution patterns
along a protein chain. Correlation factors are given by
coupling the most contiguous residues whose contigu-
ity condition varies according the considered tier (see
ild and mutated amino acid sequences. The difference in terms of
l along with evolutionary conservation scores and several full-length
ther to obtain the final PaPI class and score.



Limongelli et al. BMC Bioinformatics  (2015) 16:123 Page 9 of 14
Figure 4). The maximum number of tiers corresponds
to λ. Coupling is then given by the hydrophobicity and
hydrophilicity correlation functions.

H1
i;j ¼ h1 Aið Þ : h1 Aj

� �
; H2

i;j ¼ h2 Aið Þ : h2 Aj
� � ð1Þ

where h1 (Ai) and h2 (Ai) are, respectively, the hydropho-
bicity and hydrophilicity values for the ith (i = 1,2,…, L)
amino acid in P. Correlation functions are summed over
each λ-tier and the 20 + 2λ coupling factors are given\

pu ¼

f uX20

i¼1
f i þ w

X2λ

j¼1
τj
; 1≤u≤20

X20

i¼1
f i þ w

X2λ

j¼1
τj

; 20þ 1≤u≤20þ λ

8>>><
>>>:

ð2Þ
where fi are the normalized frequencies of the possible
20 amino acids in P, τj is the sum of the j-tier correlation
functions and w is a weight factor.

Feature set
The features utilized for RF and LR training can be di-
vided into three groups: (a) PseAAC, (b) full-length
primary sequence attributes, and (c) evolutionary con-
servation scores. The three feature groups are described
as follows.

PseAAC
Given a genomic variant overlapping a protein, we first
generated the altered protein sequence in according to
the coding frame, we then considered the 20 amino acid
residues upstream and downstream the first mutated
amino acid forming a snippet of 41 amino acid residues.
The same procedure is followed in the case of the
Figure 4 Amphiphilic PseAAC representation. This is a diagram shows how
and hydrophilicity (k = 2), vary in each tier by coupling residues at different
corresponding wild type protein sequence. Amphiphilic
PseAAC is then computed by PseAAC-builder [48] for
both wild and mutated snippets. The variant-sequence
features are finally encoded as the element-wise differ-
ence of wild and mutated PseAAC vectors (see Figure 5).
Note that even if the method allows theoretically dealing
with amino acid sequence changes of any length, only
insertions/deletions up to 20 amino acids (60 nucleo-
tides) were considered for PseAAC model training.
We chose two 20 amino acid flanking regions for two

reasons. First, since the features are encoded by PseAAC
differences, considering large sequence portions (e.g. the
whole primary structure) could introduce noise and di-
lute the PseAAC difference information content, espe-
cially in case of single amino acid substitution, where
both positional and composition change would be min-
imal. Second, we considered that protein short func-
tional regions, such as short linear motifs, which play a
pivotal role in protein interactions, range from 3 to 11
amino acids in length [49]. Changes in their flanking re-
gions could severely alter the protein function as well
[40,50]. We therefore assumed that 20 amino acids con-
stitute a reasonable window size to encompass possible
short functional motifs and their flanking regions.

Full length primary sequence attributes
We included in the RF model three features related to
variant position and protein length. First, we considered
the difference and the ratio between mutated and wild
amino acid sequence lengths. In other words, we mea-
sured the number of possible lost/inserted amino acids
caused by the variant. Second, we considered the pos-
ition of the variant in the amino acid sequence normal-
ized by the protein length (e.g. 0.9 for a 100 amino acids
the correlation factors Hk, based on amino acid hydrophobicity (k = 1)
distances.



Figure 5 Example of PseAAC variant feature encoding. A genomic variant is translated into the relative wild and mutated amino acid sequences.
PseAAC for both wild and mutated protein snippets are computed and the differences between each PseAAC term makes the PseAAC
feature set.

