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Abstract

Background: Bisulphite sequencing enables the detection of cytosine methylation. The sequence of the
methylation states of cytosines on any given read forms a methylation pattern that carries substantially more
information than merely studying the average methylation level at individual positions. In order to understand better
the complexity of DNA methylation landscapes in biological samples, it is important to study the diversity of these
methylation patterns. However, the accurate quantification of methylation patterns is subject to sequencing errors

the true underlying distribution of methylation patterns.

and spurious signals due to incomplete bisulphite conversion of cytosines.

Results: A statistical model is developed which accounts for the distribution of DNA methylation patterns at any
given locus. The model incorporates the effects of sequencing errors and spurious reads, and enables estimation of

Conclusions: Calculation of the estimated distribution over methylation patterns is implemented in the R
Bioconductor package MPFE. Source code and documentation of the package are also available for download at
http://bioconductor.org/packages/3.0/bioc/html/MPFE.html.
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Background

Epigenetic regulations are involved in a broad range of
biological processes, including development, tissue home-
ostasis, learning and memory, as well as various diseases
such as obesity and cancer [1-3].

DNA methylation is one of the best studied epigenetic
molecular mechanisms. It consists of the addition of a
methyl group to the cytosine residues (C) of a DNA
molecule. In animals, DNA methylation usually takes
place in the CpG context: cytosines followed by a guanine
(G) residue.

DNA methylation modulates gene expression through
a variety of mechanisms. In vertebrates, methylation in
the promoter region usually has a repressive effect on
transcription initiation. By contrast, methylation of gene
bodies is generally associated with an active transcrip-
tional state and has been shown to play an important role
in the control of alternative splicing [4,5].
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The diverse and subtle effects of DNA methylation
enable a given genome to produce different phenotypic
outputs as part of a developmental program or in response
to environmental factors. This has fundamental implica-
tions at the organismal level, where DNA methylation
plays an important role in phenotypic plasticity [6]. This
is also important at the cellular level to create diverse cell
types, tissues and organs all based on the same genome.
DNA methylation patterns can thus change from one cell
type to another or within a cell under different conditions
[7].

The diversity of methylation patterns in a sample can be
studied with a single base pair resolution using the bisul-
phite sequencing technique [8]. When DNA is treated
with bisulphite, the unmethylated cytosines are converted
to uracils with a high (albeit not complete) efficiency,
whereas the methylated cytosines remain as cytosines.
A library is prepared from the bisulphite treated DNA
by fragmenting to lengths of approximately 200 bp and
PCR amplified. During this amplification process, uracils
are replicated as thymines (T). The DNA library is then
sequenced and the resulting reads are mapped to a ref-
erence. Within each read, CpG dinucleotides which have
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been converted to TpG are recognised as unmethylated,
and unconverted CpG dinucleotides are recognised as
methylated.

A common type of analysis carried out with this type
of data is to estimate, for each cytosine, the global methy-
lation level of a sample, namely, the average methylation
level across all DNA strands in all the cells represented in
that sample. This is usually done by correcting for the fact
that bisulphite conversion is not a complete reaction (for
instance, see [4,9]).

However, this type of analysis only considers the methy-
lation level at individual positions and is oblivious to
the fact that cytosines present on a given read repre-
sent a broader snapshot of the methylation landscape on
a particular strand of DNA. One can therefore gain a
significantly deeper insight into the complexity of DNA
methylation landscapes by reconstituting the methylation
patterns that are physically present on the same sequence,
and thus come from the same cell. Each read can be seen
as containing a small number of binary labelled CpG sites:
1 for methylated, 0 for unmethylated and represents the
methylation pattern of a given strand of DNA in one par-
ticular cell. This approach is of particular interest when
studying complex biological samples that contain a mix-
ture of cell types, for instance a tumour or a whole insect
brain. It gives a much more detailed picture about the
diversity of DNA methylation in a sample than simply
looking at the methylation level at each position.

