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Abstract

Background: The demand for high-throughput and objective phenotyping in plant research has been increasing
during the last years due to large experimental sites. Sensor-based, non-invasive and automated processes are
needed to overcome the phenotypic bottleneck, which limits data volumes on account of manual evaluations. A major
challenge for sensor-based phenotyping in vineyards is the distinction between the grapevine in the foreground and
the field in the background – this is especially the case for red-green-blue (RGB) images, where similar color
distributions occur both in the foreground plant and in the field and background plants. However, RGB cameras are a
suitable tool in the field because they provide high-resolution data at fast acquisition rates with robustness to outdoor
illumination.

Results: This study presents a method to segment the phenotypic classes ‘leaf’, ‘stem’, ‘grape’ and ‘background’ in
RGB images that were taken with a standard consumer camera in vineyards. Background subtraction is achieved by
taking two images of each plant for depth reconstruction. The color information is furthermore used to distinguish
the leaves from stem and grapes in the foreground. The presented approach allows for objective computation of
phenotypic traits like 3D leaf surface areas and fruit-to-leaf ratios. The method has been successfully applied to
objective assessment of growth habits of new breeding lines. To this end, leaf areas of two breeding lines were
monitored and compared with traditional cultivars. A statistical analysis of the method shows a significant (p<0.001)
determination coefficient R2 = 0.93 and root-mean-square error of 3.0%.

Conclusions: The presented approach allows for non-invasive, fast and objective assessment of plant growth. The
main contributions of this study are 1) the robust segmentation of RGB images taken from a standard consumer
camera directly in the field, 2) in particular, the robust background subtraction via reconstruction of dense depth
maps, and 3) phenotypic applications to monitoring of plant growth and computation of fruit-to-leaf ratios in 3D. This
advance provides a promising tool for high-throughput, automated image acquisition, e.g., for field robots.

Keywords: Image analysis, Depth maps, Image segmentation, Digital leaf area, Fruit-to-leaf ratio, Leaf classification,
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Background
Grapevines (Vitis vinifera L ssp. vinifera) are highly sus-
ceptible to several fungal diseases (e.g. powdery mildew
and downy mildew) and require substantial effort to pro-
tect the plants. This susceptibility is the major reason
for extended grapevine breeding activities around the
world which aim at selecting new cultivars with high
disease resistance and high quality characteristics [1].
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Representing a perennial woody crop plant, grapevine
phenology, analysis of growth habits and yield traits can
only be evaluated in the field.
The analysis of growth habits is an important aspect

in viticulture for site specific canopy management. The
aim is to improve grape yield and wine quality [2]. Three
factors in particular describe the relationship between
canopy structure, light microclimate and grape quality: 1)
the geometrical dimensions of the canopy, 2) the foliage
density as an indicator of leaf exposure to sunlight, and
3) the bunch exposure to sunlight [3]. The determination
of grapevine architecture, e.g., canopy surface area includ-
ing vigor during the vegetative period and the respective
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position of organs (leaves, stems and bunches), can be
used for dynamic characterization of breeding material
and site-specific canopy management. The overall aim is
to achieve an optimal canopy microclimate, especially for
the grape cluster zone, i.e., minimal shade and aerated
conditions [2]. In addition, a balanced ratio between vege-
tative (shoots and leaves) and fruit growth is important to
avoid excess or deficient leaf areas in relation to the weight
of the fruit [2]. This fruit-to-leaf characterization requires
quantifications of the canopy surface dimension and the
grapes.
In traditional breeding programs, phenotyping of

