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Abstract

limitations identified.

Background: Despite ongoing reduction in genotyping costs, genomic studies involving large numbers of species
with low economic value (such as Black Tiger prawns) remain cost prohibitive. In this scenario DNA pooling is an
attractive option to reduce genotyping costs. However, genotyping of pooled samples comprising DNA from many
individuals is challenging due to the presence of errors that exceed the allele frequency quantisation size and
therefore cannot be simply corrected by clustering techniques. The solution to the calibration problem is a correction
to the allele frequency to mitigate errors incurred in the measurement process. We highlight the limitations of the
existing calibration solutions such as the fact they impose assumptions on the variation between allele frequencies 0,
0.5,and 1.0, and address a limited set of error types. We propose a novel machine learning method to address the

Results: The approach is tested on SNPs genotyped with the Sequenom iPLEX platform and compared to existing
state of the art calibration methods. The new method is capable of reducing the mean square error in allele frequency
to half that achievable with existing approaches. Furthermore for the first time we demonstrate the importance of
carefully considering the choice of training data when using calibration approaches built from pooled data.

Conclusion: This paper demonstrates that improvements in pooled allele frequency estimates result if the
genotyping platform is characterised at allele frequencies other than the homozygous and heterozygous cases.
Techniques capable of incorporating such information are described along with aspects of implementation.

Keywords: DNA pooling, Calibration, Machine learning, SNP

Background

Recently the Illumina HiSeq X Ten [1] achieved a new
low in per genome sequencing cost, continuing the ongo-
ing reduction in cost per genome since 2001 [2]. These
cost reductions now make it practical to genotype indi-
viduals in large association studies of humans. However,
this is not the case for studies involving large popula-
tions of low economic value species where contemporary
genotyping technology is cost prohibitive. The cost ben-
efits achieved in [1] have not been realised on platforms
based on alternative technology, such as Sequenom, and
therefore pooling is still required in this scenario. This is
evidenced by the ongoing use of DNA pooling in stud-
ies on low economic value species, specifically to reduce
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cost [3,4]. DNA pooling has been shown to provide a cost
benefit over individual genotyping [5] and allows access
to a broader community to enable genetic association
studies.

Pooling techniques date back to 1943 when blood from
soldiers was pooled for testing of disease [6] and pool-
ing of DNA was first proposed in 1985 [7]. The field
advanced rapidly and in 2002 a broad review of the
approach (applied to SNP data) was published [8]. DNA
pooling combines DNA from multiple individuals into a
single sample which can be genotyped once, as opposed to
genotyping each individual. This reduces the cost of geno-
typing by a factor equal to the number of individuals in
the pooled sample. In general pooling strategies are more
complex and involve the multiple genotyping of duplicate
pools, the effiiency of pooling approaches is given in [8].
The general pooling approach changes the measurement
from detecting whether or not a substance is present,
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to measuring the concentration of the substance. In the
case of DNA pooling, the ‘substances’ are the discrete
SNP genotypes AA, AB, BB with corresponding A-allele
frequencies 1,1/2,0 and the ‘concentration’ is equivalent
to the real valued A-allele frequency within the range
[0, 1].

The most significant drawback of the pooling approach
is the error incurred in the process of measuring the pool’s
allele frequency. The impact of this error is illustrated in
the context of a bi-allelic quantitative trait linkage study.

Given a population and a single trait of interest, two
sub-populations (¢ and B) are identified exhibiting oppos-
ing extremes of the trait. From each sub-population a
sub-set of individuals are selected, DNA acquired from
each individual and combined in a single pooled sample
representative of the respective subset. The two pooled
samples are genotyped and their allele frequencies are
compared. Both fixed and variable errors in the allele
frequency measurement impact the power of such a
study:

