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Abstract

Background: The subcellular distribution of synapses is fundamentally important for the assembly, function, and
plasticity of the nervous system. Automated and effective quantification tools are a prerequisite to large-scale studies of
the molecular mechanisms of subcellular synapse distribution. Common practices for synapse quantification in
neuroscience labs remain largely manual or semi-manual. This is mainly due to computational challenges in
automatic quantification of synapses, including large volume, high dimensions and staining artifacts. In the case
of confocal imaging, optical limit and xy-z resolution disparity also require special considerations to achieve the
necessary robustness.

Results: A novel algorithm is presented in the paper for learning-guided automatic recognition and quantification of
synaptic markers in 3D confocal images. The method developed a discriminative model based on 3D feature
descriptors that detected the centers of synaptic markers. It made use of adaptive thresholding and multi-channel
co-localization to improve the robustness. The detected markers then guided the splitting of synapse clumps, which
further improved the precision and recall of the detected synapses. Algorithms were tested on lobula plate tangential cells
(LPTCs) in the brain of Drosophila melanogaster, for GABAergic synaptic markers on axon terminals as well as dendrites.

Conclusions: The presented method was able to overcome the staining artifacts and the fuzzy boundaries of
synapse clumps in 3D confocal image, and automatically quantify synaptic markers in a complex neuron such
as LPTC. Comparison with some existing tools used in automatic 3D synapse quantification also proved the
effectiveness of the proposed method.
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Background
The subcellular distribution of synapses is fundamentally
important for the assembly, function, and plasticity of
the nervous system, and disruption of synapse develop-
ment has been implicated in many types of neurological
disorders [1–9].
Recent advances in imaging technologies now allow us

to go beyond the traditional measure of synapse forma-
tion and dendritic spines, and to study the distribution
of the synapses themselves in a three-dimensional
context. Automated and effective quantification tools are
a prerequisite to large-scale studies of the molecular
mechanisms of subcellular synapse distribution. Current
analysis is largely manual or semi-manual and often
* Correspondence: jzhou@niu.edu
1Department of Computer Science, Northern Illinois University, DeKalb, IL
60115, USA
Full list of author information is available at the end of the article

© 2015 Sanders et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
limited to arbitrarily selected parts of the dendritic field.
Such practices make the process labor intensive and
sometimes subjective.
However, computational challenges exist for the ana-

lysis of new data due to several reasons. The first issue
is the large size of higher-dimensional biological image
sets, which greatly increases the computational demand
on the model and renders the design of an efficient and
effective algorithm difficult. In addition, noise, staining
artifacts and the optical limit (light microscopy can
cause fuzzy images due to wavelength limit) prevent ef-
fective and precise detection; the anisotropic nature of
the confocal images (xy resolution is higher than the z
direction) requires special algorithm design. Moreover,
accurate quantification is made challenging when
crowded objects form clumps with large morphology or
images display high contrast variation from region to re-
gion. Therefore, automatic synapse quantification from
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large, multichannel, high-dimensional confocal images
requires special consideration to achieve the necessary
robustness and efficiency.
While automatic quantification tools are available for

2D image analysis [10–12] and there are studies for
quantifying other 3D biological objects than synapses
(e.g., cells/nuclei) [13–16], existing tools for 3D synapse
quantification are not yet sufficient. For example, auto-
matic synapse detection based on connected component
analysis falls short in quantifying clumps of multiple
synapses. Threshold-based approach or variants com-
promise robustness for applicability to large high-
dimensional images [5, 17]. On the other hand, sophisti-
cated segmentation methods, such as those based on
level sets, are less efficient and may have issue extending
to 3D due to the resolution disparity between xy-z direc-
tions in confocal imaging. They also often involve hu-
man interaction and are thus not suitable for large,
high-dimensional images on a regular PC.
To overcome these problems, we utilize an automatic

learning-based method for effective and efficient quanti-
fication. Central to our method is a multidimensional
discriminative model learned from reliable 3D feature
descriptors. When discriminative models have been
found effective in automatic 2D image recognition tasks
[11, 18–20], the general consensus on 3D biological im-
ages has been that a discriminative model can also lead
to more robust quantification results with 3D images
[15, 21, 22] and is suitable for large-scale analysis, due to
minimal user intervention once the model is trained,
which is a good property for large-scale data analysis, as
is necessary in genetic screening [23]. However, the ap-
plication of discriminative models to 3D biological im-
ages has lagged behind their successful 2D counterparts.
Other than the fact that the availability of large-volume
3D images is relatively recent, it may also be related to
the need for 3D training sets and the lack of an ergo-
nomic tagging tool using the 3D-WYSIWYG (What You
See Is What You Get) strategy. The recent availability of
the visualization tools such as Vaa3D [24], which allows
for ergonomic tagging, aligned with the strong demand
for automatic 3D quantification.
In this paper, we present a learning-guided approach

