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Abstract

Background: Recently, several studies have drawn attention to the determination of a minimum set of driver
proteins that are important for the control of the underlying protein-protein interaction (PPI) networks. In general, the
minimum dominating set (MDS) model is widely adopted. However, because the MDS model does not generate a
unique MDS configuration, multiple different MDSs would be generated when using different optimization algorithms.
Therefore, among these MDSs, it is difficult to find out the one that represents the true driver set of proteins.

Results: To address this problem, we develop a centrality-corrected minimum dominating set (CC-MDS) model
which includes heterogeneity in degree and betweenness centralities of proteins. Both the MDS model and the
CC-MDS model are applied on three human PPI networks. Unlike the MDS model, the CC-MDS model generates
almost the same sets of driver proteins when we implement it using different optimization algorithms. The CC-MDS
model targets more high-degree and high-betweenness proteins than the uncorrected counterpart. The more central
position allows CC-MDS proteins to be more important in maintaining the overall network connectivity than MDS
proteins. To indicate the functional significance, we find that CC-MDS proteins are involved in, on average, more
protein complexes and GO annotations than MDS proteins. We also find that more essential genes, aging genes,
disease-associated genes and virus-targeted genes appear in CC-MDS proteins than in MDS proteins. As for the
involvement in regulatory functions, the sets of CC-MDS proteins show much stronger enrichment of transcription
factors and protein kinases. The results about topological and functional significance demonstrate that the CC-MDS
model can capture more driver proteins than the MDS model.

Conclusions: Based on the results obtained, the CC-MDS model presents to be a powerful tool for the
determination of driver proteins that can control the underlying PPI networks. The software described in this paper
and the datasets used are available at https://github.com/Zhangxf-ccnu/CC-MDS.
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Background
Proteins that are vital macromolecules rarely act alone.
Diverse molecular processes within a cell are carried
out by proteins through physically interacting with other
partners. Therefore, protein-protein interactions (PPIs)
are crucial for elucidating the structural and functional
architecture of the cell [1,2]. Due to the development of
high-throughput techniques, a large number of PPIs have
been generated and accumulated, which paves the way
for establishing the PPI networks [3,4]. To get a better
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understanding of the functional mechanism of PPI net-
works, determining driver proteins that are crucial for
the control of the underlying network has become an
important issue in systems biology [5].
The centrality-lethality rule suggests that the highly

connected proteins in the PPI network are more likely
to be essential [6]. The correlation between degree and
essentiality was then conformed [7,8], and the reasons
for this correlation were also examined [9-11]. Unlike
degree centrality that counts the number of a node’s
neighbors, betweenness centrality counts the number
of shortest paths that pass through the node [12]. A
node with high betweenness centrality has a large influ-
ence over the “information transfer” [13]. Therefore,
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high-betweenness proteins may act as important connec-
tors in the network [14]. Previous studies suggest that the
centrality index of a protein in a PPI network may be a
good indicator of its biological importance and functional
significance. However, as we know, there is still no system-
atic attempt to study whether the high-degree proteins or
the high-betweenness proteins can offer full control of the
underlying network.
In modern network science and engineering, the focus

has been shifted to the identification of a minimum set of
driver nodes that can control the entire network [15-20].
Recently, Liu et al. [15] made a ground-breaking contri-
bution that predicted controller nodes using a maximum
matching approach. Whereas their approach can only be
implemented on directed networks. To apply on undi-
rected networks, Nacher and Akutsu [21] addressed this
problem from the perspective of minimumdominating set
(MDS) [22]. In a network, a set of nodes is called a domi-
nating set (DS) if all the remaining (i.e., non-DS) nodes can

be reached by one link. The MDS is then defined as the
smallest DS for a given network (see Figure 1). Inspired by
the applications in telecommunications [23], Milenković
et al. [24] developed two heuristic algorithms to detect
dominating sets in PPI networks. They found that dom-
inating sets are significantly enriched with biologically
central genes. However, the dominating sets produced by
their methods may be not minimal.
Recently, Wuchty [5] applied the MDS model devel-

oped by Nacher and Akutsu [21] on PPI networks and
proposed some new metrics to evaluate the biological sig-
nificance of the calculated minimum dominating sets. He
found that the predicted driver proteins using the MDS
model not only carry important functional characteris-
tics (e.g., essential proteins, cancer-related proteins and
virus-targeted proteins) but also play a key role to con-
trol the entire network (e.g., transcription factors and
protein kinases). The promising biological significance of
MDS proteins give new insight into the exploration of
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Figure 1 A graphical example that illustrates the motivations. This figure illustrates the concept of an MDS. Specially, an MDS is an optimized subset
of proteins (black nodes) from which each remaining (i.e., non-MDS) protein (white nodes) can be immediately reached by one step. According to
the standard MDS model, there exists four different MDSs for the given the toy network: (A) {1, 6}; (B) {5, 10}; (C) {1, 10}; (D) {5, 6}. Different
optimization methods would generate different MDS configurations, and it is difficult to determine which one is reasonable in practice. For
example, “lp_solve” produces result (A); while “intlinprog” produces result (B). To overcome this problem, we introduce a CC-MDS model of which
the objective function takes variation in degree and betweenness centralities of proteins into consideration. In (E), we compute the degree,
betweenness and weight (with γ = 0.05) defined in Equation (3) for the four proteins which seems to be driver proteins. In (F), the objective
functions of the original MDS model (Equation (1)) and the centrality-corrected model (Equation (2)) are computed. The objective function of the
MDS model can not distinguish the four sets of proteins. According to the corrected model, (D) has the lowest value of objective function since the
degree and betweenness of proteins 5 and 6 are highest. Both “lp_solve” and “intlinprog” determine proteins 5 and 6 as driver proteins.
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controllability in PPI networks. In the following text, we
refer to the MDS model which is introduced in [21] and
used in [5] as standard MDS model.
However, different optimization algorithms that are

