Willem et al. BMC Bioinformatics (2015) 16:183
DOI 10.1186/512859-015-0612-2

BMC
Bioinformatics

Optimizing agent-based transmission models

for infectious diseases

Lander Willem'23", Sean Stijven®#, Engelbert Tijskens, Philippe Beutels'®, Niel Hens' and Jan Broeckhove?

Abstract

and parallelization on model performance.

Background: Infectious disease modeling and computational power have evolved such that large-scale
agent-based models (ABMs) have become feasible. However, the increasing hardware complexity requires adapted
software designs to achieve the full potential of current high-performance workstations.

Results: We have found large performance differences with a discrete-time ABM for close-contact disease
transmission due to data locality. Sorting the population according to the social contact clusters reduced simulation
time by a factor of two. Data locality and model performance can also be improved by storing person attributes
separately instead of using person objects. Next, decreasing the number of operations by sorting people by health
status before processing disease transmission has also a large impact on model performance. Depending of the
clinical attack rate, target population and computer hardware, the introduction of the sort phase decreased the run
time from 26 % up to more than 70 %. We have investigated the application of parallel programming techniques and
found that the speedup is significant but it drops quickly with the number of cores. We observed that the effect of
scheduling and workload chunk size is model specific and can make a large difference.

Conclusions: Investment in performance optimization of ABM simulator code can lead to significant run time
reductions. The key steps are straightforward: the data structure for the population and sorting people on health
status before effecting disease propagation. We believe these conclusions to be valid for a wide range of infectious
disease ABMs. We recommend that future studies evaluate the impact of data management, algorithmic procedures
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Background

Agent-based models (ABMs) offer endless possibilities
to explore heterogeneous problems and spatial patterns
but come with a large computational burden. ABMs are
increasingly used to model infectious disease transmis-
sion, but little attention is given in the literature to model
implementation and performance, e.g., in [1-10]. Usually
the simulation time on large clusters is mentioned, but it is
not clear whether computational resources are optimally
used. However, computational performance is a signifi-
cant aspect of a simulators’ usefulness. Especially model
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exploration and sensitivity analysis, which require bulk
calculations, benefit from efficient algorithms [11, 12].
Furthermore, improving model performance facilitates
model development and testing on workstation systems.
Performance is implementation specific and therefore
we compared different close-contact infectious disease
simulators starting from two published ABMs for pan-
demic influenza: FIUTE from Chao et al. [6] and FRED (a
Framework for Reconstructing Epidemic Dynamics) from
Grefenstette et al. [10]. Both simulators are written in C++
and are free, open source software (FOSS) under the GNU
General Public License and the BSD 3-Clause, respec-
tively. The FIUTE population model consists of census
tracts with communities of 2000 residents on average. The
simulation runs in discrete time steps of 12-h representing
daytime with work, school and day community contacts
and nighttime with household and home community con-
tacts. All children go to school in the home community
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and adults are assigned to workplaces based on employ-
ment rates and commuting data. The community is the
central unit in FIUTE and one person is assigned to only
one community per time step. The implementation of
FRED is based on specific places for social contacts. Dif-
ferent places are used ranging from small households and
classrooms to large schools and communities. All mem-
bers of one place can have social contacts and one person
might be assigned to multiple places per time step.

Individual behavior, social contact structures and pop-
ulation setup are very important to simulate infectious
diseases. ABMs are suited to model these features because
each person can be represented and stored separately.
Inherent to these models are many checks and data trans-
fers compared to the number of floating point calcula-
tions. For many years, hardware developers have been
able to increase the central processing unit (CPU) per-
formance [13]. Mass storage and memory subsystems
have improved more slowly for cost reasons, which has
introduced a performance gap between processing and
accessing data. To reduce this imbalance, a hierarchy of
small high-speed cache memories has been added to the
CPU. Instead of fetching data multiple times from the
main memory, it is loaded into cache and re-used [14].
The processor loads data into the cache in chunks called
cache lines, which leads to efficient processing if in addi-
tion to one memory location also the nearby locations
are referenced in the near future. This memory charac-
teristic is important for the data layout of software [15].
For example, if person data is stored jointly in a person
object (“Array of Structs") and next to a person’s age also
their gender and zip-code are checked, it will already be
available in the high-speed cache. On the other hand, if
person attributes are stored in separate containers (“Struct
of Arrays") and only the ages are checked, many more
ages are available in one cache line and less slow memory
accesses are required.