for automatic 3D synapse quantification. We use a dis-
criminative model to detect the synapses. The model
output then guides automatic contour-based splitting to
further improve the robustness of synapse quantification.
Assisted by other modules such as multichannel co-
localization and proximity analysis that will overcome
staining artifacts, the process provides effective synapse-
quantification for multichannel, high-dimensional light
images. As the test system, we will use the lobula plate
tangential cells (LPTCs) in the brain of Drosophila mela-
nogaster, a system in which the subcellular localizations
of gamma aminobutyric acid (GABA)-ergic synapses can
be imaged in three dimensions using high-resolution
confocal microscopy. In the Methods section, algorithms
used to detect and quantify the GABA synaptic markers
in LPTC’s axon as well as dendritic areas are described.
The qualitative and quantitative results as well as discus-
sions are then presented, followed by the conclusions.

Methods
Imaging synapses in single Drosophila LPTCs
The lobula plate tangential cells (LPTCs) in the brain of
the fruit fly Drosophila melanogaster offer an in vivo
system that allows for genetic manipulation and high-
resolution imaging of subcellular localizations of GABAer-
gic synapses [25–27]. These cells respond to directional
movement of the visual field and are located in the optic
lobe of the adult fly [28].
Figure 1 shows maximal intensity Z-axis projections of

1024×1024×19 pixel laser-scanning confocal (LSC) images
of a LTPC neuron. Using mosaic analysis with a repress-
ible cell marker (MARCM) ([29], we visualized at single
neuron-resolution the distribution of the postsynaptic
GABA receptors labeled by a hemagglutinin (HA)-tagged
GABAergic receptor subunit RDL (RDL-HA) [30] and the
overall cell morphology marked by mCD8-monomeric
RFP (mCD8-RFP) [31]. Figure 1a shows the axonal ter-
minal of the LPTC neuron with GABAergic synapses la-
beled by RDL-HA. Figure 1b and c shows the dendritic
arbor of a LPTC. The fluorophores used to label RDL-HA
and mCD8-RFP were Cy5 and Rhodamine Red-X, respect-
ively. For inhibitory synapses labeled by RDL-HA, the ex-
citation was 633 nm and the emission was 670 nm (Cy5).
For overall morphology labeled by mCD8-RFP, the excita-
tion was 543 nm and the emission peak was 590 nm
(Rhodamine Red-X). These fluorophores were scanned
separately using sequential scanning.
The stained samples were imaged on a Leica SP5 LSC

system with a 63x oil-immersion lens (numerical aper-
ture = 1.40) in conjunction with Leica acquisition soft-
ware. A digital zoom of 3 was applied. The pixel size
was 80 (x) x 80 (y) x 400 (z) nm. Six frame averages and
4 line averages were applied to reduce random noise oc-
curred during imaging acquisition.
Images were then deconvolved with the Huygens soft-

ware. Theoretical point spread function (PSF) was used
for deconvolution. The “signal-to-noise ratio” parameter,
which is a noise filter in the Huygens software, was set
at 20. After deconvolution, the 3D images of separate
parts of a neuron were stitched together manually with
the assistance of the Amira software.

Overall algorithm design for 3D synapse quantification
Figure 2 illustrates the overall design of our automatic
method for 3D synapse detection. The two-channel 3D



Fig. 1 Raw images of the general morphology and GABAergic synapses a LPTC Horizontal System (HS) neuron. a The maximum intensity
projection of the axon terminal. The blue channel is the axon morphology and the green channel is the HA-tagged GABA receptor RDL (RDL-HA).
b The MIP view of the dendritic tree. The red channel is the tree morphology and the blue channel is the GABA receptor marker RDL-HA. Scale
bar: 10 μm. c RDL-HA in the dendritic tree

Sanders et al. BMC Bioinformatics  (2015) 16:177 Page 3 of 13
image of synapses on LPTC axon or dendrite was first
split into two images corresponding to the synapse chan-
nel and the morphology channel. The learning-based syn-
apse detection algorithm was applied to the channel of
GABAergic synaptic markers. A 3D discriminative model
was constructed to detect the center of a synapse based
on 3D features. One important step in the process is to
select an optimal model for synapse detection, which uti-
lizes a tool we developed called BIOCAT for BIOimage
Classification and Annotation Tool (http://faculty.cs.-
niu.edu/~zhou/tool/biocat/). BIOCAT is a platform for
biological image classification. In this project, it was used
to compare the algorithm chains of 3D feature extraction/
selection and classification algorithms in order to deter-
mine what algorithms were best suited to detecting
centers of synaptic markers. Once the synapses were de-
tected, the morphology channel was merged back for the
purpose of co-localization analysis to filter out false posi-
tives based on the spatial proximity of synaptic markers
and the axon/dendrite morphology. Synapse clump split-
ting was then performed guided by the predicted synaptic
centers to yield the final quantification results. The com-
ponents will be described in detail in next several sub-
sections.