ZZ — (-ﬁx _.flg)2 (1)
(Vo + Vp)

where Z is the study test statistic, f, and fg are the
best estimates of the A-allele frequency of the two sub-
populations, and V,, and Vj are the variances in f; and f3.
If the genotyping hardware response for a sample’s allele
A and allele B are H4 and Hp respectively then typically
the sample’s allele frequency (f) is calculated from:

f=

4+ Hp

Three main factors contribute to the allele frequency
variation including: sampling error E; (due to the lim-
ited pool size), sample construction error: E, (due to non
ideal pool constructing resulting from the unequal con-
tributions of individuals to the pool sample) and allele
frequency measurement error: E,, (due to chemistry and
detection errors in the genotyping process). If the true
sub-population allele frequency is p, then these errors
result in a measured allele frequency f = p + E; +
E, + E,;. The variance introduced in f by approximat-
ing sub-population with N individuals is the expectation
of the square error: E2 = p(1 — p)/2N. Similarly the
unequal contributions to a pool from individual samples
contribute to a variance component E; = tp(1 — p)/2N
[9] where T is the standard deviation in the fractions of the
pool contributed by the individuals. A thorough analyses
of these errors under different sampling conditions is
given in [10]. Both these variance contributions can be
reduced by increasing the pool size. Measurement error;
however, is independent of pool size. Reducing measure-
ment error requires averaging over multiple measure-
ments, which reduces cost effectiveness of the pooling
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strategy. To resolve this issue, a range of calibration tech-
niques have been proposed for E,;, reduction. Three exam-
ple approaches are k-correction [11], linear interpolation
[12] and the polynomial-based probe specific correction
(PPC) method [13].

Despite the fact that these methods were developed for
different platforms, they all contain a number of similar-
ities which allow them to be applied to data generated
by the Sequenom platform. All existing calibration tech-
niques have a mapping which takes as input the raw
allele frequency resulting from the platform’s response to
each of the two alleles present for a SNP. The Sequenom
data is also available in this format. Furthermore the
SNP specific corrections are based on the platform’s allele
responses to multiple individuals for the SNP being cor-
rected. Sequenom data can also be generated by multiple
individuals to provide such a data set. To explain these
techniques the following notation is adopted:

Given a SNP requiring calibration, and a set of AA
homozygous individuals in the SNP, define AA =
(Ha(AA), Hg(AA)) where Ha(AA) and Hp(AA) are the
average value for Hy and Hp over the AA homozygous
set of individuals. Similarly AB and BB are average val-
ues defined for heterozygous AB and homozygous BB sets
of individuals respectively. The measured allele frequency
f, corresponding to points AA, AB, and BB, are f14, fas,
and fpp respectively. The calibration techniques all map
faa and fpp into A-allele frequencies 1 and 0 respectively
with calibration specific approaches between these values
to map fyp into A-allele frequency 0.5. How they achieve
this varies between the methods.

k-correction was introduced to correct for error in the
PCR process [11], specifically SNP dependent unequal
amplification of alleles during PCR. The correction
involves using AB to calculate ratio k = Hy (AB)/Hg(AB),
ideally kK = 1 in the absence of differential amplification.
The ratio & is used to correct the distorted post-PCR mea-
sured quantities resulting in the following expression for
calibrated allele frequency f”:

Hy

!
f= Ha + kHp' )
k-correction approach can be applied to the Sequenom
data without modification.

The piece-wise linear calibration approach of Illumina
[12] involves four linear transformations of (H4, Hg) cor-
responding to rotation, translation, shear and scale trans-
formations. These transform AA and BB onto H4 and
Hp axes respectively, with approximately equal amplitude.
Finally a piecewise linear function maps angles on the
(Hy, Hp) plane at points AA, AB, and BB onto A-allele
frequencies 1, 0.5, and 0 respectively. The function lin-
early interpolates angles between these points, therefore
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the entire calibration process for pools involves a com-
bination of the four transformations, calculating angle
atan(H4/Hp), and piece-wise linear interpolation. Our
implementation of the piece-wise linear approach is sim-
ilar; however to ensure consistency across the calibration
methods we utilise the form given in Eq. 2 and the cor-
rected allele frequency f” is:

y_ S—fa 1 fap—f -
f= faa —fap  2faa —fas S > Jas
,  f— /BB —
f= For—fon f<=fap 4

Minor changes include the fact that the ratio in Equation
(2) is used in calculating allele frequency, as opposed
to the normalised angle (2/pi)atan(H4/Hp). Dividing by
Hy+Hp in Eq. 4 introduces a normalising factor, and
enforcing the homozygous values to 0, 1 and heterozygous
cluster centre to 0.5 is equivalent to the rotation and shear
transformation. However the translation transformation
is not implemented as it requires estimating the intercept
of the asymptotes of the AA and BB clusters. However
the majority of the approach is captured in the expression
above.

The polynomial-based probe specific correction (PPC)
approach [13] adds a probe pair index as an additional
variable for the Affymetrix platform. Specifically each
SNP contains 10 probe pairs, which are each calibrated by
a second order polynomial mapping the three allele fre-
quency values per probe (f44, fap, and fzp) onto 1, 0.5,
0 and interpolating between these values. Finally the 10
calibrated probe values are averaged to estimate allele fre-
quency. Whilst the 10 probe correction is not relevant for
the Sequenom data the second order polynomial mapping
can be applied directly and is the following:

= (f —faB) (f — fz5) +1 (f — faa) (f — f28)
(faa —fag) (faa —fo8) 2 (fag —faa) (fas — fz8)
(5)

Although the expressions for the various methods are
all distinct, each expression can be decomposed into three
corrections which remove distortion in the raw allele fre-
quency response of the platform. All methods initially
include a constant and linear correction to adjust the two
allele frequencies corresponding to the two homozygous
cases. The methods are identical at this point. Finally
a method specific distortion is applied to correct the
heterozygous case allele frequency. To highlight this we
define an intermediate homozygous corrected’ allele fre-
quency f! of the form:

fl=r+d'f+d (6)
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where f is the raw allele frequency and dy and d; are
constants:

o_  J8B
4= a4 — fBB
P (faa — fzB)
faa — fsB

that enforce f; ( AA) =1landf; (fBB) =0.

To correct the heterozygous case all methods apply
a distortion correction D to give fully calibrated allele
frequency:

fr=r"+D(f). @)

where D satisfies the following conditions

D(0) = 0,

D(1) =0,

D(f4p) = E,

E=0 = D(fY) =0, (8)

where E = % —f QB, is the error for the heterozygous case
(as =" (Jas))-

D is specific to each method. For piece-wise linear
correction:

1 ﬁ 1 1
D(f) 1 E S > fap
AB
_1-7 _
D( 1) - 1 _fABE fl >_f,4}B' (9)
For PPC:
1(1 _ ¢l

Jap (1 =fa5)
The expression for k-correction includes both H4 and
Hp terms; however, these can be eliminated by solving (2)
and (3) for Hp, equating and cancelling H4. Furthermore
after correcting homozygous cases using Eq. 6, the allele
frequency for the heterozygous case is f’ jB = K/(1+K).
The distortion term corrected by k-correction then
takes the form:

1 1
D( 1)=f (i_k)(l - 11)
flaA -k +k

The expression in (11) is more complicated than those
in (9) and (10). If distortion in the reciprocal of allele
frequency is used (11) becomes a first order distortion
correction of the form in (6); however, for consistency
between three methods we have expressed all in terms of
allele frequency.

Examination of Egs. 9, (10) and (11) show they sat-
isfy conditions in (8). Example plots of polynomials and
distortions D are given in Figure 1.
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The limitations of the approaches are they all:

1. Impose assumptions on variation between 0, 0.5, 1.0,
2. address a limited set of error types.

To highlight limitation 1 we show that when testing
with allele frequencies between 0, 1/2 and 1, the perfor-
mance of each interpolation method varies significantly
between SNPs. We then outline a machine learning tech-
nique [14] that samples across the full allele frequency
range. The technique can model non-linear distortions to
correct the broad range of errors that occur in the chem-
istry/detection processes across different genotyping plat-
forms. Therefore they resolve the drawbacks of exist-
ing approaches. Furthermore the technique substantially
reduces the measurement error. After learning the calibra-
tion the approach can be used to calibrate pooled samples
measured on the same platform without further train-
ing. Finally we demonstrate the training requirements for

machine learning approaches by training and testing on
sets containing individuals, pools, and a combination of
both.