High-speed memory and other advances in CPU tech-
nology have enabled performance improvements for
sequential software with about a factor of two for every
eighteen months during a few decades [14]. Unfortunately,
these improvements have now encountered physical lim-
its and processor manufacturers have turned to multi-core
and hyper-threading architectures to increase the accu-
mulated peak performance [16]. These novel architectures
require adaptations of existing software and new pro-
gramming approaches to fully exploit the performance
potential. Extra attention is needed for shared resources
[17] like population data or random numbers.

Random numbers are a key resource of Monte Carlo
methods and the more randomness they exhibit, the
better [18]. Computer algorithms are by definition deter-
ministic procedures. They can only approximate random-
ness by generating a stream of so-called pseudo-random
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numbers. The only true randomness in a sequence of
pseudo-random numbers is the “seed” value that gets the
series started. The complexity increases even more with
parallel simulations. Some good pseudo-random num-
ber generators (PRNG) lose their efficiency or quality,
or even both, when they are parallelized [19]. In paral-
lel applications, independent streams of random numbers
are required for each thread to prevent latency. Differ-
ent parallelization techniques are used in practice. In
“random seeding”, all processes use the same PRNG but
with a different seed with the hope that they will gen-
erate non-overlapping series. More robust and versatile
is the “leapfrog” method where one PRNG sequence is
distributed (see Methods).

In this paper, we focus on single- and multi-core per-
formance of discrete-time ABM simulators implemented
in C/C++ to simulate infectious disease transmission. We
used a limited close-contact disease simulator as case
study. However, the features that we look into are also
applicable to more extensive models or other types of
ABMs. We investigate data management, algorithmic pro-
cedures and parallelization. We illustrate good-practice of
a PRNG in a parallel context. The goal of this paper is
to formulate recommendations for ABM simulators that
are straightforward to realize and significantly benefit the
performance.

The paper is structured as follows: First, we describe
the methods starting with three different implementations
of the population based on a general data structure. Sec-
ond, we define an extension by adding a sorting algorithm.
Third, we specify methods to run simulations in parallel
with a shared-memory approach. Fourth, we describe the
input data, run parameters and the work environment we
used. Next, the Results and discussion section presents
all findings. Finally, we end with concluding remarks and
avenues for further research.

Methods
Model structure and implementation
We have opted for a model structure consisting of house-
holds, schools, workplaces and districts similar to pub-
lished studies [6, 10]. Figure 1 shows a schematic overview
of the locations, which represent a group of people we
define as a “cluster”. Social contacts can only be made
within a cluster. During nighttime, people can have social
contacts with members of their household and home dis-
trict. During daytime, people stay at home or go to a
workplace or school depending on their age, which also
determines their day district. Contact between infectious
and susceptible people may lead to disease transmission,
which is a stochastic process based on social contact rates,
infectiousness and susceptibility.