Training and chain selection for synapse learning
A tool was created from our work on 2D bioimage anno-
tation using a discriminative model, which we extended to
higher dimensional images and named BIOCAT [32, 33].
BIOCAT has gone beyond image annotation to provide a
flexible and extensible platform for biological image learn-
ing based on discriminative models, handling both image
sets and the regions of interest (ROI) in images. A user-
friendly graphical interface is included. State-of-the-art
algorithms from pattern recognition and machine learning
are included as plug-in modules. The modules include
feature extractors such as scale-invariant feature trans-
form [34], wavelet transform [35], Hessian and structural
features [36]. Candidate modules also include classifiers
such as a support-vector machine [37] and adaptive boost-
ing [38]. The extensible design of BIOCAT has made it
easy to add new algorithms as plug-ins. In addition,
BIOCAT has an increasing focus on developing multi-
dimensional descriptors that are large scale aware. Such
descriptors can be especially useful for learning tasks in-
volving high dimensional and high volume bioimages that
require special attention to algorithm efficiency. It is an
ongoing effort to develop novel and suitable algorithms.
See BIOCAT website for latest updates.
The functionality of BIOCAT that is most pertinent to

the learning-based synapse detection is the selection of
an effective discriminative model. Currently, the com-
mon practice for model selection in pattern recognition
and learning community is manual, trial-and-error com-
parison, largely based on the practitioner’s level of ex-
perience. BIOCAT, on the other hand, enables automatic
model selection for biological-image classification and
detection, and thus provides an adaptive tool for build-
ing models best suited to the quantification task.
The problem of synapse detection was formulated as

the binary classification task of detecting the centers of
synaptic markers. The discriminative model was trained
based on a set of voxels, which were either the centers
of synapses or not, to form a binary predictor. 3D ROIs
in the training set were sized 9*9*3 pixels, surrounding a
voxel that was either a synaptic center (positive) or not
(negative). 25 positive ROIs and 25 negative ROIs were
randomly chosen for learning purposes. In contrast to
the large amount of synapses in the image, e.g. thou-
sands of GABAergic synapses in a LPTC dendrite tree,
the size of the training ROIs was rather small and easy
to collect and tag. We did the tagging using ImageJ in a
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Fig. 2 Flow chart of the 3D synapse quantification algorithm
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slice by slice fashion and then visually validated in the
3D volume view using the Vaa3D tool [24].
The ROI training set was then loaded into BIOCAT for

chain selection. In BIOCAT, a discriminative model is
represented as an algorithm chain which is defined as a
sequence of several pattern recognition algorithms that in-
clude some feature extractors, one or more optional fea-
ture selector(s), and a classifier, which can also be an
ensemble of multiple classifiers [33]. Examples of algo-
rithm chains are demonstrated by Fig. 3. The algorithm
chains were built and compared by BIOCAT. We used
five-fold cross-validation to yield the recognition accuracy
as the measure for comparison.
For the purpose of 3D synapse detection, several feature

descriptors and their combinations were used to build the
first components for candidate BIOCAT algorithm chains.
Next, several variations of feature classifiers were paired
with feature descriptors to complete the candidate chains.
The chains involved in our experiments were derived from
the components described below.
Candidate 3D feature descriptors extracted from its sur-

rounding 3D volume for a voxel were determined using:



Fig. 3 Algorithm chain selection for 3D synapse detection using BIOCAT
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� 3D Anisotropic HAAR wavelet: A Multi-scale wave-
let features extended to 3D and adapted to the an-
isotropic nature of 3D confocal imaging. It was
defined in [33].

� 3D Edge and structure features [39].
� 3D Invariance moments [40].

Features were classified using the following candidate
classifiers:

� Learning using neural network: a multilayer
perceptron (MLP) with windowed momentum. The
windowed momentum is added to improve the
performance [41].

� Support Vector Machine (SVM) [37] .
� Random Forest Classifier [42].