used to solve the MDS model may generate different con-
figurations (see Figure 1A-D) [25]. Therefore, the MDS
model does not create a unique driver set of proteins.
To address this problem, Nacher and Akutsu [25] classi-
fied the nodes into three categories following the method
of Jia et al. [26]: critical nodes that belong to every con-
figuration, redundant nodes that never belong to any
configuration and intermittent nodes that belong to some
configurations but not all. In this procedure, we need to
solve the MDS model n times, where n is the number
of nodes. Therefore, compared with computing an MDS,
their method needs much more CPU time. What is more,
the biological significance of the three types of nodes is
not analyzed in their study. Please note that the meth-
ods developed in [25] can be used to compute the critical
nodes in directed networks too.
Recently, the MDS model have been widely extended

and applied. For example, it was extended to address the
controllability of bipartite networks [27]. Based on the
framework of the MDS model, Nacher and Akutsu [28]
introduced the concept of structurally robust control of
complex networks where each node must be covered by
at least two nodes in the dominating set. In this study, we
consider a different extension of the standard MDSmodel
to include heterogeneity in the degree and betweenness
of proteins. Based on the assumption that high-degree
and high-betweenness proteins are more likely to be con-
trollers [5,21,25], we develop a degree and betweenness
centrality-corrected MDS (CC-MDS) model. Despite its
innocuous appearance, this corrected version turns out to
have substantial effects.
We run both the standardMDSmodel and the CC-MDS

model on three human PPI networks. Experiment results
show that CC-MDS proteins (driver proteins determined
using the CC-MDS model) predicted by different opti-
mization methods are almost the same; while the over-
lap between MDS proteins (driver proteins determined
using the MDS model) predicted by different optimiza-
tion methods is quite low. We also observe that CC-
MDS proteins are more important in maintaining the
overall network connectivity than MDS proteins. Fur-
thermore, compared with MDS proteins, CC-MDS pro-
teins are more significantly enriched with high-degree
proteins, high-betweenness proteins, multi-complex pro-
teins, multi-functional proteins, essential genes, aging-
genes, disease-associated genes, virus-targeted proteins,
transcription factors and protein kinases. These results
also indicate that the high-degree and high-betweenness
proteins play an important role in controlling the under-
lying network. In the rest of this paper, we first review the

standard MDS model. Then we introduce a degree and
betweenness centrality-corrected version of the model,
followed by a description of the biological data we use.
The biological significance of MDS proteins and CC-MDS
proteins are subsequently analyzed and compared from
both topological and functional perspectives. Finally, we
conclude the main contributions of this paper and give
possible avenues for future works.

Methods
Minimum dominating set model
Given a PPI network, it could be represented by a graph
G = (V ,E), where V is the set of n nodes and E is the set
of edges. An adjacency matrix A can be used to represent
the edges, where Aii = 1 (for convenience, a self-loop is
also considered) for i = 1, 2, · · · , n, and Aij = 1 if there
exists an interaction between proteins i and j and Aij = 0
otherwise.
A set S ⊂ V of proteins is considered to be a dominating

set (DS) if every protein v ∈ V is either an element of S or
adjacent to an element of S [5,21]. In other words, a DS is
defined as a subset of proteins from which all the remain-
ing (e.g., non-DS) proteins can be reached by one step. A
minimum dominating set (MDS) is the smallest DS for a
given network (see Figure 1A-D). For a given network, an
MDS can be predicted as aminimum set of driver proteins
[5]. To find out anMDS, each protein i is associated with a
binary integer variable xi, where xi = 1 represents protein
i is an element of MDS and xi = 0 otherwise. Mathe-
matically, a DS needs to satisfy the following conditions
xi + ∑

j∈�(i) xj ≥ 1 for i = 1, 2, · · · , n, where �(i) is the
set of neighbors of protein i. According to the definition of
the adjacency matrix A, these conditions could be refor-
mulated as:

∑n
j=1 Aijxj ≥ 1, for i = 1, 2, · · · , n. Then the

determination of an MDS that contains fewest members
among all DSs can be formulated as the following binary
integer-programming problem:

⎧⎨
⎩
minimize

∑n
j=1 xj

subject to
∑n

j=1 Aijxj ≥ 1 for i = 1, 2, · · · , n.
xj ∈ {0, 1} for j = 1, 2, · · · , n.

(1)

This binary integer-programming problem can be
solved using a branch-and-bound algorithm [29]. In this
study, we implement the algorithm using two softwares:
library “lp_solve” of the Matlab program language [30]
and function “intlinprog” which is available in the Opti-
mization ToolBox of MatLab version R2014b [31].

Centrality-corrected minimum dominating set model
As mentioned in [25], there may exist more than one
optimal solution to the binary optimization problem (1)
for a given network. Therefore, MDSs identified by dif-
ferent optimization methods may be quite different (see
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Figure 1A-D). Because there are multiple MDS configura-
tions, it is hard to determine which one is the real set that
can control the entire network.
To overcome this problem, we take node degree and

betweenness into consideration. This is because several
recent studies have shown that network properties of bio-
logically central genes exhibit some topological centrality
compared to the rest of proteins in the PPI network and
that centrality measures are discriminative in uncovering
biologically central genes [5,24]. Based on the centrality-
lethality rule [6], we assume that high-degree and high-
betweenness proteins are more likely to be the controllers.
Among all the MDS configurations, we would like to pick
the MDS of which the members have the highest degree
and betweenness (Figure 1D-F). However, it is difficult or
impossible to compute all MDS configurations in prac-
tice. This is because we have no prior knowledge about
the number of configurations and no effective methods to
infer all configurations.
Instead of looking for all configurations, we consider a

simple extension of the standard MDS model to include
the heterogeneity in centrality. In the objective func-
tion of Equation (1),

