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Background: Protein function in eukaryotic cells is often controlled in a cell cycle-dependent manner. Therefore, the
correct assignment of cellular phenotypes to cell cycle phases is a crucial task in cell biology research. Nuclear proteins
whose localization varies during the cell cycle are valuable and frequently used markers of cell cycle progression.
Proliferating cell nuclear antigen (PCNA) is a protein which is involved in DNA replication and has cell cycle dependent
properties. In this work, we present a tool to identify cell cycle phases and in particular, sub-stages of the DNA
replication phase (S-phase) based on the characteristic patterns of PCNA distribution. Single time point images of
PCNA-immunolabeled cells are acquired using confocal and widefield fluorescence microscopy. In order to
discriminate different cell cycle phases, an optimized processing pipeline is proposed. For this purpose, we provide an
in-depth analysis and selection of appropriate features for classification, an in-depth evaluation of different
classification algorithms, as well as a comparative analysis of classification performance achieved with confocal versus

Results: We show that the proposed processing chain is capable of automatically classifying cell cycle phases in
PCNA-immunolabeled cells from single time point images, independently of the technigue of image acquisition.
Comparison of confocal and widefield images showed that for the proposed approach, the overall classification
accuracy is slightly higher for confocal microscopy images.

Conclusion: Overall, automated identification of cell cycle phases and in particular, sub-stages of the DNA replication
phase (S-phase) based on the characteristic patterns of PCNA distribution, is feasible for both confocal and widefield

Keywords: Classification, Image analysis, Feature selection, Cell cycle phases

Background

Many physiological processes in an eukaryotic cells are
influenced by the cell cycle. Assigning cellular events to
specific cell cycle phases allows to detect subtle pheno-
types that only become manifest periodically at certain
stages of the cell cycle. Establishing a link between these
phenotypes and the cell cycle phase leads to a better
understanding of the underlying cellular processes.

There are different ways to monitor how cells pass
through different phases of the cell cycle. A widely used
approach is to label single proteins that show a cell cycle
specific behavior. The amount or distribution of such
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a protein usually depends on the cell cycle phase. This
information can be used to classify cells and assign them
to different phases. A protein with cell cycle depen-
dent properties is the proliferating cell nuclear antigen or
PCNA. This protein is a processivity factor for DNA poly-
merase in eukaryotic cells. It enhances the binding of the
polymerase to the DNA template and enhances DNA syn-
thesis. During the S (synthesis)-phase of the cell cycle it
localizes to sites of active replication.

It has been shown that PCNA is suitable to discriminate
three different stages of S phase cells (early, mid and late S
phase) [1-3]. Representative images of cells in these three
different stages as well as in the G phase, which has a sim-
ilar pattern of PCNA localization, are shown in Fig. 1 (left,
middle). The microscopy images were acquired both at a
confocal and a widefield microscope.
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Fig. 1 Distribution patterns of PCNA in the cell nucleus in confocal (left) and widefield (middle) microscopy images. Schematic outline of the cell
cycle with characteristic, phase-dependent distribution of PCNA in the nucleus (right)

The motivation of this work is to provide a general and
extensible framework enabling the automatic recognition
of different phases of the cell cycle, with special inter-
est in detecting early, intermediate and late stages of S
phase in fixed cells based on the distribution of PCNA
in fluorescence images. Fixed cells allow the use of anti-
body staining which simplifies sample handling and image
acquisition and is therefore widely applicable. However,
as compared to the analysis of live cell imaging [4, 5]
which provides additional temporal information, the clas-
sification of fixed specimen is more challenging from an
computational point of view. For this reason, sophisticated
algorithms for reliable automated cell cycle classification
are required, which are able to address variable fluores-
cence patterns, changes in SNR and shape as well as
touching cells.

The contributions of this work comprise a process-
ing pipeline for the discrimination of cell cycle phases
in PCNA-immunolabeled cells, an in-depth analysis
and selection of appropriate features for classification,
an in-depth evaluation of different classification algo-
rithms, as well as a comparative analysis of classifica-
tion performance achieved with confocal versus widefield
microscopy images.

Biological background - cell cycle

Eukaryotic cells multiply through a process called cell
division. Before a cell can divide it has to grow in size,
duplicate its whole genetic material exactly once and
distribute the chromosomes between the daughter cells.
After cell division has completed each daughter cell must
contain the original genetic information. The underlying
molecular events are precisely orchestrated in time and
space. The entire process between two cell divisions is
termed cell cycle. The cell cycle can be subdivided in dif-
ferent cell cycle phases (Fig. 1, right). In the first phase
of the cell cycle (G1 phase) the cell grows and prepares

for DNA replication by synthesizing proteins which are
needed in subsequent cell cycle phases. In the following
phase (S phase) the DNA is duplicated. After success-
ful DNA duplication, the cell enters the next phase (G2
phase) and prepares for cell division. During mitosis (M
phase) two identical sets of chromosomes are distributed
at exactly opposed sides of the equatorial plane. At the end
of mitosis, two daughter cells form both starting the cell
cycle again.