Please note that BIOCAT provides more algorithm
modules than those are described above. Those de-
scribed here were more extensively tested with different
parameter settings during the building and comparing of
algorithm chains for 3D synapse detection.
Figure 4 lists the results of comparing 18 algorithm

chains that include the above features and classifiers as
well as their various combinations.
The most powerful feature descriptor for determining

synaptic markers based on 5-fold cross-validation was
Fig. 4 Comparison of 18 algorithm chains for 3D synapse learning
experimentally determined to be 3D anisotropic wavelet
extractor module. Anisotropic HAAR wavelet is an effi-
cient feature extractor that adapts to the anisotropic na-
ture of 3D confocal imaging. It extracts multi-scale
HAAR features from x-y planes and then sums up the
features of all z slices with middle z slices weighted
heavier than other slices. The anisotropic features logic-
ally complement the z-directional resolution disparity of
confocal images and avoid the expensive full 3D exten-
sion of wavelet features.
The highest performing chains are the wavelet features

combined with the Multi-Layer Perceptron module
(MLP) or the Support Vector Machin (SVM), both achiev-
ing a 100 % cross-validation rate on the training set. MLP,
an artificial neural network based learning algorithm, is a
powerful classifier that has shown in other case of 3D ob-
ject learning from microscopic images [43]. Experimen-
tally, we found that a windowed momentum increased
speed and also lead to slightly better performance than
the traditional MLP (results not shown). We can notice
from Fig. 4 that the choice of classifier is not as critical as
the descriptors. 3D anisotropic wavelet features performs
reasonably well with a variety of classifiers. For example, a
chain with 3D anisotropic wavelet features and random
forest classifier also yielded reasonable results in training
set cross-validation. MLP was chosen as the classifier for
our purpose due to its high accuracy and known faster
testing time than SVM. On the other hand, some other
feature descriptors, such as 3D Edges features or 3D
moment features, yielded poorer than expected results.
Conclusively, the learning algorithms of 3D anisotropic
wavelet extractor combined with a Multi-Layer Per-
ceptron with a windowed momentum is chosen as the
learning algorithm for 3D synapse detection in this
paper.
Since the training ROIs were of small size and the set

size was also small, the training time for the chain was
around 5 seconds on a regular PC. This is the time for
learning the model. Once a model is learned, the time
to make a prediction (for synapse detection) is very
fast.
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Testing process and synapse detection
The learned model was then applied to the synaptic
channel of the microscopic image to detect synapses.
Specifically, the model was applied to the surrounding
ROI, sized same as the training ROIs, of the remaining
image voxels. The model then yielded a prediction
whether or not that voxel was a candidate of a synaptic
center. Applying the model on every single voxel, how-
ever, would not be an efficient choice for large 3D im-
ages in terms of time. Considering that the majority of
voxels in the synapse channel were backgrounds for
large 3D volumetric images, speed can be improved by
obtaining the local maxima first and applying the dis-
criminative model to those voxels only.
To obtain the local maximum voxels, a mask of fore-

ground pixels was obtained and then a morphological
filtering was conducted on the mask. The mask of fore-
ground pixels as a base of extracting local maxima was
typically obtained by a histogram-based thresholding
[44]. But that method turned out to be insufficient for
our purpose. It was due to the large size of the image
and the variations among different local regions. We
instead used Robust Adaptive Threshold Selection
(RATS) [45].
RATS is a local adaptive thresholding method that

uses estimates of the image gradient to determine local
threshold values. To achieve robust thresholding, RATS
divides the image into a quadtree hierarchy of sub-
regions. The smallest region is called the leaflet. RATS
uses the gradient weighted sum of the pixels to deter-

mine the local leaflet threshold [45]: T ¼
X

G2
x;y � Ix;yð ÞX
G2

x;yð Þ ,

where Gx,y are the derivative approximation from a
Sobel operator, and Ix,y is the intensity of the pixel. If the
sum of the gradients didn’t exceed a minimum noise in-
put parameter, the regional threshold of the parent re-
gion was used. This step was repeated recursively. The
thresholds were then bilinearly interpolated across the
regions to get a binary mask. The advantage of RATS is
its local adaptability on microscopic images with con-
trast variations.
Full extension of RATS to 3D will involve interpolation