grapevines is performed by visual inspection. Thus, data
acquisition is time consuming, laborious, and the result-
ing phenotypic data are the subjective assessment of the
personnel in charge. Traits can be described with OIV
descriptors [4] or the BBCH scale [5]. The OIV descrip-
tor 351 [4] is used to classify grapevine vigor to five
categories (1 = very weak; 3 = weak; 5 = medium;
7 = strong; 9 = very strong vigor). Accurate charac-
terization of grapevine growth from a large number of
cultivars (viticulture) or breeding material (grapevine
breeding) requires simple, fast and sensor-based methods
which are applicable from a moving platform for high-
throughput data acquisition [6]. Numerous indirect and
non-invasive methods have been studied to character-
ize grapevine foliage directly in vineyards [3,7-9]. Most
of the studies are based on costly sensor techniques,
e.g. electromagnetic scanners [3], ultrasonic sensors [10],
laser scanners [9], infrared sensors [11], fish-eye opti-
cal sensors [11-13] or model based strategies [7]. Some
of these methods correlate with destructive sampling
from direct measurements taken with a leaf area meter
[12,14,15]. Electromagnetic and laser scanners directly
obtain 3D point clouds of a scene, however provide no
volumetric and surface information. Other active sensors
include time-of-flight and structured light sensors, which
are specialized for indoor environments. These types of
sensors can have difficulties in scenes with bright illu-
mination or large distances as often occur in outdoor
environments [16].
Image analysis provides a promising technique for non-

invasive plant phenotyping [17]. RGB cameras are a prac-
tical sensor for usage in the field because they are portable,
provide fast data aquisition and are suitable for out-
door illuminations. However, only a few studies exist on
automated approaches for monitoring grapevine growth
habits directly in vineyards using low-cost consumer cam-
eras [6,8,18]. Color is an important indicator for vege-
tation and can be used to detect leaves in images [19].
When the foreground plant should be segmented from the
background however, a color image alone is often not suf-
ficient. This is due to the fact that the foreground plant
and the background containing the field and other plants

usually have the same color distributions. The use of single
RGB images then requires elaborate installation of arti-
ficial backgrounds in the field, to determine the canopy
dimensions from grapevines [8]. Furthermore, the image
projection process can create size distortions in the 2D
image plane, e.g. if some parts of the plant are closer to the
camera than others [6,18].
From this point of view, additional 3D information can

help to increase the precision of phenotypic data and to
eliminate the background automatically [6]. Full 3D mod-
els of plants from images were computed in [20] and [21]
for segmentation of leaves and stems. In [22] an image
based method for 4D reconstruction of plants based on
optical flow is introduced. Depth maps, providing 3D
information in the image domain, have been used for
the determination of leaf inclination angles [23] and bud
detection [6]. Stereo reconstruction methods have been
intensively studied in the field of computer vision [24,25].
Respective methods can be divided into sparse recon-
struction where 3D point clouds are computed [26,27],
and dense reconstruction which aims at computing sur-
faces [24]. The use of sparse 3D information yields little
information in homogenous image regions and can result
in inaccurate classification results for phenotyping as has
been shown in [6]. Thus, dense 3D surfaces are essen-
tial for a reliable detection of the foreground (i.e., the
grapevine) and elimination of redundant background (i.e.,
the field).
This study presents a novel approach for non-invasive,

fast and objective field phenotyping of grapevine canopy
dimensions. The method is based on dense depth map
reconstruction, color classification and image segmenta-
tion from image pairs. An overview of the method is
shown in Figure 1. The main contributions of this study
are the following:

• We present a method to robustly segment RGB
images of grapevine to the phenotypic classes ‘leaf’,
‘stem’, ‘grapes’ and ‘background’. The segmentation is
based on color and depth information. The results
allow for objective phenotypic assessment of large
data sets which yields a step towards overcoming the
phenotypic bottleneck.

• The method is robust for background subtraction in
particular, because of the use of dense depth maps
from stereo reconstruction. We developed a stereo
reconstruction algorithm that is particularly suitable
for the fine-scaled features of plant geometry. This
avoids elaborate application of artificial backgrounds
during image acquisition, even for images where the
foreground and background have similar color
distributions.

• Using a standard consumer camera, data acquisition
is fast, simple and portable. The method is thus
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Figure 1 Workflow of the proposed image-based phenotyping method. Stereo image pairs (A, B) are captured from a moving platform in a
vineyard. From these images the method computes a dense depth map (C), a color classification based on the the green and blue color channels
(D), and an edge detector (E). These features are used to segment the image domain to ‘leaf’, ‘stem’ and ‘background’ (F). The image segmentation
allows for objective computation of phenotypic indicators like the visible leaf area and fruit-to-leaf ratio.

particularly practical for phenotyping of grapevine,
which can only be evaluated directly in the fields.

• The method has been successfully applied to
non-invasive and objective monitoring of grapevine
growth and computation of fruit-to-leaf ratios in 3D.
Furthermore, we show how growth habits of new
breeding lines are classified by comparison to known
cultivars.