∑n
j=1 xj is used to count the size

of an MDS, where all nodes of the network are con-
sidered equally. To incorporate centrality heterogeneity,
we introduce a centrality-corrected version

∑n
j=1 ωjxj to

replace the original term, where ω1,ω2, · · · ,ωn are posi-
tive weights related to centralities of nodes. By doing so,
we develop a centrality-corrected minimum dominating
set (CC-MDS) model as follows:

⎧⎨
⎩
minimize

∑n
j=1 ωjxj

subject to
∑n

j=1 Aijxj ≥ 1 for i = 1, 2, · · · , n.
xj ∈ {0, 1} for j = 1, 2, · · · , n.

(2)

Compared to the standard MDS model, the corrected
model prefer to determine proteins with low weights as
driver proteins.
Then we meet another question: what values of the

weights will drive the model to identify high-degree and
high-betweenness proteins? One possible way is that the
weights are inversely proportional to the degrees and
betweenness of proteins, i.e.,

ωj = (
djbj

)−γ , (3)

where dj and bj are the degree centrality and between-
ness centrality of protein j, respectively; γ (≥ 0) is a
parameter that controls the weights. When γ = 0, the
CC-MDS model (2) turns back to the standard uncor-
rected version (1); when γ > 0, it prefers to pick
high-degree and high-betweenness proteins (Figure 1E-F).
This is because that high-degree and high-betweenness
proteins will have lower weights than low-degree and
low-betweenness proteins according to the definitions of

weights, and therefore that picking high-degree and high-
betweenness proteins will bring a smaller increment in the
objective function of Equation (2) than picking low-degree
and low-betweenness proteins. We will discuss the effect
and choice of γ in the next section.
The CC-MDS model (2) is a weighted version of the

MDS model (1); the weights changed the nature of the
uncorrected model (1). This correction may seem minor,
however, we will see in the next section that such cor-
rection has a big effect. Equation (2) is also a binary
integer-programming problem, and can be also solved
using library “lp_solv” and function “intlinpro”. Here we
just replace a linear term by another linear term in the
objective function. Therefore, the time complexity of
computing a CC-MDS is the same as an MDS.

Centrality calculation
Degree centrality is defined as the number of interacting
partners of a protein. We compute degree centrality dj of
a protein j as dj = ∑n

i=1,i�=j Aij.
Betweenness centrality is the number of shortest paths

from all nodes to all others nodes that pass through the
node. We determine betweenness centrality bj of a pro-
tein j as bj = ∑

i�=j �=k∈V
σik(j)
σik

, where σik is the number
of shortest paths between proteins i and k and σik(j) is
the number of those paths that pass through protein j.
We compute betweenness centrality usingMatlab package
“MatlabBGL” [32]. Furthermore, we normalize between-
ness centrality by (n − 1)(n − 2)/2, where n is the total
number of proteins in the network.

Datasets
We use the high-quality protein interactions in H. sapiens
from the High-quality INTeractomes (HINT) database
that have considerable reliability and coverage (version:
06/03/2013) [33]. In terms of interaction type (binary
or co-complex), we consider three separate data sets:
binary interactions (binary), co-complex interactions (co-
complex), and their combination (combined). For the sake
of simplicity, we just use the largest connected component
of each network. The properties of the PPI networks are
listed in Table 1.We apply our model on the three PPI net-
works to determine driver proteins and use the following
data sets to test the biological significance of the predicted
driver sets of proteins.

Table 1 Statistics of PPI networks and their corresponding
sets of predicted driver proteins

Dataset # proteins # interactions sizedriver %driver

Combined 8,269 28,497 1,407 17.0

Binary 7,865 24,368 1,393 17.7

Co-complex 2,719 6,531 546 20.1
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We collect 1,846 manually determined protein com-
plexes in H. sapiens from the Comprehensive Resource of
Mammalian protein complexes (CORUM) database (ver-
sion: February 2012) [34]. These complexes cover 2,556
proteins.
Gene Ontology (GO) annotations of H. sapiens pro-

teins are downloaded from the GO database (version:
09/05/2014) [35]. GO annotations cover three domains:
biological process (BP), cellular component (CC) and
molecular function (MF). GO annotations with evidence
codes IEA, ND and NAS are not considered. We also
exclude annotations with NOT qualifier.
We use 2,501 essential genes in H. sapiens from the

Database of Essential Genes (DEG) (version: 10.4) [36].
These data are collected from two literatures that iden-
tify human essential genes using comparative genomics
analysis [37,38].
We collect 298 aging genes that are related to age-

ing from the Aging Gene (GenAge) Database (version:
03/05/2015) [39].
We collect disease-associated genes in H. sapiens

from three public databases. We extract 3,003 proteins
involved in human diseases from the Universal Pro-
tein Resource (UniProt) database using keyword “Disease
[KW-9995]”, “reviewed:yes” and “organism: Homo sapiens
(Human) [9606]”] (Version: 11/13/2014) [40]. We also col-
lect the 3,094 disease-associated genes from the Online
Mendelian Inheritance in Man (OMIM) database (ver-
sion: 08/20/2014) [41]. In the “morbidmap” file, disorders
with “[ ]”, “?”, “(1)”, “(2)”, “(4)” are excluded. Finally, we
use 1,710 human genes relevant to disease phenotypes
from the Genetic Association Database (GAD) (version:
04/19/2014) [42].
We obtain 704 human virus-targeted proteins from

the Molecular INTeraction (MINT) database (version:
10/29/2012) [43]. Proteins that interact with human
viruses are used as virus-targeted proteins.
We use 205 human transcription factors from the

TRANSFAC database (version 7.4) [44] as provided by
Molecular Signatures Database (mSigDB) [45]. We map
the transcription factor matrix ids to gene symbols manu-
ally.
We obtain 514 protein kinases in human from the Reg-

ulatory Network in Protein Phosphorylation (RegPhos)
database (version 2.0) [46].
For each dataset we use, we do the gene ID conversion

(to gene symbols) according to HUGO Gene Nomencla-
ture Committee (HGNC) [47]. We only consider proteins
with known gene symbols in the experiments.

