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Abstract

Background: For many years now, binding preferences of Transcription Factors have been described by so called
motifs, usually mathematically defined by position weight matrices or similar models, for the purpose of predicting
potential binding sites. However, despite the availability of thousands of motif models in public and commercial
databases, a researcher who wants to use them is left with many competing methods of identifying potential binding
sites in a genome of interest and there is little published information regarding the optimality of different choices.
Thanks to the availability of large number of different motif models as well as a number of experimental datasets
describing actual binding of TFs in hundreds of TF-ChIP-seq pairs, we set out to perform a comprehensive analysis of
this matter.

Results: We focus on the task of identifying potential transcription factor binding sites in the human genome. Firstly,
we provide a comprehensive comparison of the coverage and quality of models available in different databases,
showing that the public databases have comparable TFs coverage and better motif performance than commercial
databases. Secondly, we compare different motif scanners showing that, regardless of the database used, the tools
developed by the scientific community outperform the commercial tools. Thirdly, we calculate for each motif a
detection threshold optimizing the accuracy of prediction. Finally, we provide an in-depth comparison of different
methods of choosing thresholds for all motifs a priori. Surprisingly, we show that selecting a common false-positive rate
gives results that are the least biased by the information content of the motif and therefore most uniformly accurate.

Conclusion: We provide a guide for researchers working with transcription factor motifs. It is supplemented with
detailed results of the analysis and the benchmark datasets at http://bioputer.mimuw.edu.pl/papers/motifs/.
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Background
Transcription regulation is one of the key processes that
allow cells to react to environmental cues and differenti-
ate. It would not be possible without the specific interac-
tions between DNA-binding proteins called transcription
factors (TFs) and specific target regulatory elements.
While TFs exhibit some specificity in choosing their tar-

get binding sites, this specificity is imperfect i.e. instead
of binding a single specific DNA sequence a typical TF
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recognizes a number of similar DNA fragments with vary-
ing affinity. A pattern describing these fragments is usually
called a binding motif, and mathematically defined with
position weight matrices for almost 30 years now [1].
Importantly, the position weight matrix model makes a
number of simplifying assumptions to make the model
useful in practice: in particular it assumes independence
between columns and additivity of the column scores. As
the cost of this simplification, there comes a great advan-
tage of being able to easily score any DNA sequence of the
specified length with a log-odds measure, usually inter-
preted as a rough analog of the free energy of TF-DNA
binding.
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There has been a number of suggested extensions of the
PWM model including Bayesian Markovian models [2]
and so-called PBM-motifs [3] using mixtures of simpler
models to alleviate the problems associated with the sim-
plifying assumptions of the PWM model. More recently,
there are also published approaches that combine the tra-
ditional PWM models with additional constraints on the
physical properties of the DNA strand to be bound by a
Transcription factor [4]. However, while these approaches
can be useful in a few situations, it has been shown that in
the vastmajority of real biological cases, the benefits of the
simple PWM model outweigh the potential of the more
complex models to give us a slightly better description of
the bindind site [5].
Given this data and the fact that PWMmodels are used

for three decades in practically unchanged form, attests
to their tremendous applicability. However, in order to
use such a model to determine potential binding sites of
a TF with a known motif, one needs to choose a log-
odds threshold to separate between scores high enough
to facilitate binding event and the non-specific sequences.
Choosing such a threshold value might be guided by a nat-
ural interpretation of the log-odds score. However, already
the authors of the early motif scanning tool PATSER [6]
have realized that, due to the dependency of the log-odds
distribution on the information content (IC) of a motif [1],
the log-odds thresholds for different motifs should be dif-
ferent. Later, Rahmann et al. showed in [7] that there are
more meaningful ways of selecting the TF binding thresh-
old controlling for type I, type II errors or for a certain
balance between them.
At the time, the number of TF motifs was limited and

there were very few large scale datasets to serve as a
golden standard of TF binding. Since then, the com-
munity has accumulated hundreds TF motifs in several
databases [8-16] and the large-scale ChIP-seq projects
such as ENCODE [17] have provided us with dozens
of ChIP-seq datasets for different TFs. This wealth of
data allows us now to revisit the different ways of select-
ing the threshold and put it in the context of different
motif databases with respect to their coverage and accu-
racy in order to find the optimal choices for practical
applications.

Results
Comparison of motif scanners
Comparsion of performance of motif databases should
preferably be performed with the same motif scanning
program, to separate the effect of the database from
effects of different scanning programs. However, the two
commercial motif databases: Transfac (Biobase) and Mat-
Base (Genomatix); are each provided with a dedicated
scanning program: Match [18] and MatInspector [19],

respectively, using proprietary thresholds files. Therefore,
as a preliminary step, we compared the performance of
these dedicated programs to the performance of twomotif
scanners available in the public domain: matrix-scan [20]
and Bio.Motif [21,22]. Both public scanners use back-
ground model-derived thresholds.
As the comparison metrics we used specificity and sen-

sitivity, with ChIP-seq peaks for human TFs from Ensembl
v.60 funcgen as the positive sets, and either third exons or
genomics flanks of ChIP-seq peaks as the negative sets.
The specificity and sensitivity were computed for every
TF-motif pair, i.e. a pair of a TF and a related TFBS motif,
and then averaged for a given database and scanning
program.
Each commercial scanner was compared to the two