of all the neighboring voxels in 3D. It will be computa-
tionally expensive for an image with a big size such as the
dendrites of an LPTC neuron. Since most synapses are a
few pixels deep in our confocal images, we used a pseudo
3D RATS for our purpose. We applied the RATS to the
image stack slice by slice, based on the same parameter
that was set using a reference slice. The z-slices close to
the boundary are typically darker so the middle slice was
used as the reference slice to avoid over-detection on
other slices.
RATS may also be used as a segmentation method to
detect foreground structures in images, which we will
make use in the section on multi-channel validation.
When providing a base for local maximum detection, we
needed a mask so that all the local maxima were in-
cluded. The parameter of RATS were set to obtain such
an overmask. A 3D morphological filtering was then ap-
plied on the RATS mask. 3D search locality of 7*7*5 of
the filter was used in obtaining the local maxima. Once
the local maximal voxels are detected, the ROI of size
9*9*3 around each local maximal voxel was extracted,
and passed to the discriminative model trained on the
sample ROIs. For each positively detected synapse cen-
ter, an iterative mean-shift procedure was performed to
refine the location to the nearby center of mass. Two
centers were then merged if they were closer than a frac-
tion of expected synapse size after shifting. The proced-
ure yielded the positively identified synaptic centers by
the model.
Multi-channel validation and synapse clump splitting
To improve the robustness of synapse detection, two
more steps were employed: synapse clumps that contain
more than one synapse center were split and the morph-
ology channel of the dendrite or axon images was used
to verify the synaptic marker. The multi-channel valid-
ation was simply based on the proximity of the detected
centers and the foreground dendrite or axon morph-
ology: Those detected centers that were not in the
spatial proximity of 9*9*5 of the axon/dendrite structure
were discarded as staining artifacts. So we focus on the
algorithm of synapse clump splitting in this section.
The splitting of the clump was guided by the discrim-

inative model from the previous prediction of the learn-
ing model. The split was done such that the detected
synaptic centers fell into individual synapses, and at the
same time optimally divide the clump based on contour
and shape. This step was to obtain size quantification
and refine the locations of synapse centers.
3D connected component analysis based on 26 neigh-

borhood connectivity [46] was performed after RATS
segmentation to get the object shape. Objects of very
small sizes (less than 8 voxels) were discarded as noise.
Concave contour points were first detected based on the
maximum intensity projection of the synaptic objects
obtained via RATS segmentation, and the line connect-
ing an optimally selected pair of concave contour points
will be used to segment the clump.
For each split, an optimal pair of two contour points

{i, j} is chosen to segment the synapse by maximizing
the functional, provided that the pair can separate the
component to two parts so that the centers are on differ-
ent sides:
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E i; jf gð Þ ¼ C ið Þ � C jð Þ
d i; jð Þ ð1Þ

where c(i) is the concave score for the contour point i
[47, 48], d is the Euclidean distance between the two
contour points i and j.
The goal of Eq (1) was to find a pair of contour points

that are highly concave and close to each other in Eu-
clidean distance. In addition, the split put the detected
markers on different sides. Concavity of a contour point
i was calculated based on the following:

C ið Þ ¼
Xiþ1

k¼i−1

wk ð2Þ

Where Wi is number of foreground pixels in the 5*5
window centered at point i. For more robustness, the
two adjacent contour pixels (i-1) and (i + 1) were also in-
volved in the concavity measure.
3D convex objects like imaged synapses can theoretic-

ally be segmented by determining the identity of a voxel
using majority voting on three maximum-intensity pro-
jection planes. In anisotropic cases, the x-y plane often
gives the most accurate result and suffices for our pur-
pose of clump splitting.
For clumps involving more synapses, splitting were ac-

complished by consecutively separating one center from
the rest until there is one center per synapse, as de-
scribed in Table 1. One initial definition of Eq. (1) made
use of the distances of two contour points along the
contour to look for pairs of contour points for splitting.
That approach worked for clumps with 2 centers. How-
ever, it tended to yield unnatural splitting in the case of
big clumps with more than 2 centers that defied the
oval-‘oid’ shape of biological objects. The guidance of
Table 1 Algorithm for recursive splitting of synapse clumps

STEP 1 Perform maximum intensity projection of the detected 3D
synapse object.

STEP 2 Obtain the contour points of the synapse cluster.

STEP 3 Calculate the concavity score of the contour points based on
Eq. (2).

STEP 4 Choose a detected marker (denoted M1) from the markers pool
P, whose sum distance from the rest of the markers is
maximum.

STEP 5 Split M1 from the rest of the markers.Start from the highest
concavity point, A, look for a point B so that segment AB splits
marker M1 from the rest N-1 markers. If no such segment was
found, move to the contour point with next highest concavity
and repeat until a good split is found. When multiple segments
AB were found, the optimal pair that maximizes Eq. (1) us used.

STEP 6 Assign new identity to voxels of the newly split synapse for
quantification statistics.

STEP 7 REPEAT STEP 4, until P only has one marker left.
the synaptic center markers during split was found to be
a crucial condition for the goodness of the split.
In Fig. 5, we exemplify the proposed approach for de-

tecting and splitting synapses in a 3D confocal image
that could not be resolved using intensity information
alone. The centers of each detected and split synapse
were considered as the refined synapse’s position to yield
the final statistics of detected synaptic markers.