Results and discussion
In the experiments, we apply both the MDS model and
the CC-MDS model on three human PPI networks. For
each model, we implement it using two optimization

methods: “lp_solve” and “intlinprog”. Therefore, for each
network, we can obtain four results: MDS-lp_solve, MDS-
intlinprog, CC-MDS-lp_solve, CC-MDS-intlinprog. In
the following text, we concentrate on analyzing the topo-
logical and functional significance of the predicted sets of
driver proteins that correspond to the four results.

Effect and determination of parameter
There is a parameter γ in the proposed CC-MDS model.
To investigate the effect of γ , we wonder whether it
has an influence on the number of determined driver
proteins. To this end, we run the CC-MDS model on
the three PPI networks with different values of γ (γ ∈
{0, 0.05, 0.1, · · · , 1}). It clearly demonstrates that the num-
ber of determined driver proteins increases with the
increasing of γ for the intlinprog optimization method
(Figure 2A, Figures S1A and S2A in Additional file 1).
According to the definitions of weights in Equation (3),
picking higher-degree and higher-betweenness proteins
will bring smaller increments in the objective function
of our model (2). Therefore, before picking the lower-
degree and lower-betweenness proteins, some higher-
degree and higher-betweenness proteins may have been
picked redundantly for large γ . This may be partly
explain why more driver proteins are determined when γ

increases.
We are then interested in the overlap of identified driver

proteins for different values of γ . We find that the over-
lap rates (quantified using Jaccard coefficient) between the
sets of CC-MDS proteins obtained with different values
of γ (except for γ = 0) are, on average, greater than 0.98
(Figure 2B, Figures S1B and S2B in Additional file 1).
This indicates that the resulting sets of CC-MDS proteins
are not very sensitive to the choice of γ . We also won-
der whether the set of CC-MDS proteins obtained for a
smaller value of γ is a full subset of the set of CC-MDS
proteins obtained for a lager value.We experimentally find
that even though the two sets overlap largely, the former
set is not a full subset of the later set in some cases. Please
note that the CC-MDSmodel equals to the standardMDS
model when γ = 0, therefore, the driver proteins pre-
dicted with γ = 0 is very different from the ones predicted
with other values of γ . The results for the lp_solve and
intlinprog methods are comparable, therefore the data for
the lp_solve method are not shown in the text.
One remain issue is to determine an optimal value of γ

for a given biological network. Because the above results
have shown that the choice of γ does not have a big effect
on the resulting CC-MDS proteins, here we simply use
a grid search method to determine its value. The chosen
value needs to meet the following criteria: (1) it needs to
be as large as possible such that the model tends to pick
high-degree and high-betweenness proteins; (2) it needs
to ensure that the size of resulting CC-MDS is equal to
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Figure 2 Effect of parameter γ on the resulting CC-MDS proteins for the intlinprog method in the combined network. In (A), we present the effect
of parameter γ on the number of predicted driver proteins. The x-axis denotes the value of γ ; the y-axis denotes the number of driver proteins
determined using the CC-MDS model; the red circle labels the value of γ we choose. In (B), we present the overlap rate between the sets of driver
proteins computed using different values of γ .

that of a standard MDS (e.g., γ = 0). By doing so, we can
ensure that the resulting CC-MDS is an optimal minimum
dominating set of which the members have the highest
degree and betweenness. Based on the two criteria, for
both of optimization methods, we set γ = 0.1 for the
combined network, γ = 0.15 for the binary network and
γ = 0.05 for the co-complex network (Figure 2A, Figures
S1A and S2A in Additional file 1). In the following, unless
otherwise stated, we mean the driver proteins detected by
the CC-MDS model are obtained with these values.

Overlap between driver proteins determined by different
optimization methods
Before performing the overlap analysis, we count the
number of determined driver proteins first. As afore-
mentioned, a CC-MDS is also an MDS. Therefore, the
MDS model and the CC-MDS model identify the same
number of driver proteins with respect to both of soft-
wares: “lp_solve” and “intlinprog”. That is the four models
(MDS-lp_solve, MDS-intlinprog, CC-MDS-lp_solve, CC-
MDS-intlinprog) produce the same of number of driver
proteins for each network. Because the two optimization
methods are not random, multiple runs of each model will
produce a same result (This also apparentlymeans that the
number of identified driver proteins for each method for
each network is constant). The results presented in Table 1
indicate that the corresponding predicted driver proteins
involve fewer than 20% of all proteins. Therefore, a small
set of proteins can control the entire network from the
MDS perspective.
Both the MDS model and the CC-MDS model can

be solved using algorithms “lp_solve” and “intlinprog”.
Because they do not generate a unique driver sets, the two
optimization methods may generate very different results.

