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Abstract

Background: Host-microbe and microbe-microbe interactions are often governed by the complex exchange of
metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact
their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated
how such interactions are reflected in the organization of the metabolic networks of the interacting species, and
introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly
from network topology. Using these methods, such studies have revealed evolutionary and ecological processes
that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research
paradigm.

Results: NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe
cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the
Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic
or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of
microbial organisms’ niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics
as well as a list of potential syntrophic metabolic compounds.

Conclusions: The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe
and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic
network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based

software_netcooperate.html.

Reverse ecology

tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/
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Background

In the post-genomic era, genome scale reconstructions
of various biological networks have become a powerful
tool for studying the behavior of organisms [1]. For ex-
ample, genome-scale metabolic models can be used to
predict growth rates of microbial species following per-
turbation [2,3], signaling network models can be used to
predict cell phenotypes [4], and regulatory networks can
be used to map cell-specific developmental programs [5].
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Methods for analyzing the topology of such genome-scale
networks were shown to be especially useful for revealing
systems-level properties and for identifying design princi-
ples of biological networks [6-8].

More recently, several such studies focused on using
network-based analyses to predict ecological attributes
of microorganisms, laying the foundation for a compre-
hensive reverse-ecology framework [9]. This framework
focuses on the identification of topological properties in
an organism’s metabolic network that may reflect adap-
tation to specific environments or ecological interac-
tions. Borenstein et al., for example, exploited this
principle to predict the effective chemical environments
of numerous microbial species [10]. In this study, an
algorithm was introduced to analyze the topology of a
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metabolic network to determine the set of exogenously
acquired nutrients (termed the ‘seed set’) from which all
other compounds in the network could be synthesized.
Applying this algorithm to detect the seed sets of a large
array of microbial species, several fundamental proper-
ties of the interface between organisms and their envi-
ronments, as well as large-scale evolutionary trends,
were identified. This reverse-ecology method was further
highlighted for its biotechnological and environmental
applications by numerous studies (e.g., [11-13]). The
seed detection algorithm was later presented also as a
web-based tool and a software package, making this
method easily accessible to researchers with any level of
computational expertise [14].

Importantly though, following the introduction of this
reverse-ecology paradigm, several other techniques were
developed, going beyond a single-species analysis and
aiming to investigate multi-species microbial systems.
Exploring such systems and characterizing the complex
web of interactions between member species are crucial
for gaining a principled understanding of these complex
ecosystems, their assembly rules, and the fundamental
principles that govern microbial ecology. These methods
focused specifically on quantifying maximal cohabitation
[15], effective competition [16,17], and niche overlap
[18], providing a diverse set of tools for predicting
species competitive potential.

Clearly, however, ecological interaction between spe-
cies is not limited to competition and, in nature, cooper-
ation between species represents an additional crucial
aspect of species interaction, with potentially marked
impact on both the interacting species and their envir-
onment [19]. Following the reverse-ecology paradigm
and assuming that cooperative relationships are similarly
reflected in the topology of metabolic networks, several
metrics have recently been presented to predict the level
of potential cooperation between interacting species. For
example, Christian et. al. described a method to quantify
the extent to which the set of metabolites a microbial
species can synthetize in a given environment [20-22] is
expanded by (or conversely, redundant with) the set of
metabolic reactions carried out by an interacting partner
[23]. This measure of metabolic synergy was used to
demonstrate that metabolic networks that are neither
too similar nor too dissimilar stand to gain the most
from interaction [23] (and see also [19]). Here, we focus
on two other topology-derived metrics that are specific-
ally based on the reverse-ecology seed-finding algorithm
described above to quantify the potential strength of
cross-species ecological interactions by assessing the
extent to which the biosynthetic capacity of one species
can support or complement the nutritional requirements
(i.e., the seed set) of another species. The first metric,
the Biosynthetic Support Score (BSS), quantifies the
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capacity of a host organism to meet the nutritional re-
quirements of a parasitic endosymbiont [24]. This score
has been used, for example, to predict the strength of in-
teractions between eukaryotic hosts and potential patho-
gens, and revealed gradual adaptation of parasites to
their specific hosts on an evolutionary scale. The second,
the Metabolic Complementarity Index (MCI), quantifies
the extent to which two microbial species may support
one another through biosynthetic complementarity, and
provides a measure of the potential for syntrophy that
exists between them [18]. The Metabolic Complemen-
tarity Index has been used to determine community-
level assembly rules in the human gut microbiome and
to demonstrate that the microbiome is dominated by
habitat filtering. Notably, these two metrics do not ne-
cessarily measure active parasitism or cross-feeding, but
rather the metabolic potential for such interactions as
reflected by the metabolic networks of the two organ-
isms. The realization of this potential depends on the
environment in which the two species are placed and
the availability of nutrients in this environment ([25]; see
also below).