Results and discussion
This study presents amethod for objective computation of
phenotypic traits of grapevine from RGB images captured
in vineyards. The method is based on 1) the automated
elimination of the background from RGB field images
by using dense stereo reconstruction, 2) the automated
detection of leaves, grapes and stem in the foreground,
and 3) the quantification of the visible leaf area. The fol-
lowing shows phenotypic applications to monitoring of
grapevine growth and computation of fruit-to-leaf ratios

in 3D. It furthermore shows how growth monitoring
enables the classification of new breeding lines by com-
paring their growth habits to known cultivars.

Monitoring of grapevine growth
In the following, we show how the presented method can
be applied for the analysis of growth habits of breeding
material with unknown properties. Objective assessment
is achieved by monitoring leaf areas over time and com-
paring them to traditional cultivars that are used as a
reference. To this end, we monitored two breeding lines
and sample plants of two traditional cultivars with differ-
ent growth habits (‘Riesling’ with medium shoot growth
and ‘Villard Blanc’ with weak shoot growth) during a
season.
Figure 2A shows the computed leaf area per breeding

line and the average and standard deviation of leaf areas
for the two traditional cultivars.Standard deviations were
only computable for the reference cultivars ‘Riesling’ and
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‘Villard Blanc’. From both cultivars three plants were used
respectively as biological repetitions at each time point.
From the investigated breeding lines only one single plant

was available per time point. This is due to the fact that
only one biological repetition is available from the breed-
ing lines and thus, no standard deviation was calculated.

Figure 2 Image-based monitoring of grapevine growth. Two breeding lines with unknown growth characteristics are compared to the known
cultivars ‘Riesling’ and ‘Villard Blanc’. The progression graph (A) shows increasing leaf areas for the four cultivars during the vegetative growth phase.
Numbers were labeled with reference to two of the sample plants that were monitored (B).
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Figure 2B shows the images of two sample plants that were
monitored at multiple time points. As expected, none
of the investigated genotypes displayed a detectable veg-
etative growth before bud burst. For all genotypes, an
increasing leaf area can be observed between the 90th day
and the end of the experiment on day 160. Differences in
the percentage were used for objective scoring of plant
growth.
We observed a ten times faster growth of ‘Riesling’ com-

pared to the cultivar ‘Villard Blanc’. As also shown in
Figure 2A, the genotypes offer the major differences in
plant growth at day 120. Two weeks later two groups were
observed: group 1 consisting of ‘Riesling’ and breeding
line 1; and group 2 consisting of ‘Villard Blanc’ and breed-
ing line 2. At day 160, breeding line 1 almost displayed the
maximum feasible leaf area of 100 %. This genotype also
exhibited the fastest growth during the entire experiment.
The second breeding line grew at a slower rate and had a
smaller digital leaf area at day 160 and thus seems to be
more related to ‘Villard Blanc’.
These results show that the presented method enables

an objective distinction of cultivars. This is essential for
a reliable identification of subtle differences in visible
canopy dimensions and for the objective, comparable
characterization of breeding material with unknown phe-
notypic properties, e.g. on different field sites or differ-
ent vineyard management conditions. The images were
captured at different time points until the first canopy
reduction. This enables an objective monitoring of the
vegetative growth in a defined time scale. We observed

two groups of growth habits which facilitate an objective
evaluation of the investigated breeding lines.
Thus, the method is also a promising tool for the identi-

fication of genotype specific differences in growth rates or
for efficiency analysis of plant protection efforts. This kind
of fast, objective and comparative monitoring of plant
development further enables the study of growing dynam-
ics with respect to climatic influences or soil properties.

Computation of fruit-to-leaf-ratios in 3D
The segmentation of the images to ‘grapes’, ‘leaves’ and
‘background’ allows for an investigation of bunch posi-
tions in the canopy. This involves the analysis of which
grape bunches are overlaid with leaves, the amount of
bunch exposure to sunlight and whether a grapevine site
shows a well-balanced fruit-to-leaf ratio.
The use of dense depth maps enables a scaling of each

pixel according to its depth which corresponds to the
actual size of the area captured in the pixel. The respec-
tive area computation in 3D can increase accuracy of the
resulting complex phenotypic data, in comparison to area
computation in the 2D image plane. Figure 3 shows a com-
parison of the average grapes-to-leaf ratio in 2D (pixel)
and 3D (actual size). Computing the ratio in 3D results in a
10% decreased ratio compared to the computation in 2D.It
can balance out the fact that some leaves are closer to the
camera and thus occupy a disproportionally larger area in
the 2D image plane than the grapes that are farther away.
This effect can also be observed in the Additional file 1
which shows a 3D view of the surface shown in Figure 3C.