We wonder whether the CC-MDS model can improve the
overlap rate between the sets of driver proteins computed
using the two optimization methods. For this purpose, we
use the Jaccard index to quantify the overlap rate. A larger
value of overlap rate indicates that more common driver
proteins are determined by the two optimization meth-
ods. We calculate overlap rates for both the MDS mode
and the CC-MDS model. We observe that the overlap
rates of CC-MDS proteins are higher than those of MDS
proteins on all the three networks (Table 2). The overlap
rates between MDS proteins determined using “lp_solve”
and “intlinprog” are around 0.5. On the contrary, the cor-
responding overlap rates of CC-MDS proteins are close
to 1, which shows that the CC-MDS proteins computed
using different methods are nearly the same. Therefore,
the overlap rate between the sets of drivers proteins
computed using different optimization algorithms can be
increased considerably by taking heterogeneity in central-
ities of proteins into consideration.

Degree distributions of determined driver proteins
The centrality-lethality rule reveals that high-degree pro-
teins tend to be more essential than low-degree proteins
[6]. We wonder whether MDS proteins and CC-MDS
proteins are enriched with high-degree proteins. From

Table 2 Overlap rate and the number of common
members between the sets of predicted driver proteins
computed using “lp_solve” and “intlinprog”

Dataset MDS CC-MDS

Combined 0.5219 (965) 0.9958 (1,404)

Binary 0.4397 (851) 0.9971 (1,391)

Co-complex 0.4388 (333) 1.0000 (546)
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Figure 3 and Figure S3 in Additional file 1, we observe
that the degrees of driver proteins (determined using both
MDS and CC-MDS) are, on average, larger than those
of non-driver proteins. Furthermore, the CC-MDS model
targets more high-degree proteins than the MDS model.
The Wilcoxon test is implemented to test the signifi-
cance of the difference between degree populations of
predicted driver proteins and non-driver proteins. The
results presented in Table S1 in Additional file 1 show
the statistical significance. In addition, the lower p-values
of CC-MDS proteins show much stronger significance.
Therefore, compared with MDS proteins, CC-MDS pro-
teins are more central in the networks.

Betweenness distributions of determined driver proteins
Node betweenness centrality is an indicator of a node’s
central role in a network [12]. Proteins with high between-
ness centralities have a large influence on the information
transfer in the PPI networks [14], suggesting that the
betweenness of driver proteins may be higher than those
of non-driver proteins. We find this assumption is well
verified by both MDS proteins and CC-MDS proteins
(Figure 4 and Figure S4 in Additional file 1). We also
observe that CC-MDS proteins are enriched with more
high betweenness proteins than MDS proteins, which is
reflected by the lower p-values (Wilcoxon test) of CC-
MDS proteins (Table S2 in Additional file 1). These results
indicate that CC-MDS proteins are more likely to be
important connectors that link the entire network than
MDS proteins.

Vulnerability to attack against determined driver proteins
Proteins that play a role in maintaining the overall con-
nectivity of network may have a big impact on network’s
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Figure 3 Degree distributions of the predicted driver and non-driver
proteins for the intlinprog method in the combined network. The
degree distributions are represented by box plots (line = median).

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

N
od

e 
be

tw
ee

ne
ss

Figure 4 Betweenness distributions of the predicted driver and
non-driver proteins for the intlinprog method in the combined
network. The betweenness distributions are represented by box plots
(line = median).

resilience. We wonder whether CC-MDS proteins are
more important in maintaining the overall connectivity
thanMDS proteins. Therefore, we measure this impact by
performing a robustness analysis in a similar manner to
[5] and [10]. For each set of driver proteins determined
using different models, we sort the members according
to their degree. Starting from the highest degree proteins
we successively delete proteins and calculate the number
of connected components and the size of the largest con-
nected component in the altered network. A protein set
determined by a method that generates more connected
components or produces a smaller largest connected com-
ponent is more disruptive. For all the three networks,
CC-MDS proteins have a higher impact on the resilience
of the underlying network in terms of both the number
of connected components (Figure 5A and Figure S5 in
Additional file 1) and the size of the largest connected
component (Figure 5B and Figure S6 in Additional file 1).

Enrichment analysis of multi-complex proteins
Proteins are often involved in more than one complex to
serve different biological functions over different stages of
cell cycle [48] or in different tissues [49]. Proteins shared
by multiple complexes may play essential roles in multi-
ple cellular processes. To investigate the importance of the
determined driver proteins, we expect that MDS proteins
and CC-MDS proteins may appear in more complexes
than non-MDS proteins and non-CC-MDS proteins. We
use the protein complex data from the Comprehensive
Resource of Mammalian protein complexes (CORUM)
database [34]. Figure 6 and Figure S7 in Additional file
1 shows that the predicted driver proteins appear in
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Figure 5 Vulnerability to attack against the predicted driver proteins for the combined network. Starting with the most connected proteins, the
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more protein complexes than non-driver proteins and
that CC-MDS proteins clearly belong to more complexes
thanMDS proteins. The results are statistically significant
according to Wilcoxon test (Additional file 1: Table S3).
Therefore, CC-MDS proteins are more central in the net-
work to reach other proteins in different complexes than
MDS proteins.