Figure 2 presents the model implementation with a gen-
eral class diagram. We use a Simulator to organize the
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Fig. 1 Social contact structure. People are member of a household
cluster and the corresponding home district at night. During daytime,
people can stay at home or go to a school or workplace in a day
district

activities from the people in the Area. The Area has a Pop-
ulation, different Cluster objects and a Contact Handler.
The Contact Handler performs Bernoulli trials based on
the age of the contacts and random numbers. We included
a 2x2 social contact matrix, based on literature [20-22],
in which the transmission rate is doubled for contacts
between children (<18y). Each Cluster contains links to
its members. The Population stores all person data (id,
age, household, home district, day cluster, day district
and health related parameters) within or without Person

Simulator
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1 1
1.7 1 1..%
Contact
Cluster Population
P Handler
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consists of
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Fig. 2 Model design: classes and compositions. The digits represent
the number of links that are possible. E.g., the Areg can have 1 or
many (¥) Cluster objects, but a Cluster can only be part of 1 Area. The
models differ in the implementation of the grey classes: FLUTE has
less Cluster types in Area and the Population in SID does not contain
Person objects
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objects but we elaborate further on this issue in the next
paragraph. An infection is assumed to follow a tempo-
ral pattern of Susceptible-Exposed-Infectious-Recovered
(SEIR) states similar to an influenza-like disease [6, 10].
After infection, people need 2 days of latency (infected but
not infectious) before becoming infectious and 6 days to
recover and acquire immunity against future infections.

We have constructed three implementations for the
previous described transmission model: “FLUTE” and
“FRED” are based on the corresponding open source mod-
els and “SID” has a novel data layout. The Area in FLUTE
contains only home and day district Clusters. Member-
ship to smaller sub-clusters like households, schools and
workplaces can be retrieved from stored cluster IDs in
Person. People in a district that are also member of the
same sub-cluster have two opportunities for social con-
tact and transmission. Therefore, during the processing of
social contacts in the district, sub-cluster IDs need to be
checked. If two people from a district are also member of
the same sub-cluster, we used an aggregated transmission
probability instead of performing two random draws. The
Area of FRED and SID has also separate households and
day Clusters (= workplaces and schools). We illustrate the
difference with the following pseudo-code for the social
contacts during nighttime with age dependent transmis-
sion probability P, and Py for one or two social contacts
respectively:

Transmission algorithm for households and
home districts in FRED and SID:
1. Loop over all members {x}
2. Ifxisinfectious
Loop over all members {y}
If y is susceptible
If random number < P (agey, agey)
Start disease in y

AR

Transmission algorithm for home districts in
FLUTE:
1. Loop over all members {x}
2. Ifxisinfectious
Loop over all members {y}
If y is susceptible
If x and y have equal household ID
If random number <P;(agey, agey)
Start disease in y
Else
If random number < Py (age,, age,)
10. Start disease in y

O X N OOl W
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Population structure

Data for an individual is stored as a Person object in
FLUTE and FRED and the Population is a container of
Person entities, stored consecutively in memory. In SID,
the Population has a different container for each person
attribute and the data of one person is always located
at the same index in each of those different containers.
For example, to access the age of person i in FLUTE or
FRED we use “population[i] .age” while in SID we use
“population.ages[i]”.

Population data have been extracted from the 2010 U.S.
Synthetic Population Database (Version 1) from RTT Inter-
national [23, 24] for Brooklyn and Nassau County, New
York. Every county or state from this database can be used
to obtain individual age, household, school and workplace
data. People of 16 to 18 years of age with a school and
work ID in the original database were assigned to the
school to guarantee that people were assigned to only
one day cluster. To compare different model implemen-
tations, we needed an extra social contact layer (Fig. 1).
We have created home districts by adding households,
sorted on ID, until a number of 2000 people was reached.
We assumed that household IDs are based on geographic
proximity and the threshold was adopted from Chao et al.
[6]. The day districts have been created analogously. The
Nassau population consists of 1.31 million people in 448
519 households and 140 861 day clusters. Brooklyn has
2.46 million people and the cluster sizes range from one
up to 62 962 people. More details on the study populations
are listed in Table 1.

The population data file determined the initial order-
ing of the person data in the Population object. We used
seven different orderings for the same population details:
the original sequence from the RTI database, a fully ran-
domized order and population data sorted according to
household, day cluster, and both household (first) and day
cluster (second), and vice versa. To minimize the effect
of random draws, we created five different files for each
ordering with a random component.