Figure 3 Generalization to the phenotypic class ‘grape’ and computation of fruit-to-leaf ratios. The input image (A) is segmented to ‘grape’, ‘leaf’
and ‘background’. The segmentation can be used to compute the grape-to-leaf ratio in the 2D image domain (B). A more accurate ratio can be
computed in the depth weighted 3D space using the reconstructed surface (C).
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Thus, the presented computation of fruit-to-leaf ratios
provides an efficient method to objectively evaluate yield
efficiency of red grapevine cultivars.

Statistical evaluation and error analysis
For validation of the method, 22 images of the data set
(as the example shown in Figure 4A) were manually seg-
mented and used as ground truth (Figure 4B). The ground
truth was used for comparison with the computed seg-
mentation results of the algorithm (Figure 4C).
A confusion matrix was generated from the 22 images

in order to investigate the precision of the computed clas-
sification results (Figure 4D). The matrix represents the
relation between actual classifications in rows and pre-
dicted classifications in columns, for the three classes
‘leaf ’, ‘stem’ and ‘background’. It reveals that the major
percentage of all three classes was correctly classified by
the automated segmentation algorithm. The best results
can be observed for the classes ‘background’ (95% cor-
rect classifications) and ‘leaf ’ (87%). The segmentation of
the class ‘stem’ shows the highest false classification rate
with 47% pixels classified as ‘leaf ’. A reason for this might
be the fact that young branches often have green color
and therefore get falsely classified as ‘leaf ’. This indicates
that the distinction between these two plant organs is not
accurate enough when only color information is consid-
ered. Additional analysis of geometric information would
be required for more accurate classifications, similar to
the approaches recently published for point clouds in [28]
and dense surfaces in [20,21]. Such an extension might be
a promising improvement of the presented method.
The accuracy of the computed leaf area was evaluated

using the software R for statistical computing. To this end,
the computed leaf area was compared with the ground
truth leaf area. Figure 5A shows the linear regression anal-
ysis where a linear equation was determined from the

segmentation results. The regression analysis showed a
determination coefficient of R2 =0.93. Further, the esti-
mated regression line (y = 0.997x + 1.47) was used
to predict the leaf area. The slope of 0.997 implies that
the error is not systematical. An error analysis of the
computed leaf area was performed by calculation of the
frequency distribution of observed residue and the root-
mean-square error (RMSE). Figure 5B shows the results of
this analysis. Every pixel of the 22 computed classifications
was compared to the respective ground truth classifica-
tion, in order to determine the precision of the developed
method. The leaf areas were normalized to a range of 0
to 100 by the size of the image domain. The residuals
are given as absolute values. The ground truth reference
data was plotted against the computed leaf area and a
root-mean-square error of 3.083% was calculated. This
implies that the regression line approximately represents
the reference data. Furthermore, 68% of the residuals are
within a bound of ±2.5 around the mean 1.4, 95% are
within a bound of ±3.9 and 99.7% are within a bound
of ±7.7.

Performance and efficiency of the method
To compute globally optimal depth reconstructions, we
optimize the stereo problem in a higher dimensional
space. This requires the respective amount ofmemory and
run-time. In the applications used in this study, the depth
map computation was processed off-line after image cap-
turing, and is thus not time-critical, whereas the image
capturing can be processed in real-time. The examples
shown in this study were computed on an Nvidia GeForce
GTX Titan GPU with 6 GB memory. We chose an image
resolution of 1024 × 1024 and a depth resolution of 256,
because it fits the memory of the GPU. The computation
time for this resolution takes about 10 minutes using the
Cuda programming language for parallel processing.