Enrichment analysis of multi-functional proteins
Multi-functional proteins have multiple domains to inter-
act with distinct sets of partners, each serving a different
molecular function [50,51]. Proteins that perform mul-
tiple roles are important for cell’s functional organiza-
tion [52]. We wonder whether predicted driver proteins
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Figure 6 Distributions of the number of associated complexes of
predicted driver and non-driver proteins for the intlinprog method in
the combined network. The distributions are represented by box
plots (line = median).

involve more functions than non-driver proteins. We per-
form the experiment using Gene Ontology annotations
from the Gene Ontology database [35]. From Figure 7 and
Figures S8-S10 in Additional file 1, we observe that the
predicted driver proteins are associated with more GO
annotations than the non-driver proteins for all the three
subontologies (BP, CC, and MF). In addition, CC-MDS
proteins participate in, on average, more functions than
MDS proteins. Table S4 in Additional file 1 shows the sta-
tistical significance of the difference between populations
of the number of annotated GO annotations of driver pro-
teins and non-driver proteins (Wilcoxon test). The lower
p-values of CC-MDS proteins show that the CC-MDS
model can detect more multi-functional proteins than its
uncorrected version.
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Figure 7 Distributions of the number of associated BP annotations of
predicted driver and non-driver proteins in the combined network.
The distributions are represented by box plots (line = median).
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Enrichment analysis of essential genes
Essential genes are genes that are critical for the survival
of the organisms [53], suggesting that the predicted driver
proteins may be enriched with essential genes. Using the
essential genes obtained from the Database of Essential
Genes (DEG) [36], we perform an enrichment analysis
by applying Fisher’s exact test. We observe that essential
genes are significantly enriched in bothMDS proteins and
CC-MDS proteins for all the three networks (Table 3).
More importantly, we find that CC-MDS proteins can
recover more essential genes than MDS proteins and that
the sets of CC-MDS proteins show much stronger enrich-
ments of essential genes than the sets of MDS proteins.

Enrichment analysis of aging genes
Aging genes are human genes implicated in the process
of aging, therefore they are one type of human biologi-
cally central genes. To reveal the biological significance
of the resulting minimum dominating sets, we wonder
whether these sets are significantly enriched with proteins
that govern longevity. After collecting 298 aging genes
from the Aging Gene (GenAge) Database [39], we apply
Fisher’s exact test to evaluate the statistical significance.
We find that ageing-related genes are indeed significantly
enriched in the sets of CC-MDS proteins and the sets of
MDS proteins (Table 4). In addition, the CC-MDS model
can capture more aging genes than the standard MDS
model, which shows the effect of degree and betweenness
centralities on the problem of diver protein detection.

Enrichment analysis of disease genes
A genetic disorder is caused by one or more abnormalities
in the genome. Genes associated with diseases have spe-
cial biological roles in the cell [54]. Assuming that driver
proteins may significantly contribute to human genetic
disorders, we expect that proteins that govern diseases
may significantly appear in MDS proteins and CC-MDS
proteins. We collect disease-associated genes from three
public databases: Genetic Association Database (GAD)
[42], Online Mendelian Inheritance in Man (OMIM)
database [41] and Universal Protein Resource (UniProt)
database [40]. From Table 5, we find that disease-related
proteins are significantly enriched in both the sets of
MDS proteins and CC-MDS proteins on all the three net-

Table 3 Enrichment of the predicted driver proteins
among essential genes

intlinprog lp_solve

Dataset (# proteins) MDS CC-MDS MDS CC-MDS

Combined (1,712) 2.3E-04 (343) 1.4E-22 (432) 2.0E-17 (413) 1.4E-22 (432)

Binary (1,632) 5.1E-06 (353) 1.8E-20 (421) 6.1E-16 (404) 1.8E-20 (421)

Co-complex (920) 8.5E-03 (211) 4.3E-15 (264) 7.1E-09 (243) 4.3E-15 (264)

Table 4 Enrichment of the predicted driver proteins
among aging genes

intlinprog lp_solve

Dataset MDS CC-MDS MDS CC-MDS
(# proteins)

Combined (259) 1.2E-10 (86) 5.8E-21 (107) 5.0E-16 (98) 5.8E-21 (107)

Binary (254) 1.5E-07 (79) 1.1E-18 (104) 1.3E-13 (94) 1.1E-18 (104)

Co-complex (206) 1.8E-07 (72) 3.2E-19 (96) 3.4E-12 (83) 3.2E-19 (96)

works (Fisher’s exact test). Furthermore, the sets of CC-
MDS proteins include more disease-related genes than
those of MDS proteins, of which the statistical signifi-
cance can be validated by the lower p-values of CC-MDS
proteins.

Enrichment analysis of virus-targeted proteins
Besides genetic diseases, there also exists virally impli-
cated diseases that are associated with viral infections
[55]. Human viruses seize certain proteins to control
a host cell [56], suggesting that virus-targeted proteins
may be significantly enriched in the sets of predicted
driver proteins. We use the 704 proteins that inter-
act with at least one human viruse from the Molecu-
lar INTeraction (MINT) database [43]. Applying Fisher’s
exact test, we find that virus-targeted proteins signifi-
cantly appear in both MDS proteins and CC-MDS pro-
teins (Table 6). We also observe that the CC-MDS model
can identify more virus-targeted proteins than the MDS
model.

Enrichment analysis of transcription factors
Transcription factors are important proteins that con-
trol the rate of transcription of genetic information from
DNA to messenger RNA. Therefore, transcription fac-
tors play crucial roles in regulation of gene expression
[57]. To show the biological significance of the predicted
driver proteins, we need to make sure whether such
sets are significantly enriched with transcription factors.
After collecting 205 human transcription factors from the
TRANSFAC database [44], we apply Fisher’s exact test
to assess the statistical significance. We experimentally
find that transcription factors significantly appear inMDS
proteins and CC-MDS proteins (Table 7). However, the
sets of CC-MDS proteins cover more transcription fac-
tors than the sets of MDS proteins, except in the binary
network.