Table 1 Population statistics. Legend: [min - max] and (median)

Name Nassau, New York Brooklyn, New York
Ages [0 —94] years [0-94] years

Day districts 386 630

Home districts 656 1231

Day clusters 140 861 183451
Households 448519 916 831

Population size 1313103 2463651
Household size -181 (3) 1-16]1(2)

Day cluster size -25339](1) 1-62962] (2)

[ [
[ [

Home district size [1565 - 2009] (2002) [660 -2 013] (2002)
[ [

Day district size 071 - 26 458] (2021) 1370 - 62 962] (2002)
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Algorithmic extension: sorting

The open source models [6, 10] process disease trans-
mission by looping over all members of a cluster and
if a member is infectious, to match them with all sus-
ceptibles. To reduce the total number of operations, we
introduced a modified algorithm in which the members
of a cluster are first sorted according health status before
the infectious members are matched with the suscepti-
ble members. A newly infected member is moved ahead
of the first susceptible. The member list obtains the fol-
lowing structure: First, recovered and infected (exposed
and infectious) members and second, susceptible mem-
bers. The following pseudo-code shows the sort algorithm
for FRED and SID (the algorithm for FLUTE is structured
analogously).

Transmission algorithm with sorting in FRED and SID:
1. Loop over all members {x}

2. Ifxis not susceptible

3. If index of x >number infected + recovered
4. Swap x with first susceptible in the list
5. Loop over all non-susceptible members {x}
6. Ifxisinfectious

7. Loop over all susceptible members {y}
8. If random number < P (agey, age)
9. Start disease in y

Parallelization: scheduling

The OpenMP API is often used for shared memory
parallel programming in C/C++ [25]. In this programming
model, subsets of a process are managed independently
(=threads) and share a global address space of a single
or multiple processors which they read and write asyn-
chronously. For each cluster type (household, day district,
..) in an area, a person is a member of only one clus-
ter. Therefore, clusters are stored per type so that these
containers can be processed in parallel without synchro-
nization. Parallel processing within one cluster would lead
to synchronization overhead. The workload distribution
over the threads can be static or dynamic [25]. With
static scheduling, a fixed number of tasks are assigned
to each thread. In dynamic scheduling, the workload
is distributed over the idle threads until all tasks are
done. We have used workloads in chunks of one and ten
clusters.

Inputs and work environment

We used a 2 x 2 transmission matrix and assumed that
the transmission probability (Ps) is doubled for con-
tacts between children (<18y) [20-22]. Similar to the
literature [6, 10], we estimated the relationship between
P4 and the basic reproduction number Ry by count-
ing the number of secondary cases of one infected in a
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complete susceptible population with seven P values.
Based on 4000 realizations with seven Py, we approx-
imated Ro by exp(5507#P; -0.1911). The total run time
depends on the clinical attack rate (AR, total fraction
of the population initially at risk that got infected) and
for this reason, we performed we performed benchmarks
for a range of Rp values (1.1, 1.25, 1.4, 1.8 and 3). Each
simulation was performed for 100 days. To start the
epidemic, we infected a random fraction of the popu-
lation. After testing seeding rates of le™2, le™3, le™*
and le™®, we observed limited impact on the number
of cases for these ranges and selected le™* as baseline
setting.

We included the pseudo-random number generator
(PRNG) from an open source software package called
TRNG [19, 26], a portable and highly optimized library
of parallelizable generators. To prevent synchronization
and latency, independent streams of random numbers
are required for each thread. We used the robust and
versatile “leapfrog” method where the PRNG sequence
is distributed over p processes by calculating for draw i
the i*(p-1)th number in the sequence. There are no rec-
ommendations to select PRNG seeds to obtain different
stochastic results, except that those seeds have to be dif-
ferent. Therefore, the run index has been used to seed the
PRNG.