A B C D

Figure 4 Evaluation of the segmentation results by comparison to ground truth data. A set of 22 images (A) was used to compare manually
labeled ground truth images (B) to the computed segmentation results (C). The confusion matrix (D) shows that the proposed method correctly
classifies the majority of pixels as ‘leaf’ (Lv), ‘stem’ (St) or ‘background’ (Bg).
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Figure 5 Validation and error analysis with N = 22 test images. A. The linear regression analysis shows the difference of leaf area from reference
classifications (ground truth) and the computed image segmentations (predicted leaf area). B. Frequency distribution of observed residue and the
root-mean-square error (RMSE) of the difference between predicted leaf area and ground truth.

We use a single camera to capture the stereo image
pairs from the grapevines of interest. This makes the
image acquisition simple and inexpensive, however the
relative camera positions are different for each image
pair. In consequence, the depth range is also variable,
and needs to be manually adjusted for each image pair.
This corresponds to a user input of one value for each
image pair, making the method practicable for the appli-
cations shown in this study. Furthermore, in 5% of the
image pairs used in the experiments, the relative posi-
tion of the camera capture positions could not be recon-
structed. This is usually the case when the distance
or orientation angle of the camera positions are too
large, and hence not enough corresponding points can
be found in the two images. Typically, these images do
not have enough overlap, or the images do not con-
tain enough structure. We further observed that wind
can cause the plant to move from one image captur-
ing moment to the next. In this case, the depth maps
contain incorrect parts and the image acquisition has to
be repeated. This problem can be overcome by using
two cameras that capture simultaneously as used in [23].
Applying a similar stereo system would be an interest-
ing extension for future work. Then, the relative position
of the cameras and the depth range could be calibrated
once, which would be an efficient way to save com-
putation time and eliminate the need for user interac-
tion.

Conclusions
High-throughput field phenotyping of perennial plants
like grapevine requires a combination of automated data
recording directly in the field and automated data analysis.
Using only image data from unprepared fields, the seg-
mentation into foreground (grapevine) and background
(field) constituted the major challenge in this study. Espe-
cially at the beginning of a growing season, an automated
segmentation based on color only is impossible in single
field images as very similar color distributions occur in
foreground and background. To overcome this problem,
most related works either install artificial backgrounds
behind the plants or use depth information generated by
e.g. 3D laser scanners.
We presented a novel approach for the segmentation

of field images to the phenotypic classes ‘leaf ’, ‘stem’,
‘grape’, and ‘background’, with a minimal need for user
input. In particular, only one free parameter needs to be
manually adjusted for each input image pair, which cor-
responds to the depth segmentation of foreground and
background. The method is based on RGB image pairs,
which requires just a low-cost standard consumer cam-
era for data aquisition. We showed robust background
subtraction in field images by the use of dense depth
maps. This avoids the necessity of costly 3D sensor tech-
niques or elaborate preparation of the scene. We further
showed how the method allows for objective computation
of canopy dimensions (digital leaf area) which enables the
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monitoring and characterization of plant growth habits
and computations of fruit-to-leaf ratios.
Future plans for the application of this approach include

the installation of a stereo camera system where the cam-
eras are mounted with fixed position to each other, for
a standardized image acquisition setup. Thus, the depth
parameter for the image segmentation can be set constant,
in order to reduce the need for user interaction. Further-
more, refinements of the method are possible, including
an automated detection of wires in the images and other
objects that appear in the foreground but do not belong
to the plant. The consideration of geometric information
to distinguish between leaves and stem would be inter-
esting to investigate. This might be important in order to
reduce false positive classifications and thus, enhance the
accuracy of the method.
The presented method provides a promising tool for

high-throughput image-based phenotyping in vineyards.
The ability to accurately and quickly monitor pheno-
typic plant growth, particularly after bud burst, facil-
itates an improvement to vineyard management, and
the early detection of growth defects. Furthermore,
the automated analysis of phenotypic traits like fruit-
to-leaf ratios, that were usually acquired manually in
the past, allows for processing of large data sets of
plants. Thus, the method might provide a step towards
the automated validation or determination of optimal
fruit-to-leaf ratios from a large variety of plants and
cultivars.