To make these methods easily accessible to researchers
of microbe-microbe and host-microbe interactions, here
we present NetCooperate, a web-based tool and a soft-
ware package for calculating both the BSS and MCI met-
rics. This tool provides a network-based framework for
predicting cooperative species interactions, and comple-
ments previously introduced reverse-ecology tools in of-
fering a comprehensive suite of network-based methods
for predicting the ecological attributes and ecological in-
teractions of microbial species.

Implementation

NetCooperate receives as input the metabolic networks
of two species, each encoded as a directed graph with
nodes representing compounds and edges connecting
substrates to products. It then calculates and plots the
pairwise Biosynthetic Support Score and Metabolic
Complementarity Index of each network to its partner.
These metrics are based on pairwise comparison of spe-
cies’ nutritional profiles as predicted by the seed detec-
tion algorithm [10]. Briefly, the seed detection algorithm
utilizes a graph-theory-based method to analyze the top-
ology of a metabolic network and to determine its seed
set — the minimal set of compounds that should be ac-
quired exogenously in order to allow the synthesis of all
other compounds in the network. This set was shown to
successfully serve as a proxy for the effective biochem-
ical environment and the natural habitat of a species
[10]. Importantly, due to the existence of multiple seed
set solutions, this algorithm combines seed compounds
into seed groups, such that any compound in the group
can serve as an alternative seed in the seed set solution.
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Using the predicted seed sets of two species, the BSS is
calculated based on the fraction of seed groups in the
network of the first species (the parasite) of which at
least one compound can be found in the network of the
second species (the host; Figure 1A). Similarly, the MCI
is calculated based on the fraction of seed groups in the
network of the first species of which at least one com-
pound can be found in the network, but not in the seed
set, of the second species (Figure 1B). Notably, in calcu-
lating the BSS and MCI metrics, NetCooperate takes
into account all possible seed set solutions. Moreover,
the software further keeps track of the set of metabolites
that were supported (or complemented) in each species.
Both BSS and MCI range from 0 to 1, with 0 denoting
no potential for cooperation and 1 denoting full cooper-
ation. Importantly, in interoperating these scores there is
no clear threshold for determining ‘cooperation’ vs. ‘no
cooperation, and instead, as demonstrated below, these
metrics should be used in a comparative manner to
assign physiological significance and to determine which
species pairs exhibit strong potential for cooperation
compared to other pairs in the same settings. Future
studies could similarly use a comparative approach that
is appropriate for the specific system under study.

The NetCooperate package was implemented in Python
and allows users to quickly and easily integrate BSS and
MCI calculation into existing software pipelines. The
NetCooperate web-based tool is a CGI built on top of the
NetCooperate Python module (Figure 2). The user supplies
two networks, determines various threshold parameters for
both, and can select several output options (Figure 2A).
Input files can either be tab-, comma-, or space-delimited
text files with each row representing a single directed edge,
or tab-delimited text files representing network adjacency
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matrices. An explanation of each parameter may be found
by hovering over the adjacent tooltip button (Figure 2A), as
well as in the instruction manual available from the
NetCooperate download page. The tool then calculates and
displays the pairwise BSS and MCI metrics in both direc-
tions (Figure 2B). If the user selects Show detailed seed
information, a list of the seed compounds that are present
in the supporting network is linked to from the results. An
option to display an interactive network visualization screen
is additionally provided, allowing the user to view both
networks, the status of each node, and metabolic informa-
tion (Figure 2C). Finally, if nodes in the network are identi-
fied by KEGG compound IDs [26], the user may select the
Nodes are KEGG IDs option, in which case the nodes in
the network visualization serve as hyperlinks to KEGG
database entries with detailed chemical descriptions of each
compound.