Results and discussions
Figure 6 demonstrates the results of synapse detection
on axon and dendrite images of LPTC, each contains
hundreds to thousands of synaptic markers. Figure 6a)
c) and d) show the detected centers overlaid on the ori-
ginal images. Visually we can see that our method is
overall effective in detecting synapses. On Fig. 6d) we
can see that the method is robust against staining arti-
facts that are present in the image. Figure 6b) exempli-
fies the result of detected synapses after splitting. We
can see clumps of multiple synapses were split reason-
ably. Total numbers of synapses detected were 208 on
the LPTC axon terminal image and 2932 on the den-
drite image.
To further derive quantitative measure on the algo-

rithm’s effectiveness, we manually annotated 5 regions in
the LPTC axon image and 10 regions in the LPTC den-
drite images. The regions were randomly chosen from
the image, with the condition that the region contains
reasonable amount of synapses (at least 10). The tool we
used to annotate in the 3D volume image was Vaa3D
[24]. Opinions from two computer scientists and two
neuroscientists were collected during the annotation of
the markers to reach a consensus (Fig. 7a gives an ex-
ample of the manual annotation). These manual annota-
tions in the synapse channel were used as references for
deriving quantitative measures of precision and recall
described below.
Precision and recall statistics of the 3D synapse detec-

tion algorithms were then calculated on each of these re-
gions. It was done by performing a comparative analysis
of the detected markers that fell within the boundaries
of each manually annotated region of the whole image.
First, we calculated the precision by counting the pre-
cisely detected synaptic markers that fell in the image re-
gion with respect to the total detected markers by the
algorithm. A detected marker was defined as a precise
one if it was within the 7*7*5 proximity of a reference
synaptic center. Similarly, successfully recalled markers
were defined as detected markers that are near the refer-
ence markers, within the same bounds as used for preci-
sion. Overall recall for a region was then calculated as
the number of recalled markers divided by the total
number of annotated markers in the region. These two
measures are combined as their harmonic mean to yield an



Fig. 5 Synapse clump splitting. a Original image with green signal being GABAergic synapse. b Enhanced image with the yellow arrow
indicating staining artifacts (dim green signal) and the red arrow indicates synapse clump. c synapse pre-detection (randomly color-coded).
d Synapse centers detected using discriminative model; e model-guided splitting to split a clump into two synapses (randomly color-coded).
f Example of synapses after iterative model-guided splitting (randomly color-coded). Visualization is done by Vaa3D
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aggregate F-measure assessing the overall accuracy of the
algorithm on each region with the F-measure = 2* (Preci-
sion * Recall)/(Precision + Recall). For a fair comparison
with other object detection/segmentation methods, only
the signal in the synapse channel was used for all methods
when reporting the results.
Tables 2 and 3 list the precision, recall and F-measure

on axon images and dendrite images, respectively. We can
see from Table 2 that the synaptic center learning model
delivered an effective result with a precision of 87.58 %
and an F-measure of 84.98 % on axon. After the de-
tected centers were further refined based on splitting
guided using the detected markers, the results were fur-
ther improved. The average F-measure was improved
to 89.80 % and the average precision was improved to
93.27 %.
In Table 3, the synaptic center learning model delivered

82.09 % average precision. After model-guided splitting,
the average precision was increased to 85.14 %. We see
that most regions have good precisions but a few have low
precisions. In addition to artifacts, image stitching could
also be a source of error since the contrast disparity can
be picked up by RATS. Figure 7b shows an example of
such stitching. Working with stitched images more effect-
ively can be a potentially important task in the future for
large microscopic images from optical systems. The low
recall regions were often due to the ambiguous artifacts
related to intracellular transport.



Fig. 6 Examples of results of detected synapses for axon and dendrite. a A volume view of synapses on axon terminal. The blue channel is axon
morphology, the green channel are GABAergic synapses. Red dots on the zoom-in view are the detected centers of synapes. Scale bar: 10 μm.
b the detected synapses after model-guided splitting. The color coding is random. Shown is the maxiumn intensity projection of the 3D view of
detected synapses. c Synapses detected on dendrites. Shown is a zoom-in region of primary branch. The red channel is the dendrite morphology by
membrane staining. Green channel is GABAergic synapses. Red dots are the detected centers of synapses. Scale bar: 5 μm. d the same region of c
but only the synaptic channel is shown. The dots are the detected centers of synapses. Scale bar: 5 μm. Visualization is done by Vaa3D a, c, d and
ImageJ b