Methods
The workflow of the proposed image-based phenotyp-
ing approach is shown in Figure 1: First, a stereo image
pair is captured in a vineyard with a standard RGB cam-
era. These image pairs are rectified in a pre-processing
step in order to transform the image planes to a nor-
malized case (Figure 1A,B). The rectified images facilitate
the computation of dense depth maps (Figure 1C). Fur-
thermore, one of the two images is classified by a color
classifier enhancing green plant organs (Figure 1D), and
image edges are detected in order to preserve fine-scaled
structures of the plant (Figure 1E). These features are
used to compute a segmentation of the image domain
to the phenotypic classes ‘leaf ’, ‘stem’ and ‘background’
(Figure 1F). The resulting segmentations are applicable for
phenotypic computations like the quantification of visible
3D leaf areas.

Field experimental setup
The method was validated and tested with a database of
90 images of grapevine plants, captured at five different
dates during the 2011 season. For digital phenotyping, we
chose images from genotypes with similar phenology, i.e.
similar time of bud burst and flowering. Therefore, images

of ‘Riesling’, ‘Villard Blanc’ and two breeding lines were
selected for further investigation.

Experimental site
The experiments involved plants of the Vitis vinifera
cultivars ‘Riesling’ and ‘Villard Blanc’ (three plants per
cultivar) as well as two breeding lines (F1 generation of
the crossing Gf.Ga.47-42 × ‘Villard Blanc’) at the experi-
mental vineyard of Geilweilerhof located in Siebeldingen,
Germany (N 49◦21.747, E 8◦04.678). For the breeding
lines only one plant per genotype is available. Bud burst
at BBCH 10 of all selected genotypes was detected at the
100th day of the year 2011, and the flowering began at
the 145th day of the year 2011. Hence, the selected geno-
types showed similar phenology. ‘Villard Blanc’ displayed
a slow growth rate (OIV 351 class 3) whereas ‘Riesling’
displayed a medium growth rate (OIV 351 class 5)
[unpublished data].

Image acquisition
A single-lens reflex (SLR) camera (Canon EOS 60D)
was used to capture RGB images in the vineyard. The
SLR camera was fixed with variable height mounting
above ground level (1.00 – 1.30 m) in the middle of
a wheeled carrier vehicle (Fetra GmbH, Hirschberg,
Germany). Image acquisitions were carried out in front
of the grapevine plants with a distance of at least 1 m
by dragging this platform between the grapevine rows as
described in [6]. Due to the limited space between two
rows this enables a stable distance to the plants and hence
allows for comparison of images taken at different time
points. The image pairs were captured in the field under
natural illumination conditions with manually controlled
exposure. No predefined exposure time was used. Image
pairs of each plant were captured from different vantage
points, in a way that the depicted areas are overlapping.
The height of the camera above ground level was adapted
in order to standardize the image acquisition. The woody
cane of the grapevines was used as reference for the cap-
tured grapevine section (the cane or parts of the canemust
be visible in the image). This implies that the center of the
grapevine is acquired.

Image rectification
In a pre-processing step, the captured images are rec-
tified, using the software of [26] for identification of
key points and the software of [29] for the subse-
quent rectification transformation. In rectified images,
epipolar lines are parallel which simplifies the subse-
quent computation of depth maps. Rectification implies
a reprojection of two images, such that both projected
images lie in the same plane and geometrical distor-
tions are corrected. To rectify an image pair, the camera
parameters are calibrated, i.e. lens distortion and relative
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camera positions are estimated. With these parameters
homographies are computed that facilitate the image
transformation.

Dense depth reconstruction
Depth reconstruction aims at inferring 3D structure from
a pair of rectified 2D images, in the following denoted
by I1, I2 : � → R

3. The images are defined in the
image domain � ⊆ R

2. We represent 3D information
with a dense depth map d : � → R which assigns to
each pixel x of the reference image I1 the distance (also
denoted by the depth) of the respective 3D point to the
camera.
Depth can be computed from disparity, which is the dis-

placement of image locations of an object point. In order
to deduce disparity from the rectified images, pixel pairs
that show the same object point have to be identified.
Given the images I1, I2 : � → R