Enrichment analysis of protein kinases
Protein kinases that catalyze protein phosphorylation
play crucial regulatory roles in intracellular signal trans-
duction [58]. Therefore, we investigate whether pro-
tein kinases significantly appear in the sets of predicted
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Table 5 Enrichment of the predicted driver proteins among disease-associated genes

intlinprog lp_solve

Database Dataset (# proteins) MDS CC-MDS MDS CC-MDS

Combined (1071) 6.7E-04 (222) 2.3E-14 (274) 2.2E-08 (249) 2.3E-14 (274)

GAD Binary (1020) 1.1E-02 (210) 5.6E-14 (270) 1.5E-09 (252) 5.6E-14 (270)

Co-complex (487) 1.5E-02 (118) 3.2E-08 (144) 3.6E-05 (132) 3.2E-08 (144)

Combined (1639) 4.7E-07 (349) 2.0E-12 (378) 5.2E-08 (355) 1.1E-12 (379)

OMIM binary (1558) 2.0E-02 (308) 5.5E-10 (362) 5.9E-08 (351) 3.4E-10 (363)

Co-complex (657) 3.0E-03 (159) 3.2E-07 (179) 2.0E-05 (171) 3.2E-07 (179)

Combined (1686) 2.5E-05 (346) 2.9E-09 (371) 1.9E-06 (354) 1.9E-09 (372)

Uniport binary (1604) 1.6E-03 (328) 5.5E-08 (360) 5.9E-07 (354) 3.6E-08 (361)

Co-complex (711) 6.5E-03 (168) 4.3E-05 (181) 8.8E-04 (174) 4.3E-05 (181)

driver proteins using Fisher’s exact test. We obtain pro-
tein kinases from the Regulatory Network in Protein
Phosphorylation (RegPhos) database [46]. It can be clearly
seen from Table 8 that protein kinases are significantly
enriched in CC-MDS proteins. For the MDS model,
the deriver proteins computed using library ‘‘intlin-
prog’’ from the combined and co-complex networks
are not statistical significance (p-value > 0.01). After
incorporating heterogeneity in the centralities of pro-
teins into the standard MDS model, the CC-MDS model
can recover more protein kinases than the uncorrected
version.

Enrichment analysis of Gene Ontology terms
To indicate the biological significance of the predicted
driver proteins, we compute the enrichment of them in
each of the Gene Ontology terms using GO Term Finder
[35,59]. All the three GO categories (BP, CC and MF) are
considered. The Bonferroni correction is used to coun-
teract the problem of multiple comparisons. A GO term
is assumed to be statistically significantly enriched in a
resulting set of driver proteins if the corresponding cor-
rected p-value is lower than 0.01. In this section, we
just consider the combined network and the intlinprog
method for the CC-MDS model. This is because that the
combined network has the highest recall and that the
resulting CC-MDS proteins of the intlinprog and lp_solve
methods are comparable.

Table 6 Enrichment of the predicted driver proteins
among virus targeted proteins

intlinprog lp_solve

Dataset (# proteins) MDS CC-MDS MDS CC-MDS

Combined (591) 3.8E-06 (143) 2.2E-17 (181) 7.9E-09 (154) 2.2E-17 (181)

Binary (575) 6.4E-04 (133) 8.5E-14 (172) 1.4E-09 (158) 8.5E-14 (172)

Co-complex (344) 5.2E-02 (83) 3.8E-10 (115) 1.1E-07 (108) 3.8E-10 (115)

We observe that the number of GO terms significantly
enriched in CC-MDS proteins is larger than the num-
ber corresponding to MDS proteins (Additional file 2).
This indicates that CC-MDS proteins are more function-
ally consistent than MDS proteins. Interestingly, all GO
terms enriched in MDS proteins are also enriched in CC-
MDS proteins. Therefore, functionally important proteins
which can be captured by the standard MDS model can
also be captured by the CC-MDS model. Biological func-
tions with significant enrichments in CC-MDS proteins
include many processes critical for normal cellular func-
tioning, such as cell surface receptor signaling pathway,
response to stimulus, single organism signaling, regula-
tion of biological process, regulation of cellular process,
cell death, defense response, gene expression, apoptotic
process, T cell costimulation, leukocyte cell-cell adhesion
etc. For detailed information, please refer to Additional
file 2. Looking further into these results, we rank CC-
MDS proteins according to the number of annotated GO
terms in descending order. Here we only consider the
terms that are significantly enriched in the resulting set of
CC-MDS proteins. The complete ranked list is available
as Additional file 3. We find that the CC-MDS proteins
involved with more GO terms are more likely to be essen-
tial genes, aging genes, disease-associated genes, virus-
targeted genes, transcription factors and protein kinases
(Spearman’s rank correlation coefficient, p-value < 0.01).
For example, out of the top 1% (e.g., 15) CC-MDS proteins,

Table 7 Enrichment of the predicted driver proteins
among transcription factors

intlinprog lp_solve

Dataset (#proteins) MDS CC-MDS MDS CC-MDS

Combined (155) 1.7E-02 (38) 2.5E-06 (50) 2.0E-04 (45) 2.5E-06 (50)

Binary (148) 4.5E-03 (40) 2.9E-04 (44) 2.9E-04 (44) 2.9E-04 (44)

Co-complex (99) 2.9E-02 (29) 1.6E-04 (36) 2.9E-02 (29) 1.6E-04 (36)
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Table 8 Enrichment of the predicted driver proteins
among protein kinases

intlinprog lp_solve

Dataset (# proteins) MDS CC-MDS MDS CC-MDS

Combined (368) 6.5E-02 (76) 9.2E-09 (106) 2.1E-04 (90) 9.3E-09 (106)

Binary (358) 2.2E-03 (86) 1.7E-09 (109) 7.9E-08 (104) 1.7E-09 (109)

Co-complex (196) 4.0E-01 (44) 4.4E-06 (66) 5.6E-04 (59) 4.4E-06 (66v)

12 of them are essential genes, 9 of them are aging genes,
6 of them are virus-targeted genes, and 6 of them are
protein kinases (Table 9).