Method

Experimental data

Experimental data from Black Tiger prawns Penaeus mon-
odon was acquired from the Sequenom IPLEX platform
[15]. The raw data, typical of a commercial run, generated
61 SNP (Hy4,Hp) measurement pairs on 1041 individ-
uals. This data was then processed for quality control
Figure 2. A second experiment was conducted whereby all
steps required in the genotyping process were conducted
in a manner as rigorous as possible; however, due to
increased cost and time of the rigorous process only a
smaller set of 47 individuals were genotyped (randomly
selected from the 1041 in the larger experiment). The calls
from the more accurate experiment were used to rank
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Figure 2 Data cleaning workflow. Workflow in cleaning input data. steps involve removing all data corresponding to bad SNPs; removing all SNP
results for bad samples including both individual and pool samples. Finally low amplitude detections are removed. Size of data set shown next to

the SNP accuracy of the larger experiment. In total 13
SNPs were identified as being inconsistent between the
two experiments and were removed leaving 48 SNPs in
total. The 1041 individuals were ranked in terms of num-
ber of available calls. Low quality samples (<80% calls)
were removed from the data set leaving 850 samples.
We also removed 1279 measurement pairs (Hy, Hp) val-
ues below a threshold (R<1) resulting in 39521 (Hg4, Hp)
pairs. 22 pool samples containing a minimum of 18 indi-
viduals and a maximum of 26 individuals were created
from the 1041 individuals. An individual was in at most
one pool sample. Three pools resulted in no data and
were removed resulting in 19 pooled samples, of which 11
(Hy, Hp) pairs were below the minimum signal threshold
and removed, leaving 901 measurement pairs. Because the
pools were constructed from individuals selected from the
1041 genotyped individuals, we can calculate the ground
truth allele frequencies of these pools using the 39521
individual results. A small fraction (3.4%) of the pool
and SNP combinations contained individuals which did
not pass quality control, and therefore were not included
when calculating pool ground truth.

Finally amongst the 850 individuals 41 individuals were
genotyped twice, after data quality control a total of 1621
duplicate measurements of (Hy, Hp) were available. These
duplicate samples were used to estimate the underlying
variability in the measurement process.

Measurement error calculation
The measurement error can be decomposed into a fixed
bias term Ep and a random term Ex such that E = Eg+En

with corresponding MSE: E%; + EIZV. The bias term is the
expectation of the error (E) which results in an erroneous
offset in the allele frequency estimate which cannot be
reduced by averaging multiple estimates, the variance in

measured allele frequency is EIZV and both errors are func-
tions of allele frequency: Eg = Ep(f), ENn = En(f). In
particular Ex(0), EN(1/2), Ex(1) can be directly measured
using individual samples with allele frequencies 0, 0.5 and
1 respectively. For example, Figure 3 shows the uncali-
brated cluster of points corresponding to heterozygous
individuals, Ex(1/2) corresponds to the angular spread of
the cluster and Eg(1/2) to the rotation of the cluster centre
from the ideal 45 degree angle. An optimal pooling strat-
egy involves minimising the combination of Es, Ep and
Ey. Intuitively the strategy should balance the contribu-
tions from different sources, significant reduction of any
single error below that of other errors has limited bene-
fit. The optimal strategy is dependent on a combination of
the expected allele frequencies and trait probabilities, and
can be found based on information loss in the process of
pooling [16].