Limongelli et al. BMC Bioinformatics  (2015) 16:123 Page 10 of 14
long protein and its mutated amino acid at the 90th
position). This feature reflects the fact that some kind of
variants affecting the initial part of the primary sequence
may have a huge damaging potential for the whole pro-
tein (e.g. a stop-causing variant).
Evolutionary conservation scores
Gerp++ [18], PhyloP [19] and Siphy [20] were chosen
because they apply different and complementary methods
to weight nucleotide conservation among different spe-
cies. In case of indels, the following policy was adopted: in
case of deletion we took the highest score among the
deleted nucleotide bases; in case of insertion we took the
highest score between the two reference bases where
insertion occurs.
Parameter tuning
The implemented RF model is based on Weka libraries
[51]. We tuned RF model parameters by running an in-
dependent 10-fold cross validation on each of the gener-
ated training sets. The considered parameters were four,
two related to the RF (number of trees and number of
features per node) and two related to the PseAAC (λ
and w). Parameter details are shown in Table 10. Note
that the 41 amino acid snippet length used to com-
pute PseAAC is fixed and it was not included in the
Table 10 Parameter values used for RF model tuning

Parameter Used in Values

# trees RF 5, 10, 50, 100, 150, 200, 250, 300, 350

# features per node RF int (log (# trees) +1), 2, 4

λ PseAAC 4, 8, 12, 16, 20

w PseAAC 0.5, 0.1

List of parameters and relative values used for the optimization of the RF
model on training sets.
optimization parameters. For each training set, we obtained
the same optimal set of parameters, w = 0.1, λ = 12, number
of trees = 250 and number of features per node = 2.
According to the PseAAC representation, λ determines

the number of positional features (if λ = 0, we have the
traditional amino acid composition representation). In
the amphiphilic PseAAC, features are 20 (frequency re-
lated) + 2*λ (positional). As a consequence, the total
number of features varies according to λ, from a mini-
mum of 30 (24 for PseAAC, 3 for quantitative attributes
and 3 evolutionary conservation scores) to a maximum
of 66 (60 for PseAAC + 3 for quantitative attributes + 3
evolutionary conservation scores). Thus, with λ = 12, our
RF model uses 50 features (44 + 3 for quantitative
attributes + 3 evolutionary conservation scores). Being λ
responsible for 4 to 60 features in the RF model, the fea-
ture selection process stands implicitly in the λ param-
eter tuning. The selected model includes 50 features and
it is trained on datasets including tens of thousands vari-
ants (from 31601 to 44888, as shown in Table 2). Since
the number of samples is much greater than the number
of features, we did not proceed with a further feature
selection.
Amino acid sequences shorter than λ + 1 cannot be

represented with PseAAC. This issue, nevertheless, can
happen only in the case of a coding mutation that intro-
duces a premature stop-codon at the beginning of the
protein: this is the case of stop-gain variants; these mu-
tations are automatically labeled as deleterious. It has to
be noted that, considering λ = 12, only 438 mutated se-
quences (out of about 204 K of the overall dataset) were
too short to be represented by this PseAAC model.

Data sets
We obtained positive (damaging) variants from the
HGMD (updated to May 2013). Variants were annotated
by ANNOVAR [52] using the RefSeq gene model. All



Figure 6 (See legend on next page.)
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Figure 6 Data set workflow. Workflow representing the data set selection. Variants from HGMD, 1TGP and ESP were filtered basing on coding,
frequency and non-overlapping (unique) variants among the different data sources. In order to evaluate and compare the performances of the variant
predictor tools, variants were further filtered for frameshift, stop-disrupting, stop-causing and variants not predictable for the other algorithms.
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non-coding variants, as well as variants reported with a
frequency higher than 5% in the total of 1092 samples
from 1TGP (April 2012 release) were filtered out. Nega-
tive (tolerated) variants were extracted from the afore-
mentioned release of 1TGP and from ESP (6500si
release) retaining only variant at frequency higher than
0.05. Non-coding and synonymous variants were filtered
out by ANNOVAR. Each variant was then processed by
the PaPI annotation framework in order to build the
relative feature set (see Additional file 5: S1).
The original variant dataset consisted of 204021 cod-