The study of the diversity and dynamics of DNA methy-
lation patterns has recently generated a great deal of
interest as it allows assessment of the methylation sta-
tus in subsets of cells within a sample. Such studies have
provided novel insights into the role of DNA methylation
in cell differentiation and reprogramming, and the evo-
lution of tumours (for instance [10-12]). It has also been
proposed that the DNA methylation patterns present in
heterogeneous samples could be effective tumour-specific
biomarkers [13].

The approach of looking at methylation patterns instead
of individual CpG sites can be hampered by the lack
of sequencing coverage depth. For reasons of cost, most
whole genome bisulphite sequencing studies have a mean
genomic coverage in the 10-100 range. If the underlying
sample contains hundreds of methylation patterns, they
cannot be sampled representatively. Consequently, stud-
ies looking at DNA methylation diversity have focussed on
short patterns (around 4 CpGs) [12].

As an alternative, in order to reach a high coverage,
researchers have often focussed on specific loci, either by
sequencing PCR amplicons of bisulphite converted DNA,
or by reduced representation bisulphite sequencing, or by
using a capture assay (for review see [14]). In this paper,
we focus on the analysis of amplicon data, but the statis-
tical framework introduced here could be applied to data
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extracted from other types of sequencing approaches such
as reduced representation and capture-based sequencing.
The problem of determining methylation patterns in
the original sample from the observed data is non trivial.
The purpose of this paper is to infer formally the prob-
ability distribution over all possible methylation profiles
defined by the population of methylomes at a given locus.
We show that taking into account the effect of the non-
systematic errors of incomplete bisulphite conversion, as
well as sequencing error, is critical as this removes a large
number of spurious patterns present in the raw reads.

Results and discussion

Synthetic data

The probability distribution over methylation patterns at
a given locus from from bisulphite sequencing data is
estimated via an algorithm described below in the Meth-
ods section. The algorithm is implemented as an R Bio-
conductor [15] package MPFE (for Methylation Patterns
Frequency Estimation).

As the true distribution over methylation patterns is
always unknown in the laboratory, we have constructed
a number of synthetic data sets to test the effectiveness
of the algorithm. For a locus with n CpG sites we pre-
scribe a true distribution 6, k = 1,...,2", over the 2"
possible methylation patterns. We simulate from these
patterns a set of Nieoq initial reads, each labelled with
its ‘true’ methylation pattern, and then redistribute the
reads among patterns according to the statistical model
described in the Methods section to simulate errors due to
incomplete bisulphite conversion and sequencing errors.

The rates of conversion and sequencing error can be
estimated by spiking-in non-methylated DNA of known
sequence, or by looking at positions known in advance not
to be methylated [16].

Incomplete conversion is specified by a non-conversion
rate parameter € equal to the probability that an unmethy-
lated cytosine will fail to convert. Its value is typically of
order 102, and will be assumed in our simulations to be
estimated independently from the rate of conversion of
non-CpG cytosines. For instance, it could be calculated
based on sequences known a priori not to be methy-
lated. The sequencing error rates are specified by a vector
n = (1,...,nn), where ng ~ O(1072) is the probabil-
ity that site s is methylated but registers as unmethylated
and vice versa. These two sources of error can generate
spurious methylation patterns, that is, patterns for which
the observed read count yy is non-zero when the true fre-
quency of the pattern, 6, is zero. The aim is to assess
the ability of the algorithm to recover the true distribu-
tion 6; from a set of observed read counts yi, and, more
specifically, determine whether spurious patterns can be
identified.
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The algorithm can be run in two possible modes: a slow
(exact) mode, which performs a complete calculation over
all possible 2" methylation patterns, and an (approximate,
default) fast mode which assumes 6y = 0 for any pat-
tern for which the observed read count yy is zero. Because
of the exponential growth in the number of patterns, we
find in general that use of the function in the slow mode
becomes computationally prohibitive for n > 8. How-
ever, there is very little difference in the computed results
between the two modes (see below). Furthermore, the
number of realised patterns tends to be relatively small
and the performance of the function is adequate even for
large .