An extended class diagram and the free open source
code can be found in Additional file 1 and Additional file
2 respectively. Additional file 3 contains a user manual
to make use of the project software. During develop-
ment, we used the Google C++ Testing Framework [27] to
perform detailed tests. These tests were applied in auto-
mated fashion with every change in the code base via a
continuous integration server [28]. The Templatized C++
Command Line Parser library [29] was used to transfer
configurations to the executable. The project-code is stan-
dard C++11 throughout, independent of external libraries
and portable over all platforms that have a GNU compiler
(version 4.8 or later) available.

Timings presented in this paper were obtained from
benchmarks on a cluster with Intel” Xeon® E5-2680 v2
2.80 GHz CPU’s (release Q3’13) from the HPC core
facility CalcUA at the University of Antwerp. We con-
firmed our results with benchmarks on quad-core Intel®
Xeon® W5580 3.2 GHz (release Q1°09) CPU’s and AMD
Opteron® 6274 CPU’s. The GNU compiler (4.8) was
used in release mode with compiler optimization “-O3”.
Additional file 4 contains more info on the hardware and
extra results. The open source tool PerfExpert [30] was
used for profiling, as installed on the CalcUA cluster.

We performed additional benchmarks to explore the
effect of cluster size, dynamic clusters and increased
model complexity on model performance. Methods and
results can be found in Additional file 5.
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Results and discussion

The number of infected people is the dominant fac-
tor in determining the computational workload and the
required simulation time. Therefore, we needed to incor-
porate distinct epidemic curves in our benchmarks by
using different Ry values. Small deviations in the AR were
observed for each Ry as a result of different stochas-
tic paths with and without the sort algorithm and given
the different processing in FLUTE. To prevent stochas-
tic fade-out, which is not appropriate for benchmarks, we
used relatively high epidemic seeding rates to introduce
new infected people in the population [12]. The bench-
marks all report elapsed wall clock times as is appropriate
for parallel programs. All results in this paper are based
on mean timings from 10 runs with a different random
number generator seed. With intervention strategies, we
expect more stochastic fade-out and would require more
realizations. Benchmarks are performed on idle comput-
ing nodes and results on other hardware can be found in
Additional file 4.

Simulations with the basic models without concerns
of the population order clearly required the longest run
times. Figure 3 illustrates the total run time for FRED sim-
ulations with the Nassau population. Similar results were
obtained with the other models (Additional file 4). We
observed a large decrease in run time when the popula-
tion is structured according to day cluster and household.
The workload for a cluster of size N with I infectious and
S susceptible members can be approximated by N health
checks to select the infectious members + I*(N) health

—“‘+~"~~
o+ R
8 +
— T+ +
+ + .
. / N
& & |t
g o X x
= X—*"" X T N
c L —x \ X
e X
o _
N + Basic algorithm
X Sort algorithm
--- Randomized population
o - —— Structured population

I I I I I I I
03 04 05 06 07 08 09

Attack rate
Fig. 3 Run time according to attack rate and population structure for
Nassau simulations using FRED. Structured population: sorted
according to day cluster (first) and household (second)
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checks to select susceptible potential contacts + I*S ran-
dom draws to match the infectious member with the sus-
ceptible members. The number of susceptibles decreases
with each new case, which explains the decreasing curve
in Fig. 3 for epidemics with high AR. Next, sorting clus-
ter members on health status before processing disease
transmission, had a large impact on the performance. The
run times for Nassau were reduced with 26% to 79%
compared to the basic models, depending on AR and pop-
ulation ordering. The algorithm with sorting has overhead
because of swapping infected and healthy members but
overcomes I*(N) health checks on susceptibility, which
explains the reduced run times.