ing SNVs and indels, distinguished by transcript and fil-
tered out for synonymous SNVs. Stratification for
descriptive protein alteration to the primary structure
unveiled a significant proportion (about 44%) of frame-
shift indels or stop-causing/disrupting variants in the
damaging set in comparison to the tolerated one (about
3%), as reported in Table 1.
One can suppose these variants should be treated as

deleterious a priori: the proportion showed above is in
accordance with this hypothesis. Including these variants
in our data set would introduce a severe classification
bias, due to the aforementioned disproportion. There-
fore we randomly assembled three quasi-balanced
training (70%) and test (30%) sets (Table 2) without con-
sidering these types of variants for the evaluation and
comparison steps, but we trained the final RF model
(available online) on the whole unfiltered dataset. In-
deed, PaPI is capable to score stop-causing/disrupting
and frameshift variants as well. The three test sets have
been used to measure the performances of the RF and
LR (Table 3). In order to compare RF, PolyPhen2, SIFT
and PaPI (RF + PolyPhen2 + SIFT) on the three test sets
we further filtered out the variants that PolyPhen2 and/
or SIFT were not able to classify (see Additional file 1:
Table S2).

Comparison data set
PolyPhen2, SIFT and the other compared predictors only
classify SNVs. Furthermore, these tools may be unable
to provide any prediction for lack of information (e.g.
when only few homologous sequences exist or remain
after their filtering). To avoid any bias that could favor
PaPI, we removed from the aforementioned test sets all
the variants that other algorithms were unable to score
(Table 6). The whole data set filtering and processing
workflow is shown in Figure 6. Note that we grouped all
the different transcript-variants for each variant in the
same set, i.e. all the mutated protein isoforms for a vari-
ant were either all in the training or in the test set. This
procedure assured that very similar instances were not
present in both training and test sets.
Voting scheme
The RF model score is computed as the posterior prob-
ability of the class. For each instance, the RF model will
provide a probability score for damaging class and its
complement to one for the tolerated class. The instance
is thus considered damaging if the related score is equal
or larger than 0.5, and a tolerated variant otherwise.
SIFT and PolyPhen2 provide scores in the [0, 1] inter-

val, and the thresholds ts to separate damaging and tol-
erated variants are 0.447 and 0.05 respectively. We
needed to standardize both SIFT and PolyPhen2 scores
in order to compare them with our RF model score. We
thus remapped SIFT and PolyPhen2 results by forcing
scores < ts in the [0, 0.5 [interval, and scores > ts in the
[0.5, 1] interval according the following standardization

A ¼ �ðA’−min A’ð Þ�= max A’ð Þ−min A’ð Þ�� �
� max Að Þ−min Að Þ�þ min Að Þ�

Where A’ is the score in the original interval and A is
the score mapped to the new interval, while min/max
(A) and min/max (A’) are the minimum and maximum
scores of the new and original interval, respectively.
A majority voting scheme is then applied when each

of the three models provides a prediction. That is, in
case of conflict between two tools, the vote on class pre-
diction of the third is determinant for the final class as-
signment (damaging or tolerated). The normalized score
of the most confident tool (distance from decision
threshold) is taken as the final score. If PolyPhen2 or
SIFT are not able to provide a prediction, the most
confident normalized score between the remaining two
algorithms leads class and score assignment. Finally, in
case both PolyPhen2 and SIFT are not able to provide a
prediction, only the RF model is used.
Usually the more tools are combined, the smaller is

the number of the cases that all of them can predict
[45]. However, PaPI is not affected by this limitation
since the RF model and the policy used allow obtain-
ing a prediction even when PolyPhen2 and/or SIFT
do not.
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