public scanners using all motifs from its respective propri-
etary motif database. That is, we compared MatInspector
to matrix-scan and Bio.Motif using 210 motifs from Mat-
Base (v.8.3), representing 37 funcgen TFs; while Match
was compared to the same two scanners using 106 motifs
from Transfac (2010.3), representing 33 funcgen TFs. In
this way, each commercial scanner could use its propri-
etary thresholds file. We also repeated the analysis on 32
funcgen TFs common to both motif databases, which gave
nearly identical results (data not shown). For MatInspec-
tor/MatBase, in addition to individual motifs (matrices)
we also used Genomatix-defined motif families (matrix
families) [23].
As a summary of each scanner’s performance, we

present the average specificity and sensitivity over all
TF-motif pairs, together with their standard deviations.
These values are plotted in Figure 1. To assess trade-
offs between specificity and sensitivity, we used balanced
accuracy (BA), which is their average.
The results for individual motifs when using exons as

the negative set were straightforward: the two public
scanners achieved higher sensitivity then the commer-
cial scanners, while maintaining the same uniformly high
specificity (Figure 1A, B). With flanks of ChIP-seq peaks
as the negative sets, the situation was similar for MatIn-
spector used with individual motifs (Figure 1C), whereas
for Match, as compared to the public scanners, there
was some trade-off between specificity and sensitivity
(Figure 1D), with BA higher for the two public scan-
ners. On both types of negative sets, the use of motif
families resulted in a large increase of sensitivity and bal-
anced accuracy (Figure 1A,C), accompanied by a marked
decrease of specificity.
We conclude that on individual motifs the performance

of the two public scanners as measured by balanced accu-
racy was clearly better than of either of the two commer-
cial scanners. When the proprietary motif families were
used, MatInspectors achieved nearly the same balanced
accuracy as the public scanners. However, the use of motif



Dabrowski et al. BMC Bioinformatics  (2015) 16:140 Page 3 of 14

0.0 0.2 0.4 0.6 0.8 1.0
specif

0.2

0.4

0.6

0.8

1.0

sensit

MatBase on 3rd exons
MatInspector vs matrix scan vs Bio.Motif

0.0 0.2 0.4 0.6 0.8 1.0
specif

0.2

0.4

0.6

0.8

1.0

sensit

Transfac on 3rd exons
Match vs matrix scan vs Bio.Motif

0.0 0.2 0.4 0.6 0.8 1.0
specif

0.2

0.4

0.6

0.8

1.0

sensit

MatBase on Peaks' flanks
MatInspector vs matrix scan vs Bio.Motif

0.0 0.2 0.4 0.6 0.8 1.0
specif

0.2

0.4

0.6

0.8

1.0

sensit

Transfac on Peaks' flanks
Match vs matrix scan vs Bio.Motif

A B

C D

Figure 1 Comparison of performance of the dedicated commercial and public scanners. Shown are the average specificity and sensitivity +/−SD,
for each tested database/scanner. MatIspector (A, C) or Match (B, D) were each separately compared to both matrix-scan and Bio.Motif; with either
3-rd exons (A, B) or flanks of the ChIP-seq peaks (C, D) used as the negative datasets. The color encodes scanners: matrix-scan (red), Bio.Motif
(magenta), Match (green), MatInspector (blue). Stright lines through the points of average performance are the lines of equal balanced accuracy.
Gray ovals in A, D mark the performance obtained with Genomatix motif families.

families resulted in a large decrease of specificity, which
we consider undesirable in whole-genome applications.
For each database and type of negative set, we com-

puted BAs for each pair of a TF and a related motif, and
then we tested if BAs are significantly different between
the scanners. The results (Table 1) indicated that the use
of either public scanner resulted in significantly higher
BA than of the respective dedicated scanner. Out of the
two public scanners, we decided to use Bio.Motif for

Table 1 Significance of differences between balanced
accuracies for public and commercial motif scanners

Motif database Hypothesis tested P-value for
negative dataset:

Exon 3 Peaks’ flanks

Transfac match vs matrix-scan 5.04e-41 1.13e-15

match vs Bio.Motif 3.37e-32 1.44e-12

MatBase MatInspector vs matrix-scan 3.98e-83 9.88e-43

MatInspector vs Bio.Motif 3.50e-67 8.74e-36

MatBase – families MatInspector vs matrix-scan 0.00011 0.00565

MatInspector vs Bio.Motif 0.01066 0.03784

Entries contain p-values of the Wilcoxon rank test for the null hypothesis that
the BA for the 1st scanner is not lower than the BA for the 2nd scanner.

further work, because of its palette of threshold selection
methods.