Given the impact of the AR on the simulation time, we
needed to monitor the benchmarks closely. The stochastic
transmission process is altered by the sorting algorithm,
which has limited impact on the AR. Also, the popula-
tion ordering determines the initial sequence of the cluster
members and thus the random path of the simulator.
Figure 4 presents the AR from 10 Nassau simulations
using different models and population structures. The
AR distributions were overlapping, which suggested sim-
ilar transmission dynamics and approved run time com-
parisons. To validate the transmission model presented

FLUTE 4 ©O

FRED b T -
e RGeS, B B o
FLUTE sort — Fommmm--- LT F--4

FRED sort — O F----- -4
SID sort — O F----- -4
0.639 0.640 0.641 0.642
Attack rate
Randomized — [ -4
ongnal o teoeeeo{ T -

[Household] —
[Household,day

]
[Day] o OF--------- LT -
]

[Day,Household

0.639 0.640 0.641

Attack rate

Fig. 4 Attack rates for Nassau simulation using Ry = 1.4 and seeding
rate = 1e~4 according to implementation (top) and population
structure (bottom). Results from 10 simulations. The original
population structure is used to compare implementations (top) and
FRED to compare population structures (bottom). Box: upper and
lower quartile, wisker: minimum and maximum excluding outliers,
circle: outliers (>1.5x interquartile range), [....]: structured population
e.g., [Day, Household] represents populations sorted according to day
cluster (first) and household (second)

0.642
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here, we performed simulations with the open source
FRED software from Greffenstette et al. [10] using popu-
lation data distributed with the source code for Allegheny,
Pennsylvania. We observed ARs of £68 % if Rp = 1.4 and
ill people could not stay home, which was close to our
results.

The population ordering appeared to have a large
impact on model performance. To examine the effect on
an epidemic with Rg = 1.4 (AR +64 %), we used different
versions of the population data with and without sorting
according to household and/or day cluster. We repeated
our benchmarks multiple times and did not observe large
differences in ARs (Fig. 4). Table 2 presents the mean tim-
ings from multiple runs with each population ordering
using the three basic models. The randomized popula-
tions gave the highest run times for all basic models. Using
the original structure of the RTI population files slightly
decreased the run time. Sorting the population on house-
hold ID improved the performance though most optimal
was to sort the population on day cluster (first) and house-
hold (second). With this sorted population structure, we
observed a reduction up to 59% for FLUTE and FRED
compared with the randomized population. The effect of
the population structure was less for SID. The original
open source FIUTE model [6] uses a population sorted
according to household. With our FLUTE implementa-
tion, we observed a decrease in run time of 20% by
using a population for Nassau sorted by day cluster and
household. The population of the original FRED model
[10] follows the structure of the RTI population files. A
decrease of 6 % in total run time can be achieved with our
FRED implementation by sorting the population file once.
The impact of the population ordering was limited for the
models with the sort algorithms.

The general trends from the Nassau simulations were
also valid for Brooklyn. The improvement of the sort-
ing algorithm ranged from 34 % to 63 %. For Brooklyn,
we reduced the simulation time by sorting the popula-
tion once with respectively 15% and 19 % compared to

Table 2 Timings for Nassau simulations with different
population structures

Population structure FLUTE FRED SID
Randomized 108 91 95
Original RTl sequence 101 94 92
[Household] 94 86 87
[Household, Day] 93 80 87
[Day] 89 80 82
[Day, Household] 81 69 78

Results in seconds with Ry = 1.4 and seeding rate = 1Te™* (AR = 462 %). E.g,, [Day,
Household] represents populations sorted according to day cluster (first) and
household (second)
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the original FLUTE and FRED population. The highest
improvement with the population structuring was 39 %.
Table 3 presents the mean run times from 10 Brooklyn
simulations with Ry = 1.4. The ranking of the basic mod-
els based on total run time differed between Nassau and
Brooklyn simulations due to the different population size
and cluster size distribution. For the models with the
sorting algorithm in the cluster class, the ranking was
independent of the population structure. The extra effort
to manage separated household and day clusters in FRED
and SID improved the simulators’ performance compared
to the district-approach from FLUTE. The SID model with
the sort algorithm performed best for all benchmarks,
especially with the structured population.