In both G phases (G1, G2), PCNA is equally distributed
over the whole nucleus. During DNA replication in S-
phase it marks sites of DNA synthesis, which spread
through the genome in a characteristic temporal pattern.
In the early S phase, PCNA agglomerates to small, equally
distributed foci. In the mid S phase these foci are located
at the nuclear periphery, and in the late S phase there are
large foci near the center of the nuclei. In mitosis (M),
PCNA is displaced from the condensed chromosomes,
resulting in areas devoid of protein.

Methods

In this section, the image acquisition and image process-
ing methods for discriminating cell cycle phases in cells
labeled with PCNA-specific antibodies are presented.
Section ‘Image acquisition’ describes the procedure for
immunofluorescence staining and biological image acqui-
sition. Section ‘Preprocessing’ details the preprocessing
steps taken in order to segment individual cells for fur-
ther processing. In Section ‘Features’ the features used
to classify the cell cycle phases are presented. Finally,
the classification process itself, with a set of appropriate
classifiers is presented in Section ‘Classification’

Image acquisition

For immunostaining of PCNA, 1 x 10° HeLa Kyoto cells
were grown in 12-well dishes containing glass cover-
slips. After 24 h of growth, cells were fixed in pre-chilled
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(=20 °C) methanol and acetone for 5 min and 1 min,
respectively. After washing in PBS, unspecific binding
was blocked by incubating in PBS containing 1 % bovine
serum albumin (Sigma) for 30 min at room temper-
ature. Immunolabeling with primary anti-PCNA anti-
body (rabbit polyclonal, abcam, ab18197, 1:500) was
performed overnight at 4 °C in a humidified dark cham-
ber. After washing in PBS, bound primary antibody was
labeled with fluorophore conjugated secondary antibody
for 1 h at room temperature using Alexa Fluor 488
antibody (goat polyclonal, Molecular Probes; A-1108,
1:400). Antibody dilutions were made in PBS contain-
ing 10 % normal goat serum (Sigma). Unbound secondary
antibody was removed by washing in PBS, cell nuclei
were counterstained with Hoechst 33342 (Invitrogen) and
mounted on a microscope slide using Aqua-Poly/Mount
(Polysciences).

All fluorescence images were acquired using either
a widefield fluorescence microscope (Cellobserver HS,
Zeiss) or a confocal laser scanning microscope (LSM 510
Meta, Zeiss), both equipped with a 40 x objective lens (LD
Plan-Neofluoar, Zeiss).

Preprocessing

The preprocessing steps comprise a segmentation method
(Section ‘Segmentation’) to identify the regions of inter-
est in an image, followed by a cluster splitting method
(Section ‘Cluster splitting’) used to refine such a segmen-
tation to get better results in cases of cell clusters.

Segmentation

In a first step, it is necessary to segment the image, i.e. dis-
tinguish the cell nuclei from the background. For a general
review about cell segmentation, please refer to [6].

Both the widefield and confocal microscopy images
considered in this work show cell nuclei that are well
separated from the background. For this reason, entropy-
based thresholding is applied for segmentation, which is
particularly suited to process images which have a well-
defined background, but may vary in overall brightness.
Entropy-based thresholding methods operate in two alter-
native ways: They either try to maximize the entropy
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of the thresholded image meaning that the thresholded
image contains a maximum of information, or minimize
the cross entropy between input and thresholded image,
which preserves the information. In this work, we employ
Li entropy thresholding [7].

Cluster splitting

One of the problems encountered regularly when seg-
menting biological images are cell clusters, i.e. individual
cells are not well separated and clusters of several cells are
identified as single objects. If the image contains touching
or overlapping cells it is nearly impossible to get a per-
fect segmentation straight away. Instead, a cluster splitting
method is applied after the initial segmentation proce-
dure to refine the segmentation. In the literature, various
approaches for cell cluster splitting have been proposed,
which are reviewed in [8].

In general, there are two classes of methods for cell clus-
ter splitting, marker-controlled watershed and geometric
methods:

Cluster splitting via the watershed method [9, 10] is
commonly applied to split concave objects in binary
images. It is based on the watershed segmentation algo-
rithm, which is applied to the Euclidean distance map
of the binary segmentation. The watershed algorithm
works very well on circular objects, however, it is very
sensitive to segmentation artifacts. Fringy segmenta-
tion borders or slight undersegmentation will cause the
watershed method to split single nuclei, resulting in an
oversegmentation.