3, we compute a dense dis-
parity map v : � → � :=[ 0, γmax] by minimizing a higher
dimensional variable φ : �×� →[ 0, 1] as in [30,31]. Opti-
mization in the product space � × � of the image domain
� and the range of disparities� allows for a convex formu-
lation of the stereo reconstruction problem, and therefore
enables global optimization. Thus, the disparity map v is
computed by integration over φ:

v(x) =
∫

�

φ dγ , (1)

and φ is a minimizer of

min
φ∈C

{∫
�×�

|I1(x) − I2(x + γ )||∂γ φ| dxdγ

+ λ

∫
�×�

|D∇(φ)| dxdγ
}
,

(2)

with

C = {φ : � × � →[ 0, 1] : φ(x, 0) = 1, φ(x, γmax) = 0} .
(3)

The first term in (2) is the data fidelity term which
measures point-wise color differences between the two
images. The second term is the regularizer term, weighted
by a smoothness parameter λ ∈ R. The L1 norm in the
regularizer yields piecewise smooth solutions while pre-
serving edges. We further weight the gradient norm with
an anisotroy tensor D which serves as an edge enhancing
function, in order to preserve the fine-scaled structures
of the plants. An visual representation of D is shown in
Figure 1E, where the color of each pixel encodes the direc-
tion of the local image gradient and the intensity encodes
the length of this vector. The optimization problem can
be globally optimized as described in [31] while the con-
straint set C ensures that the global minimum of 2 is not
the trivial solution.

Disparity maps give measurements in pixel units, while
depth is measured in absolute scale. The depth d is pro-
portional to the inverse of the disparity v and is computed
by

d(x) = fb
v(x)

, (4)

where f is the focal length of the camera and b is the base-
line, i.e. the distance between the two camera capturing
positions.

Image segmentation using color and depth
Besides computing depth information from images, the
images are segmented with respect to the color and depth
information. Image segmentation is the partitioning of
the image domain into meaningful regions, i.e. each pixel
in the image domain � gets assigned a label l ∈ L =
{1, . . . , n}. We segment the image domain to n = 3 regions
corresponding to ‘stem’, ‘leaf ’ and ‘background’. An exam-
ple of a segmented image is shown in Figure 1F, where
green regions represent the class ‘leaf ’, brown regions
‘stem’, and white regions ‘background’. To compute the seg-
mentation, we use the method of [32], using the following
two classifiers fdepth (5) and fcolor (6):
First, the reconstructed depth map d gives information

about location of the foreground and background. We use
the following function

fdepth(x) = d(x) − cdepth, (5)

to implement the assumption that the background is
farther away from the camera capturing position than
the foreground plant. An example for fdepth is shown in
Figure 1C, where the color encodes the depth of each
pixel, ranging from ‘red = near’ to ‘blue = far’. The
free parameter cdepth ∈ R is dependent on the maxi-
mum depth that the foreground plant can take. It can be
assumed constant for standardized image capturing pro-
cesses, or if distances of the camera capturing positions
and plants vary only in a specified range. In the experi-
ments shown in this paper cdepth was adjusted manually
for each image pair.
Second, the foreground is classified as ‘leaf ’ or ‘stem’,

using the color information of the reference image I1:

fcolor(x) = Igreen1 (x) − Iblue1 (x) − ccolor. (6)

Subtracting the blue color channel Iblue from the green
color channel Igreen yields a robust classifier for vegeta-
tion [19]. An example for fcolor is shown in Figure 1D,
where green regions represent high function values and
blue regions represent low values. The free parameter
ccolor ∈ R is dependent on the type and stadium of the
plant, as well as the prevalent illumination and weather
conditions of the scene. In the experiments shown in this
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paper ccolor = 20 was chosen by experiments, for RGB
values ranging from 0 to 255.
The implementation of the additional class ‘grape’ clas-

sifies red and blue colored pixels as grapes, enabling the
computation of fruit-to-leaf ratios.

Computation of leaf surface areas
The 3D digital leaf surface area is computed from the seg-
mented images and the depth maps by weighting the pixel
sizes according to their depth. The area of region �i is
computed from the segmentation u and depth map d by:

Area(�i) =
∫

�

d(x)2ui(x) dx, (7)

where the size of a pixel is computed as d(x)2, normed by
the focal length f of the camera, as in [33]. The weighting
balances out the fact that due to projection in the image
capturing process, the depicted objects in the image do
not appear according to their actual size – objects that are
near the camera occupy a larger region in the image than
parts that are farther away.

Additional file

Additional file 1: Shows a video of the reconstructed 3D grapevine
surface from Figure 3C.
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