Comparison of databases coverage
In addition to the three long-established motif databases
(Transfac, MatBase, and Jaspar), a number of new motif
databases have recently been published (Table 2). These
include: HOCOMOCO [14], SwissRegulon [15] and HT-
SELEX [13]. The Jaspar database has recently been
expanded and updated [16]. We included these new
databases, alongside the current versions of the three
long-established ones, into the analysis of the databases
coverage, and into more in-depth, threshold independent
analysis of databases performance.
We first set up to compare the number of TFs rep-

resented by each database. While this is in principle a
straightforward task, some care is needed due to orthol-
ogy and changing gene symbols issues. Here we define
the database coverage as the number of represented TFs
in the human species, identified by their Entrez Gene ID.
The number of distinct TFs was counted for each database
(Figure 2A), for the union of all the public databases, and
for the intersections between this union, Transfac, and
MatBase (Figure 2B). The total number of human TFs
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Table 2 Motif databases compared in the current study

Database Number of Status Link Publication
matrices
(vertebrate)

HOCOMOCO v.9 (2013) 426 public http://autosome.ru/HOCOMOCO/ [14]

Jaspar vertebrates (2014) 821 public http://jaspar.genereg.net/ [16]

HT-SELEX (2013) 820 public http://www.sciencedirect.com/science/article/pii/
S0092867412014961?via=ihub

[13]

SwissRegulon (2013) 190 public http://swissregulon.unibas.ch [15]

TRANSFAC Professional 2013.1 1435 commercial http://www.biobase-international.com [9]

MatBase v.9.0 (2012) 907 commercial http://www.genomatix.de/ [23]

(distinct Entrez Gene ID) assigned to the union of the
public databases (710) was greater than the number of
TFs assigned to the vertebrate section of Transfac Profes-
sional (551), but smaller than the number of human TF
represented in the MatBase (802), with majority (493) TFs
represented in each of the of the three sets (union of the
public databases, Transfac, MatBase), with 65 TFs unique
to the public databases, 18 TFs unique to Transfac, and
151 TFs unique toMatBase. The precise coverages change
continuously between the releases, but it is notable that,
at the time-point of release of the analyzed versions, the
cumulative TF coverage in the public domain exceeded
that of Transfac (but not MatBase), even though none of
the public databases achieved this alone. In addition to
the above comparisons for all human TFs, we performed
a similar analysis for the subset of the 81 human TFs rep-
resented by ChIP-seq data in funcgen v.71. Out of 81 TFs
represented in funcgen, 60 were represented in the union
of the public databases, 59 in Transfac, and 63 in Mat-
Base, with 53 TFs represented in each of the three sets
(Figure 2C).

Comparison of databases quality
Every motif matrix defines a log-likelihood function that
discriminates between true and false binding sites. Motif
scanners use matrices supplied with thresholds separating
positive and negative predictions.
In order to characterize the overall quality of motif

matrices, we analyzed their behavior for the whole spec-
trum of possible threshold values. To this aim we gener-
ated their receiver operating characteristic (ROC) curves
and calculated area under the curve (AUC) for each ROC.
Expected AUC value for random scoring function is 0.5
and AUC for function perfectly discriminating true and
false predictions is 1.
We computed ROC and AUC for all motifs in all

databases with respect to 4 datasets of negative sequences:
third exons, genomic flanks of ChIP-seq peaks, random
sequences with dinucleotide composition the same as in
ChIP-seq peaks, and sequences generated by 3rd order
Markov chains learned on peak sequences (for details see

Methods section). Below we focus our analysis on AUC
statistics; full results, including all ROC curves, are pre-
sented in Supplementary Materials at the authors’ website
http://bioputer.mimuw.edu.pl/papers/motifs/.
Figure 3 presents AUC distributions of motif databases

(for motifs having many related TFs the one that gives
the highest AUC was selected). The distributions depend
on the choice of the negative dataset. For example, 3rd
exons are probably the least contaminated by acciden-
tal motif occurrences and yield highest AUCs (medians
are around 0.8). On the other hand, the lowest AUCs are
obtained for 3rd order Markov chains (medians between
0.6 and 0.7), because the high order of a Markov chain
increases the chance of generating longer fragments of
original sequences.
However, if one focuses on comparing AUC distribu-

tions between databases, all negative datasets yield similar
picture. In all cases the highest and the lowest AUC
belong to Hocomoco and MatBase motifs, respectively.
The union of public databases always perform visibly bet-
ter than both MatBase and Transfac. Choosing the best
transcription factor for a motif favors databases having
one motif for each TF over databases offering for each TF
a large family of motifs. The second strategy is preferred
by commercial databases (e.g. in the case of MatBase 63
TFs are represented by 377 motifs), which may to some
degree explain their performance in this evaluation.
Therefore, we complement it with the analysis of AUC

for 53 transcription factors represented in the funcgen
ChIP-seq data and in each of the following datasets: Mat-
Base, Transfac and the union of public databases. For
each transcription factor and each database, the motif
that gives the highest AUC is selected. Table 3 presents
results for the negative dataset consisting of ChIP-seq
peaks’ flanks (see Additional file 1 for analogous results for
other negative datasets). As expected, the highest num-
ber of best motifs belongs to MatBase (19), but Jaspar
has almost as many of best motifs (i.e. 16). The lowest
numbers of best motifs have SwissRegulon (1) and Trans-
fac (4). For over half of the TFs (30 out of 53) the best
motif belongs to one of the public databases. AUC for

http://autosome.ru/HOCOMOCO/
http://jaspar.genereg.net/
http://www.sciencedirect.com/science/article/pii/S0092867412014961?via=ihub
http://www.sciencedirect.com/science/article/pii/S0092867412014961?via=ihub
http:// swissregulon.unibas.ch
http://www.biobase-international.com
http://www.genomatix.de/
http://bioputer.mimuw.edu.pl/papers/motifs/
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Figure 2 Comparsion of coverage of human TFs by motif databases. A. The numbers of distinct genes (Entrez Gene ID) assigned to all the
vertebrate motifs from the indicated databases. For MatBase the number of TFs as provided by Genomatix is represented. B. The Venn diagram
showing the overlap between human TF genes represented in the union of all the public databases and in the Transfac database. C. Similar as in B, but
for human 81 human TFs represented in Ensembl 71 funcgen is based on MatBase v.9.0.
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Figure 3 AUC distributions in motif databases. Consecutive plots
present distributions of AUC calculated with respect to various
negative datasets, as indicated by plots’ titles. For each motif the best
related TF was selected.