On today’s multi-core chips, memory access is a critical
performance-limiting factor [31]. Therefore, we have ana-
lyzed software behavior and memory access patterns with
a profiling tool for high-performance computing appli-
cations, PerfExpert [30]. We found that the function in
Cluster to process disease transmission takes on average
98 % of the run time. Therefore, optimizations in this part
of the code can have large impact. Since a member can-
not be infectious and susceptible at the same time, it is not
necessary to check whether a member tries to infect him-
self/herself. We observed that adding a simple comparison
of two C++ pointers or two integer indices in FRED and
SID respectively, increased the simulation time with 25 %.
Table 3 presents a selection of the PerfExpert output.
FLUTE had the highest penalty for branch instructions
(if-then-else structures), which limits the CPU to pipeline
instructions and to execute different stages (fetching,
decoding, processing and store data) at the same time.
A mispredicted branch instruction disturbs this opti-
mization. FRED and SID required less cycles for branch

Table 3 Profiling results for Brooklyn simulations

FLUTE FRED SID
Basic Sort Basic Sort Basic Sort
Randomized population
- Branch instructions 029 014 023 007 018 007
- Data access 185 099 212 097 169 078
- LLC misses 014 014 027 048 013 029
- Run time (s) 229 114 237 103 222 102
[Day, Household] population
- Branch instructions 026 014 022 007 017 007
- Data access 123 085 142 067 066 035
- LLC misses 005 007 012 025 004 012
- Run time (s) 168 103 188 94 147 88

Results with Ry = 1.4 and seeding rate = 1Te™* (AR = 462 %). All metrics, except run
time, are given in LCPI: local cycles per instruction. LLC: last level cache. [Day,
Household] populations are sorted according to day cluster (first) and household
(second)

Page 7 of 10

instructions, especially with the sort algorithm. Sorting
the cluster members before processing transmission also
reduced the data access. Regarding the cache-coherency,
we have observed that structuring the population accord-
ing to the social contact clusters decreased the number of
last level cache misses. The sorting algorithm disrupts the
memory consistency by relocating references to cluster
members. By comparing FRED and SID profiling results,
we can confirm the targeted data management strategy
from struct-of-array vs array-of-structs: the SID models
have fewer last level cache misses.

Processing disease transmission requires many iter-
ations over independent clusters and therefore seems
suited for distributed programming. We observed that
the effect of parallelization was dependent of the epi-
demic curve. Figure 5 presents differences in the speedup
using FLUTE with 4 threads according to the AR and
the epidemic seeding rate (= initial fraction of infected
people). The different rates we used did not have impact
on the total number of cases but only on the length of
the initial phase with a small amount of infected clus-
ters. Simulations with a high epidemic seeding rate and a
large AR gave the best speedups using multiple threads.
To illustrate the possibilities of parallelization, we com-
pared simulation times using 1 to 20 threads for epidemics
with Ry = 1.4 and seeding rate = le”2 (AR 464%).
Figure 6 presents the speedup for SID with basic and
sort algorithm using a structured population according to
day cluster and household. Similar results were obtained
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Fig. 5 Speedup according to attack rate and epidemic seeding rate
using FLUTE (basic) with 4 threads. All simulations were performed
with a structured Brooklyn population sorted according to day cluster
and household using dynamic scheduling with workload chunks of 1
cluster
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for the other implementations and using the randomized
population, which can be found in Additional file 4. We
observed good speedup for all models and scheduling
options with 2 threads. With 3 or more threads, the added
value of extra threads decreased due to memory band-
width saturation. Making the clusters more self-contained
by replacing the member references by actual person data
would reduce this limitation although it requires much
synchronization between the clusters and extra memory.
All basic models had most benefit of dynamic scheduling
with workload chunks of 1 cluster. With sorting, FRED
and SID seemed to operate more optimally with static
scheduling or dynamic scheduling with workload chunks
larger than 1 cluster. For FLUTE, the dynamic schedul-
ing with chunks of 1 cluster gave the best speedup. We
tested the models on other hardware and observed similar
results (Additional file 4).