Fig. 7 Illustration of manual annotation and stitching. a Manual annotation. Red circles exemplify the annotated markers in the presence of
clumped synapses and ambiguous background noise. b Contrast-enhanced image to show the boundary of stitching. Visualization is done
by Vaa3D
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Table 2 Results of synapse detection on axon terminal using proposed method

Region Precision Recall F-Measure Precision Recall F-Measure

Method Synapse Learning Model After Model-guided Splitting

Region 1 92.86 82.69 87.48 94.29 82.69 88.11

Region 2 94.12 84.62 89.11 97.62 81.54 88.86

Region 3 76.92 86.67 81.50 83.33 93.33 88.05

Region 4 90.67 82.80 86.55 95.45 87.10 91.08

Region 5 83.33 77.42 80.27 95.65 90.32 92.91

AVERAGE 87.58 82.84 84.98 93.27 87.00 89.80
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Comparison with other methods
We then compared our methods with other approaches
that were used in synapse quantification, the 3D Object
Counter [5, 46] and its variant. Considering that RATS
has been used for generating mask in our process, we
also compared to RATS when it is used as the segmenta-
tion method followed by 3D object counter to yield the
count. The leaflet size of RATS was set such that it has
a quadtree that is at least 5-level deep. For fair compari-
son, the RATS parameters were the same across all
methods. For axon image, the leaflet size was set to 204;
the minimum noise was set to 10, and the scaling factor
was 3. For the dendrite image, they were set to 259, 4
and 3, respectively.
Table 4 lists the results of the original 3D object coun-

ter on the same regions that we have tested for the
synapses on the axon terminal. Table 5 lists the results
of RATS-variant of 3D object counter.
To compare with another learning-based tool, Table 6

lists the results with ilastik [49], which is an interactive
learning and segmentation tool. Feature descriptors were
chosen following the recommendation of the ilastik tu-
torial, which includes all features on a range of object
sizes from 0.7px to the estimated size of target object.
The comparison was performed on the synapses on axon
Table 3 Results of synapse detection on dendrite using proposed m

Region Precision Recall F-Meas

Synapse Learning Model

Region 1 76.92 76.22 76.46

Region 2 83.33 41.67 55.56

Region 3 83.33 77.78 80.46

Region 4 84.21 83.33 83.77

Region 5 93.75 75.00 83.33

Region 6 92.31 57.14 70.59

Region 7 56.10 85.19 67.65

Region 8 95.65 88.00 91.67

Region 9 92.31 77.78 84.42

Region 10 62.96 82.35 71.36

AVERAGE 82.09 74.45 76.53
because ilastik user interface is not responsive when
working with the large dendrite image on a desktop with
8G RAM.
Table 7 lists the comparison of summarizing precision

rates, recall rates and F-measure of all the algorithms on
the axon terminal. We can see that, while the traditional
methods had an F-measure of around 72 %, our pro-
posed method, with clump splitting guided by the synap-
tic markers detected from the discriminative model,
gained the best F-measure of 89.80 %. Table 8 shows the
comparison results on the dendrite which has a similar
trend of increase.
A statistical summary of size is also performed for all

the detected synaptic markers between the size of 8 vox-
els and 1000 voxels. The maximum size of the detected
object is 141 and 214 voxels for the axon and dendrite
image, respectively. The minimum size is 8 voxels based
as the set lower bound. And the average size of all the
synaptic markers on the axon and dendrite images are
35.6 and 35.2 voxels respectively.
The results above were based on the synapse channel

for a fair comparison. The morphology channel was not
used and the colocalization analysis was not performed.
Validation using the proximity analysis with the morph-
ology channel reduced the number of synapses to 183
ethod

ure Precision Recall F-Measure

After Model-guided Splitting

87.50 76.00 81.35

83.33 50.00 62.50

88.89 77.78 82.96

89.47 83.33 86.29

93.33 70.00 80.00

92.31 57.14 70.59

72.73 81.48 76.86

95.00 76.00 84.44

92.59 85.19 88.73

56.25 88.24 68.70

85.14 74.52 78.24



Table 4 Results for Synapse detection on Axon Terminal using
the original 3D Object Counter

Region Precision Recall F-Measure

Region 1 82.14 57.69 67.78

Region 2 93.10 60.00 72.97

Region 3 83.33 93.33 88.05

Region 4 90.24 55.91 69.05

Region 5 90.91 48.39 63.16

AVERAGE 87.94 63.06 72.20

Table 6 Result for Synapse detection on Axon Terminal using
ilastik

Region Precision Recall F-Measure

Region 1 85.71 57.69 68.97

Region 2 88.24 63.08 73.56

Region 3 84.62 100.00 91.67

Region 4 89.13 62.37 73.38

Region 5 91.67 51.61 66.04

AVERAGE 87.87 66.95 74.72
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and 1984 for axon and dendrite. The removed ones were
mostly staining artifacts or marker-like objects not asso-
ciated with the neuron of interest.