motifs corresponding to the same TF are usually similar,
but in some cases, for example ZBTB33, the differences
are tremendous.

Selection of log-odds thresholds
As was mentioned previously, motif matrices define
log-likelihood functions that should be supplied with
thresholds separating positive and negative predictions.
Selection of such a threshold determines the balance
between prediction sensitivity and specificity. Usually, a

reasonable solution is to maximize balanced accuracy, i.e.
the mean of sensitivity and specificity.
Therefore we calculated maximal balanced accuracies

and corresponding thresholds for all transcription factors
represented in our benchmark dataset and related motifs.
Results are presented in Additional file 2.
We also decided to examine generic threshold selec-

tion approaches, i.e. methods setting the threshold on
the basis the motif matrix only. They have considerable
advantages – simplicity (calculations are much easier) and
wide applicability (no benchmark dataset is required).
Probably the simplest generic approach is to set a

common log-likelihood threshold for all motifs. Unfor-
tunately, log-likelihood distributions substantially vary
across motifs and the same threshold value may result in
underestimating occurrences for one motif and overesti-
mating them for the other. Therefore several score dis-
tribution based approaches for threshold selection were
proposed. In the current study we analyze 3 represen-
tative methods for threshold selection implemented in
the Bio.Motif package: FPR, FNR and balanced (see 3 for
details).
It should be noted that all these approaches (includ-

ing pure log-likelihood score) are parameterized and in
each case the parameter enables the user to select any
sensitivity-specificity configuration obtainable for a given
motif. In particular, each method allows optimizing bal-
anced accuracy for individual motifs. Therefore the point
in which the approaches differ lies in the ability to select
the threshold consistently across motifs.
Figure 4 presents the relation between balanced accu-

racy (calculated with respect to negative sequences com-
posed of flanks of ChIP-seq peaks; for other negative
datasets see Additional file 1) and the parameter of the
selection method for all motifs in our benchmarking
dataset. In order to avoid noise introduced by poor motifs,
we restricted our attention to matrices having AUC >

0.6. Extreme parameters yield extreme values of sensitiv-
ity and specificity (one equal to 0 and the other to 1),
resulting in the balanced accuracy equal to 0.5. Therefore
BA is maximized for intermediate parameters for every
motif. The parameter values giving the maximum of aver-
age BA across all motifs is indicated by vertical black lines
and listed in Table 4. The highest average BA is obtained
with FPR approach, since its BA profiles are most con-
sistent – the bulk of motifs gain near-maximal BA for
α ∈[ 10−4; 10−3] (see 3 section for the definition of α).
This is even more evident when motifs with lower AUC
are excluded (see Figure 5).
On the other hand, for the rest of approaches the loca-

tion of BA peak seems to be strongly correlated with
the information content (IC) of a motif (see Figure 4,
bottom). This observation suggests that the prediction
accuracy may be improved by using threshold parameters
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Table 3 Comparison of optimal motifs for TFs common toMatBase, Transfac and the union of public databases

ENCODE/funcgen MatBase Transfac Prof. Jaspar vert. Hocomoco HT-Selex SwissRegulon

TF name AUC matrix name AUC matrix name AUC matrix name AUC matrix name AUC matrix name AUC matrix name

ATF3 0.710 V$CREB.02 0.693 M00981 – – 0.694 M00015 – – – –

Ap2alpha 0.809 V$AP2.02 0.807 M01045 0.816 MA0003.2 0.777 M00004 0.779 selex292 0.754 TFAP2A,C.p2

Ap2gamma 0.799 V$AP2.02 0.765 M00470 0.792 MA0524.1 0.781 M00006 0.784 selex298 0.751 TFAP2A,C.p2

BHLHE40 0.947 V$BHLHB2.01 0.799 M01034 0.885 MA0464.1 0.955 M00022 0.958 selex316 0.917 ARNT_ARNT2_BHLHB2_

MAX_MYC_USF1.p2

CTCF 0.929 V$CTCF.04 0.931 M01259 0.942 MA0139.1 0.940 M00045 0.922 selex2 0.934 CTCF.p2

Cfos 0.751 V$AP1.01 0.759 M00517 0.744 MA0476.1 0.760 M00093 – – 0.742 FOS_FOSB,L1_JUNB,D.p2

Cjun 0.814 V$AP1.01 0.820 M00925 0.799 MA0099.1 0.827 M00183 – – 0.570 JUN.p2

Cmyc 0.700 V$CMYC.01 0.685 M00322 0.702 MA0147.1 0.690 M00216 – – 0.659 ARNT_ARNT2_BHLHB2_

MAX_MYC_USF1.p2

E2F1 0.802 V$E2F3.01 0.764 M00938 0.753 MA0024.2 0.694 M00052 0.723 selex750 0.674 E2F1..5.p2