By increasing model complexity, more different clus-
ter types can be used and sorting the population might
be less effective. If more person attributes are required
for the disease transmission, co-locating these in a per-
son object will be beneficial. On the other hand, the
increased amount of person data will reduce the num-
ber of persons that fit in the high-speed cache, so more
data needs to be fetched with higher latency. We explored

these model aspects (Additional file 5) and observed that
cluster size had a large impact on run time. Though, the
differences regarding population sorting, model design
(FLUTE, FRED and SID) and the sorting algorithm scaled
with cluster size. To estimate the effect of dynamic clus-
ters on model performance, we implemented a model with
changing cluster membership over time. This way, the
run time increased but the overall conclusions remained
valid. Increasing model complexity by adding extra per-
son attributes in FLUTE and FRED reduced the impact of
the population sorting. The run times for SID remained
constant if these attributes were not used, which con-
firmed the targeted data strategy of struct-of-array vs
array-of-structs. The SID design became a disadvantage
regarding model performance and workload for the pro-
grammer if these extra person attributes were involved in
the transmission process.

Conclusion

ABMs offer a very powerful and flexible framework to
analyze infectious disease transmission. Unfortunately
they come with a large computational cost. Investing time
in code optimization and adaptation to hardware inno-
vations reduces time available for adding new features
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although it can save much time during testing and in
production.

We compared different ABM implementations for
close-contact disease transmission models for two U.S.
counties. Our ABM consisted of household, school, work-
place and district clusters and people in a cluster can have
social contacts and transmit an influenza-like disease. The
transmission probability was assumed to be age depen-
dent. We observed reductions up to 59 % by structuring
the model population once according to the largest social
contact cluster. Next, sorting the cluster members based
on health status before processing disease transmission
appeared also very beneficial for the model performance
(reduction up to 79 % compared to the basic model).

Data movement and access require much more cycles
than floating point operations and therefore data layout
has impact on run time. We compared models that han-
dle the population in large districts with models that also
process the household and day clusters separately. The
latter seemed beneficial for the performance especially
in combination with the sorting on health status in the
clusters. The storage of person data in separate contain-
ers instead of per person improved the data locality and
cache-coherency and reduced modeling time. Models that
sort cluster members on health-status before processing
disease transmission are scalable with multiple threads
if the epidemics have a limited initial phase. The paral-
lel scheduling and workload chunk size had significant
impact on the simulation time.

Increasing model complexity may reduce the impact of
the population ordering. We describe the core of the sim-
ulator but more research is needed to assess the role of
data layout and sorting algorithms together with mitiga-
tion strategies. Although improving data layout by using a
separate container for each person feature might increase
the model performance, it is counter intuitive for an ABM
and requires extra effort from the modeler. The current
software does not predict the workload before schedul-
ing the chunks over multiple threads. We believe this
scheduling would be a valuable extension to the parallel
implementation because the cluster sizes and the amount
of infected individuals per cluster can be very hetero-
geneous. In conclusion, large performance gains can be
achieved with limited effort by structuring the population
once, adding an algorithm that sorts by health status and
selecting appropriate parallel settings.

Additional files

Additional file 1: Class diagram. Schematic overview of the project.

Additional file 2: Free open source code. Documented C++ code with
Makefiles.

Additional file 3: User manual. User manual of the project software.
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Additional file 4: Hardware specifications and extra results. Computer
hardware details and more benchmarks for Nassau and Brooklyn
simulations.

Additional file 5: Model exploration and validation. Benchmarks to
assess the impact of model complexity on model performance.
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