To illustrate the concept of the algorithms, we
begin with a small synthetic dataset corresponding to
a locus with = 6 CpG sites, and a distribu-
tion of pattern abundances 0; contrived to mimic a
combination of high and low abundance patterns as
observed in a real dataset. Table 1 and Figure 1 show
the results of creating the dataset assuming a non-
conversion rate ¢ = 0.005, sequencing errors n =
(0.008, 0.006, 0.006, 0.006, 0.006, 0.008) to model a signal
that degrades towards the ends of the reads, and a total
number of reads Nyeaqd = 2000 to generate read counts y;.
These data are then analysed using the same € and n val-
ues in both the slow and fast modes to generate estimated
pattern abundances 6;.

For this synthetic dataset we find that for any pattern
for which the ‘observed’ read count y; is zero, the ‘true’
abundance 6; and the estimated abundance éi from the
slow-mode version of the algorithm are also zero. For this
reason, results are only shown for patterns for which the
read count y is non-zero. For completeness, the plot pro-
duced for all 64 patterns by running our package in the
slow mode is given in Additional file 1.

We observe that for almost all patterns the estimated
distribution 6 is closer to the true distribution 6; than
the naive read proportion yx/Nyead, the only exception
being a slight shift in the wrong direction for the pattern
mea(111111).

We observe also that the algorithm has the effect
of skewing the distribution of reads away from low-
frequency, more highly methylated patterns towards the
totally unmethylated pattern, thus reducing the false dis-
covery rate. This algorithmic effect will generally be the
case for any realistic dataset (see Additional file 2). Fur-
thermore, our implementation of the algorithm registers
whether, for any given pattern k, the estimate 6 is identi-
cally zero, that is, it makes a call as to whether the pattern
is present or absent. In this example, no real pattern is
classified as spurious. The algorithm correctly identifies
14 out of the 18 spurious patterns in the slow mode, and
13 out of the 18 in the fast mode. For the one extra pat-
tern which was missed by the fast mode, namely pattern
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Table 1 Comparison between estimates 6; of the true
methylation distribution 6; calculated with the slow and
fast implementations of our algorithm for the dataset of
Figure 1

Patterns 0; Vi Yi/Nread éi (slow) o; (fast)
000000 0.50 907 04535 04813 04812
000001 0.00 15 0.0075 0.0013 0.0013
000010 0.00 8 0.0040 0 0
000100 0.00 7 0.0035 0 0
001000 0.04 99 0.0495 0.0466 0.0466
001001 0.00 4 0.0020 0.0016 0.0014
001010 0.00 1 0.0005 0 0
001100 0.00 1 0.0005 0 0
010000 0.00 6 0.0030 0 0
011000 0.00 2 0.0010 0.0007 0.0004
011011 0.00 1 0.0005 0.0005 0.0002
011101 0.00 2 0.0010 0 0
0111 0.03 63 0.0315 0.0308 0.0306
100000 0.03 77 0.0385 0.0328 0.0329
101101 0.00 1 0.0005 0 0
101111 0.00 1 0.0005 0 0
110000 0.00 1 0.0005 0 0.0000
110111 0.00 2 0.0010 0 0
111001 0.00 1 0.0005 0 0
111011 0.00 1 0.0005 0 0
111100 0.00 3 0.0015 0 0
111101 0.20 393 0.1965 0.2001 02013
111110 0.00 3 0.0015 0 0
Mmin 0.20 401 0.2005 0.2044 0.2040

y; is the number of observed reads for pattern i and Nyeaq is the total number of
reads.

110000, the estimated proportion 6;(fast) < 10™% is very
low.