E2F4 0.682 V$E2F4.01 0.678 M00920 0.689 MA0470.1 0.650 M00055 0.502 selex753 0.654 E2F1..5.p2

E2F6 0.698 V$E2F4.01 0.435 M01252 0.653 MA0471.1 0.681 M00057 – – – –

EBF 0.740 V$EBF1.01 0.736 M01871 0.721 MA0154.2 0.746 M00037 0.751 selex79 0.692 EBF1.p2

ELF1 0.862 V$ELK1.03 0.835 M02053 0.800 MA0473.1 0.832 M00065 0.836 selex81 0.797 ELF1,2,4.p2

ETS1 0.765 V$ELK3.01 0.753 M02063 0.680 MA0098.1 0.708 M00082 0.765 selex100 0.683 ETS1,2.p2

Egr1 0.831 V$EGR1.01 0.848 M01972 0.822 PB0010.1 0.844 M00060 0.853 selex3 0.841 EGR1..3.p2

FOSL1 0.885 V$AP1.02 0.890 M00517 0.890 MA0477.1 0.865 M00091 – – 0.881 FOS_FOSB,L1_JUNB,D.p2

FOSL2 0.877 V$AP1.01 0.870 M00925 0.865 MA0478.1 0.885 M00092 – – 0.852 FOSL2.p2

FOXA1 0.763 V$FREAC4.01 0.826 M01261 0.832 MA0148.3 0.808 M00094 – – – –

FOXA2 0.759 V$FREAC4.01 0.735 M02014 0.834 MA0047.2 0.816 M00095 – – 0.834 FOXA2.p3

Gabp 0.873 V$ELK1.03 0.867 M02074 0.879 MA0062.2 0.876 M00116 0.871 selex116 0.870 ELK1,4_GABPA,B1.p3

Gata1 0.711 V$GATA5.01 0.685 M00203 0.683 MA0035.3 0.697 M00117 – – 0.479 GATA1..3.p2

Gata2 0.853 V$GATA2.03 0.834 M00789 0.834 MA0036.2 0.843 M00118 – – 0.538 GATA1..3.p2

HNF4A 0.801 V$HNF4.01 0.838 M02220 0.847 MA0114.2 0.850 M00147 0.837 selex673 0.809 HNF4A_NR2F1,2.p2

HNF4G 0.864 V$HNF4.01 0.811 M00764 0.898 MA0484.1 0.788 M00148 – – – –

IRF4 0.669 V$ISRE.01 0.641 M00772 0.648 PB0034.1 0.603 M00174 0.665 selex148 – –

Junb 0.912 V$AP1.01 0.912 M00925 0.920 MA0490.1 0.911 M00181 – – 0.900 FOS_FOSB,L1_JUNB,D.p2

Jund 0.820 V$AP1.01 0.823 M00925 0.817 MA0491.1 0.827 M00182 – – 0.805 FOS_FOSB,L1_JUNB,D.p2

MEF2A 0.643 V$MEF2.02 0.650 M00231 0.653 MA0052.2 0.616 M00204 0.615 selex156 0.604 MEF2A,B,C,D.p2

MEF2C 0.721 V$MEF2.02 0.682 M00941 0.719 MA0497.1 0.664 M00205 – – 0.669 MEF2A,B,C,D.p2
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Table 3 Comparison of optimal motifs for TFs common toMatBase, Transfac and the union of public databases (Continued)

Max 0.738 V$CMYC.01 0.703 M00322 0.700 PB0043.1 0.720 M00199 0.730 selex326 0.711 ARNT_ARNT2_BHLHB2_

MAX_MYC_USF1.p2

NFKB 0.896 V$NFKAPPAB65.02 0.891 M00774 0.878 MA0105.3 0.872 M00235 0.776 selex189 0.861 NFKB1_REL_RELA.p2

NR4A1 0.512 V$NBRE.01 0.492 M01217 – – 0.542 M00259 – – – –

Nanog 0.560 V$HOXA2.01 0.631 M01247 – – 0.556 M00221 – – 0.630 NANOGmouse.p2

Nfe2 0.855 V$NFE2.01 0.846 M00037 0.877 MA0501.1 0.882 M00231 0.771 selex392 0.835 NFE2.p2

Nrf1 0.951 V$NRF1.01 0.969 M00652 0.963 MA0506.1 0.973 M00264 0.977 selex194 0.968 NRF1.p2

Nrsf 0.838 V$NRSF.02 0.879 M01256 0.850 MA0138.2 0.854 M00316 – – 0.847 REST.p3

POU2F2 0.513 V$OCT1.02 0.498 M00210 0.481 MA0507.1 0.504 M00290 0.503 selex232 0.503 POU2F1..3.p2

POU5F1 0.868 V$OCT3_4.02 0.857 M01125 0.881 MA0142.1 0.874 M00294 – – 0.857 POU5F1_SOX2dimer.p2

PU1 0.932 V$SPI1.05 0.884 M01203 0.914 MA0080.3 0.922 M00350 0.860 selex123 0.884 SPI1.p2