Results and Discussion

We have previously successfully utilized the cooperation
metrics calculated by NetCooperate for studying a num-
ber of microbial systems and have shown that they pro-
vide tools for addressing fundamental questions in
microbial ecology and evolution [18,24,27]. Such studies
demonstrate the benefits of using systems-level tools
and the impact such tools can have on elucidating global
principles that govern multi-species systems. Specifically,
below we discuss two such studies we have conducted
that highlight the potential of NetCooperate and its
applicability to several systems of interest [18,24]. These
studies have promoted much interest and the application
of this approach to address various challenges in bio-
technological and medical settings has been highlighted
[11-13]. It is our hope that providing the NetCooperate

blue species is therefore 0.5.

Figure 1 A schematic illustration of the Biosynthetic Support score and Metabolic Complementarity Index. (A) In this toy example, the blue
bacterium represents a parasite that is supported by the red eukaryotic host. The metabolic networks of both species are shown. Seeds are
colored red, whereas potential products are colored orange. In this example, the bacterium has 2 seed groups: A and F/G/H, both of which can
be supported by the host metabolic network (grey arrows). Accordingly, the BSS of the host on the parasite is 1.0. (B) In this toy example of two
interacting microbes, the complementation of the blue species by the red species is illustrated (for illustration purposes, the same metabolic
networks as in panel A are used). The seed A of the blue species is a product of the red species and can therefore be complemented (grey
arrow). However, since F is a seed in both species, the red species cannot complement F for the blue species. The MCl of the red species on the




Levy et al. BMC Bioinformatics (2015) 16:164

Page 4 of 6

NetCooperate
Species One

Browse_ | Buchnera aphidicola

tab-separated - @

@ lanore all nodes except those in the giant component ()
@ lanore components with fewerthan 0 nodes (2)

@

Species Two
Browse_

@

aphid

- ®

@ lgnore all nodes except those in the giant component@
(@ lgnore components with fewerthan 0 nodes @

tab-separated

Show detailed seed information (2)
[#] Visualize the scores on the networks (2)
Nodes are KEGG IDs. (2)

Analyze Networks

B
NetCooperate>Web

Biosynthetic Support

Buchnera aphidicola

e e 04166666667 o
g Tpored Jpporied mees
aphid show score
aphid 0.1746031746

being supported by
Buchnera aphidicola

Supported Seeds

show score

Metabolic Complementarity

Buchnera aphidicola
being complemented by
aphid

0.2916666667

show score

0.1111111111

show score

Complemented Seeds

aphid
being complemented by
Buchnera aphidicola

Complemented Seeds

colored green in the host network.

C O BT Supporting Compounds

Figure 2 The NetCooperate web tool interface. (A) The data input panel. The user uploads two network files and selects analysis and
visualization parameters. (B) The results panel. The BSS and MCl values are shown for all potential interactions. If the user selects ‘Show detailed
seed information’ the results include links to lists of the supported (or complemented) metabolites. (C) Network visualization. If the user selects
‘Visualize the scores on the networks' both metabolic networks are plotted with seeds colored blue. Clicking on any ‘show score’ button will visually
demonstrate compounds contributing the score: seeds which are supported (complemented) are colored red in the parasite network, and

tool will enable the research community at large to
apply this framework to a wide array of microbial
ecosystems.

Predicting host-parasite interaction and characterizing
patterns of parasite adaptation

Parasitic species are clearly well adapted to their hosts. In
introducing the Biosynthetic Support Score, Borenstein
and Feldman aimed to examine whether such adaptation
is reflected in the species’ metabolic networks and
whether it can be used to predict parasitic species and
specific host-parasite interactions [24]. To this end, they
used the Biosynthetic Support Score to quantify the

interaction between approximately 600 bacterial species
and each of three model eukaryotic hosts (human, fruit
fly, and Arabidopsis, representing a mammalian, insect,
and plant host respectively). The distribution of BSS
values of all bacteria against all hosts ranged from
approximately 0.45 to 0.95. Importantly, a comparison
of pathogenic bacteria to free living bacteria showed
that parasitic bacteria have significantly higher BSS
with all three hosts compared to free-living bacteria
and that BSS was better in predicting parasitic species
than classical metrics (e.g., genome size). Moreover,
the BSS of a given parasite was higher when the model
host was phylogenetically related to the parasite’s
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natural host (e.g., mammalian parasites had significantly
greater BSS in human than in fruit fly), suggesting that
the parasite’s metabolic network was sufficient to infer
not only its parasitic life-style but also its preferred
host.