To test our methods we introduce three testing regimes:
individuals, pools and combined. The regimes evaluate
the performance of the calibration methods by testing
with samples that are either all individuals, all pools, or
a combination of individual and pool samples. The com-
bined set is constructed such that the error incurred
on the combined set contains equal contributions from
pools and individuals. Although the presented methods
are developed to be applied to data sets containing pools,
we include a data set comprising individuals only. The
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Figure 3 SNP coordinate pairs. (Ha, Hg) coordinates for the AA (blue), AB (purple), BB (red) cases plotted for four SNPs. Black points correspond to
individual samples for which no call data is provided by platform. Pre-calibration errors £5(0.5) and Ey(0.5) are shown for top right SNP.

intent is not to provide results indicative of application
of the methods, but to demonstrate the performance of
the methods at detector values typical of homozygous and
heterozygous samples. The individual regime highlights
the contrast in performance with the existing methods
developed with individual data in addition to allowing
error to be decomposed into bias and variance compo-
nents due to the presence of multiple calibrations at the
same allele frequency.

The test data sets are named Iy, P,y and C,y;. I, con-
tains all 850 individuals, P, contains all pool data. C
contains all the samples in I,;; and P,y; however, to ensure
equal number of pooled samples, samples from P, are
replicated either 43 or 44 times into C,; until pool sam-
ples comprise an equal proportions of the data set. See
Figure 4.

Polynomial calibration

Three existing techniques were applied: linear interpo-
lation, k-correction and 2nd order Lagrange interpola-
tion. In addition we also implemented three variations
of Hermite interpolation to explore whether alternative

interpolating functions could achieve better corrections
on the Sequenom platform. The techniques are equivalent
to the existing methods in mapping the homozygous cases
as in (6), with a distortion specific term D satisfying condi-
tions in (8). Piecewise Hermite interpolation implements
two Hermite polynomials over sub-domains [0, fAB] and
[fAB, 1] and enforces a derivative at f = 0, f = f4p, and
f = 1. We enforce zero derivative in our implementation.
An equal domain version creates a symmetric function
either side of f4 5, finally a fixed point variation of the equal
domain version enforces the derivative to be unit valued
at f4p. To highlight the differences in calibration polyno-
mials the functions are plotted in Figure 1 for the case
of correcting an erroneous heterozygous allele frequency
measurement f4p = 0.3.

The MSE in allele frequency was calculated by cal-
ibrating under the three regimes described previously:
individuals, pools and combined.

Machine learning approaches
The new approach outlined in this paper utilises machine
learning techniques to learn functions that correct and
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Figure 4 Data set generation. Workflow for generating data sets for the various training and testing regimes are shown. Numbers correspond to
number of (Hy, Hg) pairs copied to data set. Pool samples dark shading, individual sample light shaded. Pool samples are copied multiple times to

estimate allele frequency. Three approaches were imple-
mented including linear regression (LR), multilayer per-
ceptron (MLP), and support vector regression (SVR).
WEKA implementations of the LR and MLP algorithms
were used [17] and libSVM [18] used for the SVR. Each
method learns a function that maps f into a calibrated
allele frequency output f’. The training data set (which
includes samples of f and known ground truth allele fre-
quencies f*) is used to learn the mapping function. The
methods find different solutions to the function due to the
fact the methods impose differing constraints on the solu-
tion and optimise different objectives. LR finds the linear
representation that minimises the least squares error over
the training set and requires no additional parameters
to define the approach. Both MLP and SVR learn non-
linear mappings and require a number of parameters to
define both the type of function representation, and the
optimisation approach.

The MLP [19] is implemented as a cascaded series of
matrix-vector multiplications. The ’vector’ input to the
first matrix-vector product is the uncalibrated allele fre-
quency value. A non-linear operation is applied to the
output of each matrix-vector multiplication, the result is
then multiplied by the next matrix in the series. The out-
put of the final matrix-vector product is the calibrated
allele frequency value.