Pax5 0.613 V$PAX5.01 0.613 M00143 0.713 MA0014.2 0.729 M00274 0.768 selex200 0.606 PAX5.p2

Pbx3 0.739 V$PBX1_MEIS1.01 0.546 M00998 – – 0.758 M00280 – – – –

RXRA 0.714 V$PPARG.03 0.608 M02272 0.707 MA0065.1 0.693 M00326 0.731 selex710 0.720 RXRG_dimer.p3

SP1 0.559 V$SP1.03 0.552 M00932 0.561 MA0079.3 0.555 M00346 0.547 selex29 0.551 SP1.p2

SP2 0.711 V$SP4.01 0.719 M01783 0.726 MA0516.1 0.676 M00347 – – – –

Srf 0.681 V$SRF.05 0.693 M00186 0.661 MA0083.1 0.657 M00355 0.657 selex159 0.656 SRF.p3

Tcf12 0.723 V$ASCL2.01 0.679 M00698 0.712 MA0521.1 0.703 M00152 – – 0.574 TAL1_TCF3,4,12.p2

Tr4 0.601 V$HNF4.01 0.644 M01776 0.652 MA0504.1 0.623 M00256 0.611 selex676 – –

USF1 0.947 V$USF1.02 0.936 M00121 0.903 MA0093.2 0.945 M00396 0.935 selex352 0.932 ARNT_ARNT2_BHLHB2_

MAX_MYC_USF1.p2

Yy1 0.778 V$YY1.03 0.723 M02044 0.713 MA0095.2 0.735 M00394 0.756 selex33 0.657 YY1.p2

ZBTB33 0.489 V$KAISO.01 0.517 M01119 0.881 MA0527.1 0.749 M00184 – – – –

ZBTB7A 0.699 V$ZF9.01 0.682 M01100 – – 0.640 M00404 0.632 selex37 – –

ZEB1 0.766 V$ZEB1.01 0.689 M00414 0.752 MA0103.2 0.686 M00409 – – 0.734 ZEB1.p2

Znf263 0.685 V$ZNF263.01 0.762 M01587 0.653 MA0528.1 – – – – – –

For each TF the motif with the highest AUC from each database is presented. The best motifs from all databases and the corresponding AUC are bolded (note that for FOXA2 motifs from Jaspar and SwissRegulon are both
optimal). AUC are calculated with respect to negative sequences composed of flanks of ChIP-seq peaks.
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Figure 4 Balanced accuracies for various approaches to threshold selection. Top row: balanced accuracy vs threshold parameter. Colors represent
motif information content: from blue (low), through green and yellow to beige (high). Vertical black lines indicate optimal thresholds, black circles
indicate corresponding average balanced accuracies. Bottom row shows how (sub-)optimal parameter values of a motif (X-axis) depends on its
information content. For each motif, a circle represents parameter value yielding maximal balanced accuracy and a horizontal line represents a
parameter range, for which BA is at least 95% of the maximum. Colors represent motif AUC: from green (low), through yellow to red (high). Balanced
accuracies are calculated with respect to negative sequences composed of flanks of ChIP-seq peaks.

dependent on IC and other motif features (such method
still might be used for any motif, without the need of a
benchmark dataset).
Therefore we selected several characteristics of the log-

likelihood distribution under the background model (i.e.
the theoretical distribution of the log-likelihood func-
tion of sequences randomly generated from the back-
ground model). Namely, we considered expected value
(which equals to the motif IC), standard deviation,
minimum and maximum. We fitted a linear regression
model describing optimal threshold parameters by these
characteristics.
The averages of BA (calculated with respect to nega-

tive sequences composed of flanks of ChIP-seq peaks)

for constant parameters and parameters predicted from
motif features are compared in Table 4. As expected, lin-
ear model visibly improved average BAs for methods with
worse result for constant parameters, narrowing the range
of average BAs to interval [ 0.6641; 0.6757]. However, the
average BA 0.6749 for constant FPR threshold was not
reached by any of the other methods. To have the proper
perspective to assess these differences, the reader should
be aware of the distance between these values and the
upper bound of the average BA for considered motifs. The
idealmethodwould select for eachmotif a threshold yield-
ing its optimal balanced accuracy. Consequently, it would
reach a result equal to the average of BAmaxima, which is
0.6949 for our dataset. Thus setting individual thresholds

Table 4 Average balanced accuracy for optimal threshold parameters

Threshold selection Average BA for parameter: Optimal constant parameter for negative dataset:
method

Optimal constant Fitted with linear model Peaks’ flanks 3rd exons Shuffled peaks 3rd order MCs

Log-likelihood 0.6704 0.6724 8.9 8 9 9.9

FPR 0.6749 0.6757 0.00025 0.00041 0.00021 0.00013

FNR 0.6285 0.6641 0.26 0.18 0.27 0.32

Balanced 0.6664 0.6743 794 457 977 2089

Only motifs with AUC > 0.6 are considered. Balanced accuracies are calculated with respect to negative sequences composed of flanks of ChIP-seq peaks. 2nd
column contains average balanced accuracies for thresholds in 4th column. 3rd column contains average balanced accuracies for thresholds linearly depending on
the motif features: information content, log-likelihood value range, log-likelihood standard deviation.
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Figure 5 Balanced accuracy versus the FPR threshold for various AUC> 0.6, AUC> 0.7, AUC> 0.8, AUC> 0.9, cutoffs. Colors etc. as on Figure 4,
top row.
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for each motif may improve the average BA by 0.02, when
compared to thresholds globally set with FPR parameter
α = 0.0003.
Estimated optimal parameters obviously depend on the

choice of the negative dataset (see the last 4 columns
of Table 4), but the dispersions are relatively small: the
log-likelihood range is less 2 and the ratios between the
extremes for other parameters (the logarithmic scale is
more suitable here) are ∼ 3. Moreover, the variability of
optimal parameters is consistently explained by the char-
acteristics of negative datasets - the lower are AUC for a
dataset, the sharper is the parameter.