Comparison with previous models
Before our study, Milenković et al. also developed a
heuristic algorithm to identify dominating sets in PPI net-
works using the degree centrality and graphlet degree
centrality [24]. According to the centralities they used,
their methods are referred to as “dominating sets-degree
centrality” (DS-DC) and “dominating sets-graphlet degree
centrality” (DS-GDC). They found that the predicted
dominating sets could capture biological central genes.
Therefore, it is interesting to compare the CC-MDSmodel
with the DS-DC and DS-GDC models.
We run the three models on the three considered net-

works. We find that the CC-MDSmodel produces smaller
dominating sets than the DS-DC and DS-GDC models
and the overlaps between the three resulting dominating

Table 9 The top 1% (e.g., 15) CC-MDS proteins in the
combined network

Protein # GO terms E A GD OD UD VT TF PK

AKT1 326 x x x x x x

EGFR 315 x x x x x x

MAPK3 308 x x

TGFB1 302 x x x x x

CDK1 293 x x x

SIRT1 292 x x

CTNNB1 289 x x x x x

MAPK1 284 x x x

RPS27A 279 x

INS 272 x x x x x

UBC 272 x

IGF1 269 x x x x x

LYN 269 x x x

TRAF6 267 x x

SRC 264 x x x x x

If a protein is an essential (“E”) gene, aging (“A”) gene, GAD disease (“GD”) gene,
OMIM disease (“OD”) gene, Uniport disease (“UD”) gene, virus-targeted (“VT”)
gene, transcription factors (“TF”) or protein kinase (“PK”), there is an “x” in the
corresponding entry.

sets are large (Figure 8, Figure S11 in Additional file 1).
Therefore, compared to the dominating sets identified by
the DS-DC and DS-GDC models, the ones identified by
the CC-MDS model are minimal. These results also indi-
cate that CC-MDS proteins can capture a huge portion
of the dominating sets produced by the DS-DC and DS-
GDC models. We do not present the results about the
functional significance of dominating sets produced by
the DS-DC and DS-GDC models in the manuscript for
the following reasons. First, our main focus is to iden-
tify minimum dominating sets. However, the dominating
sets identified by the DS-DC and DS-GDC models are
larger than the ones identified by the CC-MDS model.
Second, as we discussed before, the dominating sets pro-
duced by the three models overlap with each other con-
siderably, therefore, their functional significance may be
similar.

Analysis of computational time
As mentioned above, both the MDS model and the
CC-MDS model involve solving a binary integer-
programming problem and the difference between them
lies primarily in the objective function. Therefore,
they have similar computational complexities in theory.
Table 10 presents the time cost of the MDS and CC-MDS
models solved using both the “intlinprog” and “lp_solve”
algorithms. We implement the algorithms using Matlab
in a workstation with Intel 4 CPU (3.40 GH × 4) and
16 GB RAM. We find that all methods can produce the
dominating sets within 2 seconds. The time costs of the
MDS model and the CC-MDS model are comparable

Figure 8 Overlap of the three sets of driver proteins produced by
CC-MDS, DS-DC and DS-GDC algorithms applied on the combined
network.
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Table 10 Time cost (second) of theMDS and CC-MDS
models

intlinprog lp_solve

Dataset MDS CC-MDS MDS CC-MDS

Combined 0.82 0.77 1.81 1.10

Binary 0.77 0.76 1.50 0.99

Co-complex 0.16 0.16 0.21 0.16

when computed using the “intlinprog” method; while the
CC-MDS model is more efficient than the MDS model
when computed using the “lp_solve” method. Please note
that here we only consider time cost of solving the opti-
mization problems (Equations (1) and (2)). In practice,
we also need some time to compute degree centrality
and betweenness centrality when we use the CC-MDS
model to determine driver proteins. Encouragingly, a lot
of soft packages (e.g., MatlabBGL [32]) which can com-
pute centralities of a given network efficiently have been
developed. Therefore, compared to the MDS model, the
CC-MDS model can capture more functional significant
proteins without loss of efficiency.

Conclusions
In this paper, we study how to incorporate heterogeneous
centralities (degree and betweenness) of proteins into the
standard minimum dominating set model, providing a
more effective way to determine driver proteins that play
an important role in controlling the entire network. Even
though the correction seems minor and innocuous, we
experimentally find that the corrected version is less sen-
sitive to the optimization methods than the uncorrected
counterpart. Furthermore, the centrality-corrected model
can detect significantly more proteins that carry impor-
tant topological and functional characteristics than the
original model.
The corrected-model presented here raise several ques-

tions, answers to which could further improve the per-
formance. For example, although our centrality-corrected
model can considerably increase the overlap between the
sets of driver proteins computed using different opti-
mization methods, there are still several algorithmic-
dependent proteins in the combined and binary networks
(see Table 2). We manually find that the proteins that
can be only determined by one of method always
have same interacting neighbors. Therefore theses pro-
teins can not be distinguished using topological prop-
erty alone. One possible solution is to use functional
property (e.g., GO functions) of proteins to define the
weights in Equation (3). By doing so, proteins would be
more discriminative and proteins that carry out impor-
tant biological functions could be predicted as driver
proteins.

Additional files

Additional file 1: Supplementary tables and figures. This section
provides the supplementary tables and figures referred in the main text.

Additional file 2: Enrichment analysis of Gene Ontology terms. This
section provides a table that presents the results of GO enrichment analysis
of the predicted driver proteins in the combined network.

Additional file 3: Complete ranked lists of CC-MDS proteins. This
section provides a table that presents a complete list of CC-MDS proteins
ranked according to the number of associated GO annotations in the
combined network.
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