In general, when the number of CpG sites # in an ampli-
con is large, it is expected that only a small faction of the
2" possible patterns will be present. Furthermore, it is rare
for a true pattern with 6y > 0 to have zero counts as a
result of incomplete bisulphite conversion or sequencing
errors. For instance, in the the current example none of
the patterns with a positive true frequency 6y had zero
reads, and for the remaining patterns there is no substan-
tial difference between the two implementations of the
algorithm. From now on, the discussion focusses on the
fast implementation.

Figure 2 and Additional file 3 show the results of apply-
ing the fast implementation of the algorithm to synthetic
data modelled on biological data from a PCR amplicon in
the honey bee Apis mellifera genome (see Biological data
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Figure 1 The ‘true’ distribution 6 (black dots), observed read counts yy (blue pluses) and estimated distribution ék from the slow (purple squares)
and fast (red crosses) implementations of our algorithm over methylation patterns for synthetic data with n = 6 CpG sites. The non-conversion rate
is set to be € = 0.005, the sequencing errors are set to be n = (0.008, 0.006, 0.006, 0.006, 0.006, 0.008), the total number of reads is Neag = 2000.
Only patterns with non-zero reads are shown and methylation patterns are ordered lexicographically. Data for the three patterns (000000, 111101
and 111111) which are beyond the range of the plot can be found in Table 1.
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Figure 2 Comparison between the true distribution 6;, the simulated read distribution y;/Nread, and the estimated distribution é,- for a synthetic
dataset based on amplicon data. Parameter values are n = 9 CpG sites, total number of reads Nieag = 730, non-conversion parameter € = 0.01, and

sequencing error rate n = 0.02. The lower plot is an expanded version of the upper plot showing only patterns with low frequencies.
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section). To obtain the dataset, the function was applied
once to a biological dataset of Nyeaq = 730 reads from an
amplicon corresponding to a locus with # = 9 CpG sites.
To maintain a similar number of non-zero reads the ‘true’
distribution of the synthetic dataset was taken to be

g 10 if it < 0.005,
"6t otherwise,

where éii“it is the result of the initial application of the
algorithm. Here the non-conversion parameter is € =
0.01, and the sequencing error rate n = 0.02 is taken to be
uniform across all CpG sites.

Of the 46 spurious patterns in this dataset, 16 are cor-
rectly identified and no false identifications of spurious
patterns are made. For the 30 failed identifications, the
program estimates a lower estimate é,- than the read pro-
portion y;/Niead.

Given that the MPFE algorithm requires as input an esti-
mate of the non-conversion rate € and read error rate
n, it is important to gauge the sensitivity of pattern fre-
quency estimates to these parameters. Figure 3 shows the
variation in estimated pattern abundances for the dataset
of Figure 1 as the values of € and n used by MPFE are
perturbed from the ‘true’ values used to construct the syn-
thetic data. We observe that the estimated abundances
are relatively insensitive to € for the actually occurring
patterns, but drop rapidly with increasing ¢ for most of
the spurious patterns. It is perhaps not surprising that 6;
will be sensitive to the € for those spurious patterns for
which §; > 0: As explained in Additional file 2, increas-
ing € has the effect of skewing the distribution towards the
less methylated patterns, which in general tend to be the
more abundantly ocurring patterns. A relevant point here
is that the correction for non-conversion almost invariably
moves the estimates éi in the correct direction from the
raw data for the spurious patterns, while leaving even the
low-frequency non-spurious patterns almost unchnaged.
Also, not surprisingly, the estimates éi are sensitive to
the read error rate n for both spurious and non-spurious
patterns.

Detecting spurious patterns

The effectiveness of our algorithm in identifying spurious
patterns can be further gauged by introducing a thresh-
old on the estimated pattern abundance. In the following
definitions we only consider methylation patterns with
non-zero reads y;.

We set a threshold K €[0,1] as a binary classifier
and, using the estimated distribution 6; as a test statistic,
declare pattern i to be spurious when 6; < K. Patterns are
defined to be true or false positives or negatives according
to the rules
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FPif 6; <K and 6; > O,
ENif §; > K and 6; = 0.