Discussion and conclusion
We have aimed to analyze the coverage and accuracy
of different motif databases as well as the optimality of
different approaches to motif scanning.
As one of the key advantages of the public resources is

the possibility of freely combining them, we included into
our analysis as an important category the union of the
public databases.
In respect of the coverage of human TFs the two com-

mercial databases maintain their lead as compared to each
of the public databases separately (Figure 2A). However,
the union of the public databases achieves coverage com-
parable to that of the commercial databases (Figure 2B).
In respect of motifs’ performance as judged by the

distributions of the AUC, all the compared databases pro-
duce broadly similar results, with the median AUC higher
for the union of the public databases than for either
commercial one (Figure 3). At the single database level,
Hocomoco was consistently the best performer for all
choices of the negative datasets. Relative performance of
some of the databases, in particular Jaspar and SwissRegu-
lon, depended on the choice of the negative dataset. Jaspar
performed better on peaks’ flanks and negative datasets
generated from Markov models, while SwissRegulon per-
formed better on third exons.
As another measure of motifs’ performance, we iden-

tified which database supplied the best-performing motif
(Table 3) for every TF represented across all the databases.
In more than half of the cases, the best-performing
motif originated from the public databases. At the single
database level, the largest number of best motifs was sup-
plied by MatBase, but with Jaspar and Hocomoco at the
second and third position supplying together more best
motifs than MatBase.
In conclusion, public databases together match the cov-

erage and the quality of their commercial counterparts,
with no cost and limits of use imposed by the latter. On the
other hand, an overhead associated with combining sev-
eral public resources (unifying formats, installing updates,
etc.) and differences in content other than the PWMs,
make the choice public vs commercial not always obvious.

Given a sizeable number of TF motifs available only in
one of the databases, a researcher going to predict binding
of a particular TF needs a guide that helps to find the most
appropriate public database. Our findings provide such a
guide for a number of human TFs supported by reliable
experimental data. Moreover, the usability of such guides
may increase in a near future, when one can expect that
the contents of several public databases will be available
from a single server.
In terms of the performance of different scanning

tools, publicly available mature software packages have
exceeded the commercial tools in accuracy. While this
might be at least in part a result of the commercial
providers reluctance to change the behavior of the tools
their customers depend on, we would advise researchers
to use the publicly available tools.
With respect to the choice of the optimal threshold for

multiple motifs, the method based on controlling the false
positive rate is clearly the one least biased by the informa-
tion content of themotif and therefore themost consistent
between motifs.
In conclusion, the recent increase in availability of both

sequencemotifs and binding data have given us the oppor-
tunity to assess different motif databases and scanning
methods for predicting potential TF binding sites. The
results allow us to give some particular recommendations
(such as the choice of the best motif and corresponding
optimal threshold for a given TF) as well as general con-
clusions (superiority of FPR measure and public scanners)
for users of these databases. We believe that our findings
will prove to be useful also for hybrid methods [24,25],
which use other data to improve motif-based predictions
of binding sites.

Methods
Parsing and annotation of motif databases
Database distribution files downloaded from their
providers websites (Table 1) were parsed using custom-
made scripts to yield matrices in the common format, as
well as matrices’ annotation to transcription factors. For
the public databases, the available identifiers were the TF
gene symbols or UniProt identifiers. For the purpose of
comparison and mapping to the ChIP-seq datasets, these
identifiers were mapped to human Entrez Gene ID, using
the db2db function of the bioDBNet webservice [26]
http://biodbnet.abcc.ncifcrf.gov/webServices/bioDBnet.
wsdl. For the commercial databases the Entrez gene IDs
were directly available. Genomatix uses the concept of
matrix family [23], here referred to as ‘motif family’, i.e.
family of the motifs so similar that they are predicted to
bind a common set of TF orthologs in related species (e.g.
all vertebrates). In Additional file 3 we provide a compre-
hensive mapping table for each motif database, for the
commercial databases limited to the motifs used in this work.

http://biodbnet.abcc.ncifcrf.gov/webServices/bioDBnet.wsdl
http://biodbnet.abcc.ncifcrf.gov/webServices/bioDBnet.wsdl
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Preparation of positive and negative TF-binding datasets
The positive and the negative sequences were obtained
from the Nencki Genomics Database - NGD [27] http://
www.nencki-genomics.org and were based on Ensembl
[28] funcgen. For the comparison of the scanner perfor-
mance we used TF ChIP-seq data for 44 TFs + CTCF
from funcgen v.60 as the positive set. For the compari-
son of databases performance we used ChIP-seq data for
80 TFs + CTCF from funcgen v.71 as the positive set. We
considered 4 negative datasets:

• all human third exons, excluding exons with UTRs
(common for all TFs),

• sequences flanking ChIP-seq peaks for particular TFs
(each peak shifted by its length + 40 nt along the
chromosome),

• random sequences of length and dinucleotide
composition following ChIP-seq peaks for particular
TFs, generated by BiasAway [29],

• random sequences of length following ChIP-seq
peaks for particular TFs, generated by 3rd order
Markov chains learned on these peaks.