Therefore the function representation is defined by
parameters describing the number of matrix vector
products (number of layers) and the length of the
vectors (number of hidden nodes) resulting from the
matrix vector products (notwithstanding the final output
‘vector’ length which is prescribed and of length one
in this case). Furthermore a parameter specifying the

type of non-linearity applied at each layer is required.
Optimisation involves finding the values of the matrix ele-
ments (weights) that minimise an objective function. Typ-
ically a regularisation parameter is included to ensure the
weights do not overfit the training data by finding an exact
match, additional parameters specify the search method.
Here we use a gradient based search with learning rate and
momentum describing the update set. Specific values for
parameters are shown in Table 1.

Support vector regression builds a function based on the
training data itself. The function is represented as a sum
of non-linear basis functions (called kernels) centred at
each training sample. Parameters are required to describe
the choice of kernel, the cost function and the optimi-
sation approach. A common choice of basis function are
Gaussians with a specified standard deviation in the input

Table 1 Parameters describing machine learning
approaches

Multi-layer Perceptron (MLP)

Parameter Best Range minimum Range maximum
num layers 2 1 3
nodes per layer 2 1 6
learning rate 0.11 0.01 1.0
momentum 0.15 0.01 1.0
Non-linearity Sigmoid in all hidden layers
Support Vector Regression (Lib SVM nu-SVR)
nu 0.092 0.01 1.0
C 0.027 0.01 1.0
Kernel Gaussian
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domain. The SVR cost function has no cost for small
errors, this allowable error can be explicitly provided as
in the €-SVR, or implicitly provided via a parameter v in
the nu-SVR which finds a balance between regularisation
and v. Here the nu-SVR [20] is used with the parameters
provided in Table 1. Where parameters are not explic-
itly stated, default parameters provided by WEKA and
lib-SVM were used.

Whereas the polynomial calibration used cluster cen-
tres for determining the calibration polynomials, machine
learning directly use the sample values as training data.
The question arises as to what proportion of pooled
data should be used versus the individual data. To exam-
ine this we introduce three training regimes individu-
als, combined and pools, which train the models using
data from the respective data sources. The intent of the
machine learning approaches is to provide samples away
from the homozygous and heterozygous sample cases,
to improve the calibration in these regions; however, we
provide the individuals training set to allow compari-
son with existing methods which rely on samples from
individuals only, and also provide the ability to decom-
pose errors into variance and bias components in the
resulting f'.

An additional requirement on the data sets to ensure
valid results for the machine learning approach is there
is no intersection between the data used for training the
models and the data used for testing the models. To
achieve this the data sets are further refined. Specifi-
cally we use a cross-validation approach: the original data
set containing all the data is partitioned into 10 blocks.
One block is removed for testing and the remaining 9
blocks used for training. Consequently we create two pool
data sets Ppyiy and Pres; which partition Py, and indi-
vidual sets I4i, and I, which partition I,y. Similar to
the combined testing regime, we create data sets Cyyiy
and Cpeg, resampling from Py, and Py to ensure equal
representation by pooled samples in the combined data
sets. The process for generating the data sets is shown in
Figure 4.

The data sets used in training the machine learn-
ing approach and used for calibration are dependent
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Results and discussion

The pairs of duplicate measurements were used to calcu-
late the underlying variation in the measurement process
which cannot be removed by calibration. The difference
in duplicated measurements d is a random variable with
twice variance of the allele frequency measurement. Given
m duplicate measurements the variance is 3 d?/2m. After
data cleaning m = 1621 duplicate samples remained. The
measurement process was found to contribute a variance

component of 1.91 x 1073 to E%,.