To demonstrate the applicability of the Biosynthetic
Support Score to evolutionary analysis, this study further
integrated this cooperation score with phylogenetic ana-
lysis, calculating the BSS of both extant and ancestral
species (obtained through phylogenetic reconstruction)
within the phylum Firmicutes. It was then shown that
the biosynthetic support provided by human to any
given bacterium increased with the phylogenetic dis-
tance of the species from the common ancestor of
Firmicutes, clearly demonstrating the gradual adaptation
of parasites to their host environment on a global scale.
Given the success of the BSS metric in predicting host-
parasite interactions, it was later also proposed as a tool
for designing culture media and for studying host-
microbiome interactions [12,28].

Assessing interaction between co-occurring microbes and
elucidating assembly rules in the human microbiome

The human microbiome is a diverse and complex micro-
bial ecosystem, with different individuals harboring
markedly different sets of species. Previous surveys of
the microbiome have revealed clear non-neutral patterns
in the distribution of species and have demonstrated that
certain species pairs tend to co-occur across microbiome
samples whereas others tend to exclude one another
[29]. Yet, the underlying forces that give rise to these
patterns were not clear. The Metabolic Complementarity
Index was first developed to address this challenge and
to study emergent organizational properties of commu-
nity assembly in the human microbiome [18]. This
metric was first validated by predicting metabolic com-
plementarity among several species of the human oral
microbiota with well-characterized and assayed interac-
tions [30], to confirm that it correctly identified pre-
ferred interacting partners. Indeed, in a series of
controlled in vitro experiments, where microbes were
placed in a nutrient-limited saliva medium, microbes
were found to grow best in the presence of species with
greater metabolic complementarity. In such settings, the
ability of species to complement the nutritional require-
ments of their partners translates into active cooperation
and improved growth. Moving on to in vivo communi-
ties of the human intestine, the MCI between all possible
pairs among >150 gut dwelling microbial species was
then calculated. By comparing the MCI among species’
co-occurring partners to their excluders, it was found
that in fact in this nutrient-rich environment species
with low MCI tended to co-occur, whereas species pairs
with greater MCI excluded one another from a given
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host-habitat. This finding suggested that in the assembly
of these communities habitat filtering outweighed the
impact of species interaction and that species relied on
the availability of nutrients in the environment rather
than realizing the potential for cross-feeding [18,27]. Put
differently, in this nutrient-rich environment, the poten-
tial for cooperation did not necessarily materialize and
species assortment was based on the availability of nutri-
ents in the environment rather than on the presence or
absence of other species. An in depth analysis further
revealed that not only is MCI not an artifact of phylo-
genetic relatedness, but that it was more successful at
predicting species interactions. A similar analysis was
used to investigate community assembly across multiple
phylogenetic and biogeographic scales, demonstrating
that metabolic complementarity had a greater influence
on species co-occurrence patterns between members of
the same phylum than across all species. Finally, apply-
ing the MCI to species co-occurrence across and within
multiple body sites revealed that habitat filtering is a
general assembly rule applicable to communities inha-
biting heterogeneous anatomical sites within the human
body.

Conclusions

Network analysis has become an essential component in
the study of microbiology. Metabolic, regulatory, and
protein-interaction networks provide insight into the
behavior and dynamics of individual cells [31-34], whereas
ecological networks reveal processes defining the behavior
of entire microbial communities [29,35,36]. Yet, molecular
network properties are rarely used to explain patterns
observed in ecological networks, although clearly, these
two scales of organization are tightly linked. The reverse-
ecology framework provides a powerful platform to
address this challenge and to couple genomic information
with environmental context. Specifically, the Biosynthetic
Support Score and the Metabolic Complementarity Index
represent two successful examples in which molecular
network analysis can be applied to ecological studies of
microbe-microbe and host-microbe interactions. Unfortu-
nately, the implementation of such graph theory-based
methods is not trivial, and may be beyond of the technical
capabilities of microbiology researchers with no advanced
computational skills. Above, we have presented Net-
Cooperate, a web-based tool and Python package for
easily performing the necessary computation. NetCoo-
perate can be applied on a small-scale by those studying
a microbe of interest, or it can be integrated into a lar-
ger workflow for large-scale analysis of entire communi-
ties. NetCooperate, along with previously introduced
methods [14,17], completes the suite of reverse-ecology
analysis tools accessible to researchers with any level of
technical expertise.
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Availability and requirements

Project name: NetCooperate
Project home page: http://elbo.gs.washington.edu/software_
netcooperate.html
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python 2.7
License: GPL
Any restrictions to use by non-academics: For commercial
use please contact the corresponding author
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BSS: Biosynthetic Support Score; MCl: Metabolic Complementarity Index.
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