Discussion
From the results in Table 7 and Table 8, it can be shown
that there was a marked increase in overall detection
performance from the 3D object counter, to the learning
model based marker detection, and finally the combin-
ation of segmentation and splitting with the learning
model based detection results. The largest increase in
model F-measure came from the model-based synapse
detection. Using the results of model-based detection to
supervise splitting was a logical extension to the algo-
rithm flow and further increased accuracy.
This increase in effectiveness can be attributed to the

algorithm robustly handling cases of false detections
caused by noise and under-segmentation of adjoining
synapses. Global threshold based object detection
methods like Object Counter 3D cope poorly with back-
ground noise and variances in average intensity across
large images. If the threshold criterion is tightened to at-
tempt to eliminate noise, less intense foreground struc-
tures can be lost. It was also unable to handle clumps of
synapses. Attempting to add more granular threshold
approaches such as RATS reduces adverse effects from
intensity variance, but is not enough to significantly im-
prove results. The learning-based segmentation tool ilas-
tik obtained better results than the thresholding-based
approaches, but still fell short in overall F-measure. The
results indicate that RATS or a simple pixel classifier by
itself is not sufficient for robustly extracting the synaptic
Table 5 Result for Synapse detection on Axon Terminal using
3D Object Counter with RATS

Region Precision Recall F-Measure

Region 1 92.00 63.46 75.11

Region 2 96.00 55.38 70.24

Region 3 81.82 86.67 84.17

Region 4 94.12 56.99 70.99

Region 5 90.00 45.16 60.14

AVERAGE 90.79 61.53 72.13
markers. In the proposed method, using a learning model
based approach combined with adaptive thresholding
allowed us to identify structures that are likely to be
synapses. Model-guided synapse clump splitting enabled
the method to further improve recall and precision.
Most segmentation methods start with detection of

whole objects. Our learning model instead identified
markers of possible synaptic centers. Our method thus
naturally handled the cases of both isolated and adjoin-
ing synapses. The output of our supervised model for
synapse center detection could then be combined with
object detection. This pairing made up for the weak-
nesses of only object detection, and allowed for better
guided splitting of clumps, even in denser regions. It led
to the overall improved F-measure. This approach is ex-
pected to be suitable with confocal light microscopy
where fuzzy clumps can be a common situation.
In addition to providing an effective way to work with

fuzzy synaptic clumps, the benefit of our learning-guided
approach is that the supervised learning model is easy to
train and the model is stable and free of tuning after train-
ing. The BIOCAT tool also provides a flexible learn-
ing pipeline. The drawback is that it does involve extra
work to annotate the training set, which is not always
straightforward at first for non-technical users. For the
case of synapse detection, we have found that a training
set can be small (several dozen samples are often suffi-
cient), so the needed effort for annotating the training
set is also small, especially compared with the time-
consuming and subjective effort of manually annotating
hundreds or even thousands of synapses.
In future work, we will work on other types of synaptic

markers to verify and improve the proposed process. For
example, the synaptic markers imaged in the paper are
Table 7 Comparison of results of synapse detection on axon

Algorithm Precision Recall F-Measure

3D Object Counter 87.94 63.06 72.20

3D Object Counter + RATS 90.79 61.53 72.13

ilastik 87.87 66.95 74.72

Proposed: model output 87.58 82.84 84.98

Proposed: splitting guided by the model 93.27 87.00 89.80



Table 8 Comparison of results of synapse detection on
dendrite

Algorithm Precision Recall F-Measure

3D Object Counter 88.93 47.39 61.61

3D Object Counter + RATS 84.56 60.26 69.52

Proposed: model output 82.09 75.28 77.22

Proposed: splitting guided by the model 85.14 74.52 78.24
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post-synaptic receptors. We will incorporate other evi-
dences such as the pre-synaptic markers to increase the
reliability of synapse quantification. Manual annotation
can also be improved for more comprehensive and accur-
ate validation. We will also work on solving the contrast
variations among stitched images duration quantification.

Conclusion
In this paper, we presented a novel learning-guided syn-
apse detection and quantification method for automatic
recognition and quantification of synaptic marker using
3D confocal microscopic images of fruit fly neurons.
The involved algorithms overcome the traditional
methods’ shortcoming in handling cases of false detec-
tions caused by noise and under-segmentation of adjoin-
ing synapses, and were able to quantify a large number
of synapses from the entire neuron.
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