The results for standard calibration techniques are
shown in Table 3. Mean square errors are averaged over
SNPs and samples, by summing over all (Hy, Hp,f*)
entries in the respective testing data sets. Due to the
fact that calibration polynomials map cluster centres to
exact allele frequency, bias error is small and the majority
of error is random E ~ Ep. For the case of no cali-
bration the bias error is larger than the random error
(E% = 5.56x 10~3). Each polynomial’s ability to calibrate is
highly SNP dependent. The proportion of SNPs for which
each approach achieved superior results (in comparison
to the other approaches) is shown in Table 4. An opti-
mal approach might select the best calibration function on
a SNP by SNP basis, such an approach would attain the
results shown in the bottom row in Table 3. Table 4 clearly
shows the optimal form of the calibration function differs
across SNPs. For example, although the SNPs shown in
Figure 3 exhibit similar cluster centres, the distribution of
points in the clusters are significantly different. Existing
calibration approaches operate only on the three cluster
means and not the distributions. The proposed machine
learning approach operates on the clusters as well. Care
should be taken in interpreting Table 4, for example ‘doing
nothing’ yields the most accurate results 35.4% of the time.
Clearly many of the SNPs raw data is already accurate
and calibration degrades the data. However, the intro-
duced errors on these SNPs are more than compensated
by error reduction across the remaining SNPs resulting in

Table 3 Allele frequency MSE (10?) obtained by calibration
polynomial methods

on the training and testing regimes and shown in  Method Individuals ~ Combined  Pools
Table 2. £ g

None 883 327 1232 15.80

Table 2 Sets used for machine learning under different k-correction 426 374 835 1244

regimes in format: (training sets ; testing sets) Piecewise linear 407 372 823 1238

Test regime 2nd order Lagrange 421 401 8.28 12.34

Train regime Individuals Combined Pools Piecewise Hermite 268 240 8.73 14.77

individuals (Itrain ; lrest) (ltrain ; rest + Pan) (a5 Pan) Piecewise Hermite equal deriv. 762 754 1416 20.69

combined (Itrain + Pair ; ltest) (Crain ; Crest) (g + Ptrain; Prest) Piecewise Hermite equal domain 354 345 1027 1699

pools Pai i 1an) (Ptrain; Prest + lan) (Ptrain; Prest) Best approach applied per SNP 258 245 7.57 1134
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Table 4 Percentage of SNPs where given method obtains
best performance

Method Individuals ~ Combined  Pools
None 0 14.6 354
k-correction 4.2 27.1 29.2
Piecewise linear 0 14.6 104
2nd order Lagrange 0 83 14.6
Piecewise Hermite 854 229 4.2
Piecewise Hermite equal deriv. 0 2.1 2.1
Piecewise Hermite equal domain 104 104 4.2

calibrated MSE errors well below that of the ‘do nothing’
case.

The machine learning approaches were trained and
tested as described earlier. Results are shown in Table 5.
Numbers in parentheses after the testing set names corre-
spond to the worst case standard deviation of the errors
over cross validation folds in the column correspond-
ing to the test set. For the individuals testing regime the
error was decomposed into bias and variance compo-
nents, and total mean square error E? and variance EIZ\[ are
provided.

The reason for generating testing and training sets
including mixtures of individuals and pools is evident in
the results. Examination of just one testing set can lead
to erroneous conclusions on performance. For example
piecewise Hermite polynomials achieved the best results
in Table 3 for minimising variance in individuals. How-
ever, this is a result of the zero derivatives enforced at 0,
0.5 and 1, which tend to compress the results towards the
correct allele frequencies. The disadvantage of this is seen
with the larger errors incurred when testing with pools.
A similar, overfitting effect, occurs for learning models
trained on individuals which result in flattening of the

Table 5 Machine learning allele frequency MSE’s (10°)
Combined (0.7) Pools (2.2)

Method Training set Individuals (0.6)

E? E%
individuals 4.56 3.12 7.58 10.58
LR combined 6.10 272 6.66 744
pools 3293 115 19.03 5.28
individuals 2.58 2.01 8.90 15.10
MLP combined 4.96 242 6.34 8.00
pools 16.35 217 10.92 591
individuals 422 2.68 6.78 9.29
SVM combined 6.64 2.55 6.55 6.54
pools 10.05 2.37 8.40 7.05
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mapping in the AA, AB, BB cluster regions. The non-
linear MLP and SVR methods can achieve this flattening,
whereas LR cannot. Consequently MLP and SVR trained
on individuals achieved poor results when tested on pools
in contrast to LR.