TPif §; <K and 6; =0,
TNif §; > K and 6; > 0,

True positive rates (TPR) and false positive rates (FPR) are
defined in the usual way as

FP

TPR = .
FP+ TN

= FPR
TP + EN

An analogous set of definitions applies using the raw data
count proportions y;/Nieaq as a test statistic. Note that this
classification does not constitute classical hypothesis test-
ing per se, as the threshold does not easily translate to a
p-value under a well-defined null hypothesis: patterns are
not independent, and specifiying 6; = 0 for a given pat-
tern does not determine the distribution of the estimator
6; without further assumptions about the remaining 2 — 1
patterns.

Figure 4A shows the TPR curves for the data of Figure 1.
It shows that using 6; results in a clear improvement in
detecting which methylation patterns are likely to be a
spurious artefact of incomplete conversion and reading
error. The FPR curves for both test statistics are constantly
zero for the same threshold range in the TPR graph.

Figure 4B shows the TPR curves for the synthetic data
based on biological data from an amplicon analysed in
Figure 2. Again we observe a clear improvement in detect-
ing which methylation patterns are likely to be a spurious
artefact of incomplete methylation and reading error.

Biological data

Amplicons were obtained as described in [4]. Briefly,
genomic DNA was extracted from brains of adult hon-
eybee workers and treated with sodium bisulphite.
A region of gene GB17113 (gene ID: 724724, a 6-
phosphofructokinase) was then amplified by PCR and
sequenced using the 454 technology. No ethical approval
was required for this work.

Below we apply the fast algorithm to two examples from
this dataset assuming a non-conversion rate of ¢ = 0.01
and a global sequencing error rate of n = 0.02. The first
example is shown in Figure 5 and Table 2. The parame-
ter values are n = 8 CpG sites, 36 patterns with non-zero
reads, and a total number of reads Nyeaq = 1793.

There are several observations:

(i) 18 patterns (50%) are identified as spurious;

(i) there are 11 patterns with only 1 read - our algorithm
calls 9 of them as spurious, while predicts the other 2
patterns (m3¢ and m31) to exist;

(iii) patterns ms, my, mg and my; with > 30 reads each
has a read proportion y;/Niead & 2%, but are called
as spurious.
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Figure 3 Estimates 6 of methylation pattern abundances calculated using MPFE from the synthetic dataset of Figure 2 assuming, in panels (A) and
(C), a range of non-conversion rates € and the correct sequencing error rate n = 0.02, and, in panels (B) and (D) the correct non-conversion rate

€ = 0.01 and a range of sequencing error rates n. Pattern numbers in the legends correspond to the horizontal axis of Figure 2. In panels (A) and (B)
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occuring at low frequencies (both spurious and non-spurious) highlighted in colour: 2 real patterns (24 and 31), 3 spurious patterns which are
reported as real in Figure 2 (namely 2, 45 and 53), and 2 spurious patterns which are correctly identified in Figure 2 (namely 9 and 42).

Observations (i) and (ii) can be explained by the fact
that the edit distance between the two patterns covered
by a single read and any pattern observed to be highly
abundant renders it unlikely that these patterns have
arisen through sequencing errors or incomplete conver-
sion. Observation (iii) arises because the spurious patterns
with > 30 reads are just one sequencing error or one
incomplete conversion away from the most abundant pat-
tern, 119(00000000).

Figure 6 and Additional file 4 show the second exam-
ple, with n = 14 CpG sites and 160 patterns with
non-zero reads. The total number of reads is Nyead =
2347. In this case 47 patterns are called as spurious.
Note that these data indicate that the methylation sta-
tuses of neighouring CpG loci are correlated. This cor-
relation was also observed by Lyco et al. [4] and has
motivated our approach that has the advantage of being
able to accommodate neighbouring spatial correlations
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(A) Synthetic data Fig. 1 (6 CpG sites)
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(B) Synthetic data Fig. 2 (9 CpG sites)

o * |
© o
(]
= T
2 < |
Q o
(o)
=3
= 7] — MPFE
. — rawdata
S
T T T T T
0.000 0.005 0.010 0.015 0.020
threshold

Figure 4 The TPR versus the threshold K using the test statistic é,- (red curve) and y;/Nread (blue curve) for the synthetic data of (A) Figure 1 and (B)

between CpG positions without imposing any a priori
structure.