All sequences are available in Supplementary Materi-
als at the authors’ website http://bioputer.mimuw.edu.pl/
papers/motifs/.
The following quality measures were used in the com-

parison:

• Sensitivity – the proportion of ChIP-seq peaks that
contain at least one predicted binding site,

• Specificity – the proportion of fragments in the
negative dataset that contain no predicted binding
site,

• Balanced accuracy – the average of sensitivity and
specificity.

Mapping of TFs to gene identifiers
Some TFs were represented by more than one ChIP-seq
dataset and many TFs were mapped to several motifs
from each database (for the details see Supplementary
Materials). The annotation of the TF ChIP-seq datasets in
Ensembl funcgen v.71 was downloaded from the Ensembl
website (http://apr2013.archive.ensembl.org/Homo_sapiens/
Experiment?db=core;ex=project-ENCODE-). The Ensembl
gene IDs of the features in the classes: ‘Transcription fac-
tor’ and ‘Insulator’ (for CTCF) were mapped to Entrez
Gene ID using the aforementioned db2db function of the
bioDBNet webservice. For one entry (ZEB1), its Ensembl
gene IDwas corrected (to ENSG00000148516) prior to the
mapping.

Motif scanning
The two commercial motif databases: Transfac Profes-
sional (Biobase) andMatBase (Genomatix) are distributed

with dedicated motif scanning programs: Match [18]
and MatInspector [19,30], respectively, and proprietary
thresholds files, aimed at controlling the false positive
rate. For matrix-scan we choose 1st order Markov chain
background model learned on human gene upstream no-
orf sequences and for Bio.Motif we used the uniform
background model. We choose 0.0001 chance of Type I
error as the threshold for both public scanners, because
it yielded similar numbers of genome-wide matches to
Match or MatInspector when run with the two respective
motif databases.

Computation of intersections
For the comparison of scanners, we computed genome-
wide intersections between ChIP-seq peaks and motifs
using stored procedures of the NGD database [27] http://
www.nencki-genomics.org. The NGD database stores the
TFs ChIP-seq data imported from funcgen and the results
of genome-wide motif scanning. The intersections, speci-
ficity and sensitivity were computed separately for each
dataset-motif pair, then averaged twice: first for each TF-
motif pair, then for a given scanner/database. For the
in-depth comparison of performance we used an extended
set of motif databases: Jaspar (2014) vertebrates, Trans-
fac Professional 2013.1, MatBase 9.0, HOCOMOCO v.9,
HT-SELEX, SwissRegulon (2013). This time we scanned
only the positive and the negative sequences with the
Bio.Motif scanner. As the average length of human third
exons (153 +/− 304) was smaller than the average size of
the ChIP-seq peaks (403 +/− 172), before the scanning
we added 100-nt flanks of either side of exons 3 and use
these flanked exons as the negative set.

Threshold selection methods
Given a motif matrix M, the log-likelihood of a sequence
w of corresponding length is given by

LM(w) = log
P(w|M)

P(w|B)

where P(w|M) is the probability of observing w given the
motif model and P(w|B) is the probability of observing
w given the background model. Given a threshold tM,
all sequences w satisfying LM(w) > tM are classified as
M-occurrences.
Since log-likelihood distributions substantially vary

across motifs, there were proposed approaches for thresh-
old selection based on the shape of these distributions.
Some representative methods are implemented in the
Bio.Motif package:

• FPR approach aims at restricting the number of false
positive motif occurrences. For assumed type I error
level α, tM is chosen to satisfy P(LM(w) > tM|B) = α.

http://www.nencki-genomics.org
http://www.nencki-genomics.org
http://bioputer.mimuw.edu.pl/papers/motifs/
http://bioputer.mimuw.edu.pl/papers/motifs/
http://apr2013.archive.ensembl.org/Homo_sapiens/Experiment?db=core;ex=project-ENCODE-
http://apr2013.archive.ensembl.org/Homo_sapiens/Experiment?db=core;ex=project-ENCODE-
http://www.nencki-genomics.org
http://www.nencki-genomics.org
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• FNR approach restricts the number of false negatives.
In this method tM satisfies P(LM(w) < tM|M) = β

for assumed type II error level β .
• Balanced approach constrains the proportion

between the levels of both errors, i.e. threshold tM
satisfies P(LM(w) < tM|M) = γ · P(LM(w) > tM|B)

for assumed parameter γ . Setting γ to the inverse of
the expected frequency of motif occurrences results
in roughly the same number of false positive and false
negative binding site predictions.

Additional files

Additional file 1: Supplementary tables and figures with results for
alternative negative datasets.

Additional file 2: Performance summary for all TF-motif pairs and all
negative datasets.

Additional file 3: TF-motif mappings for all databases.
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