The effect of changing the number of pools and indi-
viduals was also explored. The linear regression approach
was applied to two scenarios, using individuals for train-
ing and testing, and using pools for training and test-
ing. The results showed the existing method’s MSE was
improved upon if at least 10 individuals and 8 pools were
included in the respective training sets. Improvement
stopped after 225 individuals were included. The available
pools data set was not large enough to see performance
stop improving.

In summary, whereas existing calibration approaches
are trained using individual samples, machine learning
approaches should not, and pooled samples are required.
There is an advantage in including calibration pools when
building calibration models. However care must be taken
to avoid learning near the pool allele frequency values
only. Models that achieved the best results (when tested
on pools) were those trained only on the calibration pools
and were not accurate elsewhere over the full allele fre-
quency range. This is highlighted by the larger errors com-
mitted by all methods when trained on pools and tested
on individuals. A typical experiment will involve calibra-
tion pools (with known ground truth allele frequency) and
phenotype pools to be corrected. The spread of the cali-
bration pool allele frequencies is determined by the allele
frequency of the population the pool is taken, and the
size of the pool. However, for phenotype specific pools
being calibrated there is no guarantee a SNPs allele fre-
quency lies within this spread, particularly if there exists
a relationship between the SNP and phenotype. There-
fore ideally a calibration function should be accurate over
the full range of allele frequencies [0,1], or alternatively
be only applied within the spread of allele frequencies
on which the model was built. One alternative is to use
smaller number of samples in constructing calibration
pools, to increase spread. Another solution is to include
a mixture of pools and individuals in the training of the
algorithm such as the combined data set.

Table 6 Ratio of the best machine learning approach MSE
to the best existing technique MSE for each training and
testing set combination

Testing set
Training set Individuals Combined Pools
individuals 0.63 0.82 0.75
combined 1.22 0.77 0.53

pools 247 1.02 043
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The most accurate method applied to pools, when
trained with allele frequencies on the combined set was
the SVR which achieved a MSE of 6.54x1073 on pools
with a variance of 2.55x1072 on individuals. This is 33%
larger than the duplicate values random error so although
some scope still exists for improvement in reducing vari-
ation, any future substantial improvements would require
investigation of the causes of variation in the platform
response to duplicate samples. The best polynomial cal-
ibrator (2nd order Lagrange) achieved 12.34x10~3 MSE
on pools only with much larger variance of 4x 1073 x 1073
on individuals only. This is almost a factor of 2 in error
reduction in MSE by the machine learning approach. The
best approach for minimising variance on the individuals
only set was the MLP which achieved a random squared
error component 2.17x1073 comparing with calibrated
MSE of 3.75x1073. This corresponds to an increase in
increase in test statistic of 72% compared to standard cal-
ibration on the pools only data set. A comparison of the
best performing ML approach with the existing methods
is given in Table 6.

Conclusion

This is the first study of a machine learning approach
to calibration of pooled SNP samples which has demon-
strated the importance of training sample location on
performance. The approach was tested on data gener-
ated by a Sequenom iPLEX SNP panel providing results
for 61 SNPs on Tiger prawn individual and pooled sam-
ples. We showed that SNP to SNP variation is signif-
icant between the allele frequencies and different cali-
bration polynomials are suitable for different SNPs. We
introduced a machine learning technique to model each
SNP separately and included data between the discrete
allele frequencies of individuals by incorporating cal-
ibration pools into the model. The machine learning
approach achieves significantly less error, by reducing
error by a factor of 2 and improves study test statistic
by 72% as a consequence of reduction in allele frequency
variance.

An additional advantage of the machine learning tech-
nique is the ability to calibration functions on higher
dimensional inputs. The use of additional input informa-
tion can allow errors which previously created variance in
f, to become predictable in the additional dimension. In
this situation variance causing error is converted to a bias
error which can be corrected by calibration with a result-
ing reduction in variance. Here we have limited access to
auxiliary data from the experiment and using allele fre-
quency alone has allowed comparison of the techniques
with the same input data.
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