Conclusions

We have developed an algorithm for estimating the true
distribution of methylation patterns in at a genomic
locus containing n CpG sites. The algorithm, based on
a constrained multinomial model, accounts for statisti-
cal variation due to incomplete bisulphite conversion and
sequencing errors. This method can be readily applied to

methylation patterns extracted from amplicon sequenc-
ing data analysed with with software such as BiQ-Analyser
[17]. Further work would be required to extract methy-
lation patterns counts from whole-genome sequencing
data.

The analysis differs from previous treatments in that
the estimated distribution is a joint probability distribu-
tion over patterns which preserves maximal information
pertaining to interaction between different CpG sites, as
opposed to a pointwise measure of methylation at each
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upper plot showing only patterns with low frequencies. The 36 patterns with non-zero reads are listed in Table 2.
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Table 2 Estimated methylation distribution (3,- for the data
of Figure 5

i m; i Yi/Nread 0
1 00000000 1265 0.7055 0.8706
2 00000001 52 0.0290 0.0059
3 00000010 32 0.0178 0
4 00000100 40 0.0223 0
5 00000110 3 0.0017 0.0010
6 00001000 75 0.0418 0.0189
7 00001001 1 0.0006 0
8 00001010 2 0.0011 0
9 00010000 36 0.0201 0
10 00010100 10 0.0056 0.0053
1 00100000 31 0.0173 0
12 00100001 2 0.0011 0.0003
13 00101000 1 0.0006 0
14 00110000 1 0.0006 0
15 01000000 20 0.0112 0
16 01000001 1 0.0006 0
17 01100000 39 0.0218 0.0240
18 01100001 4 0.0022 0.0016
19 01101000 1 0.0006 0
20 01110000 1 0.0006 0
21 01110100 1 0.0006 0
22 10000000 84 0.0468 0.0282
23 10000001 2 0.0011 0
24 10000010 5 0.0028 0.0013
25 10000100 14 0.0078 0.0070
26 10001000 1 0.0006 0
27 10010000 2 0.0011 0
28 10010100 8 0.0045 0.0044
29 10100000 2 0.0011 0
30 11000100 1 0.0006 0.0003
31 11010000 1 0.0006 0.0005
32 11100000 1 0.0006 0
33 11100100 2 0.0011 0.0006
34 11110000 2 0.0011 0.0007
35 11110100 42 0.0234 0.0255
36 11110110 8 0.0045 0.0039
The 36 patterns with non-zero reads are labelled mj, i = 1,...,36 and y; are the

observed read counts.

site. A pointwise methylation estimate can, of course, be
recovered from our estimated distribution as a marginal
distribution. The algorithm is implemented as the R Bio-
conductor package MPFE.
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Numerical experiments with realistic synthetic data
indicate that the algorithm is able to identify the major-
ity of the spurious observed methylation patterns, that is,
patterns which are not present in the original library but
are observed in the reads because of incomplete bisulphite
conversion or sequencing errors. In general, our estimates
are closer to the true distribution than the naive estimates
given by the relative proportion of observed read counts
for almost all patterns in each simulation (see Figures 1, 2,
and Table 1).

Application of the algorithm to biological data consist-
ing of bisulphite treated amplicon reads for a honeybee
genomic sequence predicts that a correspondingly high
proportion of observed methylation patterns in real data
may indeed be spurious. However, our results also reveal
an important number of real methylation patterns in this
biological sample. This complexity of the methylation
landscape is virtually undetectable when one only consid-
ers position-wise methylation level, but becomes apparent
through our method.

In the future, the statistical method presented here
could be extended and refined to deal with systematic
sources of errors (for instance non-homogeneous bisul-
fite conversion rates, differential amplification of different
epialleles) and to extract information from incomplete
data (reads where one or more positions of the pattern are
missing, which are currently ignored).

Methods

Statistical model of bisulphite sequencing

We take as the starting point of our statistical model a
population of methylomes restricted to a locus contain-
ing n CpG sites. Each member of the population within a
given class is represented by a vector of non-independent
binary valued random variables K = (Kj, ..., K},), where
each K; € {0,1} labels the methylation state (0 for
unmethylated, 1 for methylated) at the s-th CpG site at
this locus. The population defines a methylation profile
represented by the probability distribution of realising the
pattern k = (ki,...,k,) in a read randomly chosen from
the population:

0k = Prob(K=k), ke {0,1}". (1)

For convenience, from here on we will label the possible
methylation patterns by the integers k = 1,...,2", and
set x = 6k, where k — 1 is the integer whose binary
representation is the methylation pattern k.

Our aim is to estimate the distribution 6 representing
the relative abundance of methylation pattern k from high
throughput sequencing data consisting of a set of integer
valued read counts Y. In a typical experiment, the num-
ber # of CpG sites in an amplicon may be up O(10?), and
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Figure 6 Estimated distribution 6; of the methylation patterns for a second amplicon from the honey bee genome. Parameter values are n = 14
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to uracil is not 100% efficient. There is a probability € that
an unmethylated CpG site will register as being methy-
lated, where ¢ ~ O(1072) can be estimated from the
cytosines known not to be methylated (mitochondrial
genome, chloroplastic genome, spike-ins, etc). The second
type of error is caused by sequencing. For many applica-
tions this may be assumed for practical purposes to be
site independent. However, to allow for effects such as
degradation of the read quality towards the ends of the
reads, we will assume there is a site-dependent probability
ns ~ O(1072) that if site s is unmethylated it will regis-
ter as methylated and vice versa. It follows that if the true
methylation pattern of any given read is K, but the read
registers as being pattern L, then

Prob(L=/4|K=Kk) =My, kt=1,...2" (2)
where, as above, we adopt the conventon that k — 1 is
the integer whose binary representation is the methyla-
tion pattern k (k1,...,ky) and £ — 1 is the integer
whose binary representation is the methylation pattern
1= (,...,€,),and

Mg = (ED ke, (B2 kgt - - - (Enicye,s (3)

where, foreachs=1,...n,

is a 2 x 2 matrix whose rows and columns are labelled
0 (for unmethylated) and 1 (for methylated). In fact the
matrix M whose elements are My is the Kronecker prod-
wtE1 ® ... E,.

Egs. (1) and (2) imply that the probability that a random
read will be the pattern ¢ is

21’1
Prob (L =€) = Y M = ¢r,
k=1

(5)

say. Assuming each read to be independent, for an exper-
iment with a given total number of reads Nie,q the
observed set of read counts represented by the random
variable Y; has a multinomial distribution:

Nyead!

Prob (Ye = yel) = —————
Yi:y2-...yon:

1Y p¥ (6)

In a recent applications note, [9] develop a statistical
model for the distribution of the number of reads which
register as being methylated in a pooled set of bisulphite-
sequencing reads from CpG sites in a given region of a
genome. Their model is mathematically equivalent to the
n = 1 version of the above model, and as such can be
simplified to a single binomial distribution (see Additional

file 2).
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Parameter estimation
The parameters of the distribution over methylation pro-
files, 6k, are estimated by maximising the log likelihood:

2" 2"
L@y = yilog | D oMy |, (7)
k=1 j=1

subject to the constraint that (61, . .., 62#) lies in the (2" —

1)-dimensional simplex
2}‘1
S=16:) 6=16=0¢. 8)
k=1

One may be tempted to use the usual formula, (]3[ =
y¢/Nread, for the maximum likelihood estimate of multi-
nomial parameters, and simply invert the matrix M to
recover 6. However this will not work for any realistic
data because the matrix M shrinks the simplex to a smaller
volume. In practice many of the y, are zero, which leads
to a naive estimate ¢;¢ on the boundary of the unshrunken
simplex in ¢-space, and this boundary is not included in
the shrunken simplex (see Figure 7 for the n = 2 case, in
which the simplex is tetrahedron).

Instead we maximise the log likelihood over the
allowed domain numerically by using the R function
constrOptim (). Unfortunately the performance of this
function becomes prohibitively slow for n > 8 as the

(1.1)

(1,0)

(0,0)

Figure 7 Boundary of the allowed simplex Eq. (8) for the parameters
0, (black wire frame) and corresponding shrunken simplex containing
allowed values of ¢ (red tetrahedron) for the case n = 2 CpG sites,

€ = 0.05, ns = 0.02. Numbers at the corners are the 27 = 4 possible
methylation patterns).
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dimensionality of the parameter space grows exponen-
tially. However, we have noticed in numerical simulations
that if the observed counts y; are zero for a subset of the
possible patterns, the corresponding estimates 6y are zero
(or in rare cases, very close to zero) for the same sub-
set. Thus we have implemented an algorithm which only
searches over that part of the boundary of S constrained
by 6x = 0 for those k such that yy = 0. The algo-
rithm remains reasonably efficient on a standard desktop
computer provided the number of observed methylation
patterns does not exceed about 200. This allows analysis
of most realistic datasets while still addressing the biologi-
cally relevant question of identifying spurious methylation
patterns which are the result of incomplete methylation.

In Additional file 2 we prove that both the exact max-
imum likelihood estimate, and the aproximate maximum
likelihood estimate over reduced part of the boundary
described above are unique. However, in both cases the
function constrOptim () is of finite accuracy in locat-
ing the maximum of the log-likelihood. Thus, if the
located maximum 6 is close to the boundary of the sim-
plex, our algorithm also calculates the value of the log-
likelihood at several nearby points on the boundary. If
this results in a log-likelihood bigger than or equal to
the maximum reported by constrOptim (), the appro-
priate point on the boundary is taken as the maximum
likelihood estimate, and those patterns m; for which O =
0 are reported as being spurious reads.

Additional file 2 also contains an argument that for
realistic datasets and parameter values, the estimated dis-
tribution 6; is in general skewed towards less-methlyated
states relative to the naive estimate y;/#ncaq, and that the
set of patterns reported to be present is a subset of (or the
same set as) the set of patterns naively observed. These
observations hold rigorously for any dataset if the algo-
rithm is run with the read-error rate n; set to zero for all
sites s.

Additional files

Additional file 1: Estimated pattern abundances using the exact
algorithm. Estimates f; calculated with the exact, slow implementations of
our algorithm for the synthetic dataset of Figure 1. Methylation patterns
are labelled lexicographically from m; = 000000 to mgs = 111111. Data
for patterns my, me> = 111101, and me4 are beyond the range of the plot,
but are listed in Table 1.

Additional file 2: Technical details. Analysis of the relationship of the
statistical model used by Akman et al. [9] to our statistical model, proof of
uniqueness of maximum likelihood estimate and argument that the
number of reported methylation patterns is reduced by the MPFE
algorithm.

Additional file 3: Table of results for the second synthetic data
example. True and estimated methylation distributions 6; and é, for the
data of Figure 2. The 56 patterns with non-zero reads are labelled by their
binary representation and y; are the observed read counts.
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Additional file 4: Table of results for the second biological data
example. Estimated methylation distribution 6; for the data of Figure 6.
The 160 patterns with non-zero reads are labelled by their binary
reresentation and y; are the observed read counts.
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