Geometric methods take advantage of geometric prop-
erties, such as convexity or radial-symmetry of a cell,
and are less prone to oversegmentation. For this reason,
a geometric cluster splitting method [11] is employed in
this work. As shown in Fig. 2, this geometric approach
splits an object between two concave points on the seg-
ment outline. First, possible split points are identified as
curvature maxima on the contour. From this set of split
points, possible split hypotheses are derived and evaluated
with a cost function. The construction of split hypotheses
is based on the following constraints introduced in [11]:
Split points are grouped by an anti-parallel constraint to

Fig. 2 Schematic outline of geometric cluster splitting




Schonenberger et al. BMC Bioinformatics (2015) 16:180

ensure that pairs of split points are not on the same side
of the object. The non-intersection constraint holds if the
hypothesized segments do not intersect, and the convex-
ity constraint requires each hypothesized segment to be
convex. Since the nuclei of HeLa cells used in this work
have a very similar size and shape, we extended this geo-
metric cluster splitting and also consider the size of the
cluster. Our additional size constraint ensures that splits
are only performed on clusters with a minimal size. The
cluster splitting itself is an iterative process: For increasing
n, starting with n = 2, split hypotheses with n segments
are constructed and the segmentation with the lowest
cost function is chosen. Finally, the size of the resulting
split objects is considered and only cell nuclei within the
desired size range are kept. The lower boundary of this
range allows sorting out small objects and dead, shrunken
cells. The upper boundary allows to detect invalid clus-
ters that cannot be split, which may occur if the cells
are packed very densely so that no significant curvature
maxima are present to separate them.

Features

This section introduces the features (computed on indi-
vidual, segmented cells) used to discriminate the cell cycle
phases. A feature is a real value calculated from the inten-
sity levels or the extracted contour of a specified region of
interest (ROI), describing a certain property of this region.
All features are inserted into a feature vector. In order to
obtain an appropriate description of the respective real
world object, the feature vector has to collect a wide range
of properties. The employed features must allow the dif-
ferentiation of objects from different classes, but should
show only little differences between representatives of the
same class. For the purpose of differentiating cell cycle
phases, features that are invariant to location, scale and
rotation are required.

This work uses a variety of features to capture the
properties of the PCNA spots inside the nuclei. In the
following, two big classes of features, namely histogram
features and Haralick texture features, are presented.

Histogram features

Histogram features are features which are derived from
the histogram of an image. On floating point images or
images with a higher bit depth, the intensity levels are
binned. As a consequence, the histogram is less accu-
rate but becomes manageable. From a histogram, several
statistical values, suchs as mean, standard deviation,
skewness and kurtosis, can be derived. The mean value
can be used e.g. to distinguish between bright foci and the
darker rest of the nucleus. In combination with the polar
image (Section ‘Polar images’) of a segmented cell, which
is further divided into columns (in the following referred
to as zones), a feature vector containing the mean values
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of all zones can be seen as location distribution of the
PCNA foci.

Histogram of intensities

Rather than computing features derived from the inten-
sity histogram, it is also possible to use the whole set of
histogram bins as feature vector. This normally results
in a precise representation of the intensity distribution
enabling a better discrimination of the foci versus the
rest of the nucleus and measurement of the brightness of
both.

Histogram of intensity surface curvature

The histogram of intensity surface curvature proposed
in [3] is a histogram feature vector calculated on the
intensity surface of the image. This histogram represents
textural information, since local extrema of principal cur-
vatures of the instensity surface describe foci or ridges,
whereas homogeneous areas have very low curvature. The
resulting feature vector is similar to the bag-of-gradients
features [12], but is much more efficient to compute.

Haralick texture features

Different textures may have very similar intensity distri-
butions, in which case they cannot be distinguished by
the histogram features. To define a feature set that rep-
resents the actual texture, the local neighborhood must
be considered. Haralick [13] described 14 features to
classify textures, namely: angular second moment, con-
trast, correlation, sum of squares variance, inverse differ-
ence moment, sum average, sum variance, sum entropy;,
entropy, difference variance, difference entropy, two mea-
sures of correlation and max correlation coefficient. The
features are calculated with the help of a gray level co-
occurrence matrix (GLCM). The GLCM P44 contains the
normalized frequencies of gray levels of pixel pairs with
the distance d in direction 6. It can be interpreted as
probability of a neighborhood under this distance and
direction. The intensity range is binned to reduce the
influence of small differences. In order to achieve a rota-
tion invariant feature set almost automatically without
modifying the design of the underlying features, polar
images (Section ‘Polar images’) are used in this work.

Polarimages

The approach followed in this work to convert directional
features to rotation invariant features is to average them
over a small number of directions. Polar images realize the
concept of resampling the image to gain an advantage over
the original representation. For this purpose, the normal
Cartesian coordinates are mapped to polar coordinates.
The resulting image displays the distance to the center on
the x axis, and the angle on the y axis (Fig. 3). The angle
is sampled with a high frequency. Depending on the size
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Fig. 3 Polar image: Original image in Cartesian coordinates (left),
polar image of the same region (right)

of the segment, the sampling is so frequent that all pixels
in the segment are considered in the polar image, at least
once.

It is straight forward to convert Haralick texture fea-
tures, or any other directional feature, to rotation invari-
ant features by simply calculating them on the polar
image, with the x axis as direction. In this way the fea-
ture takes into account a lot more angles as compared to
4 directions as before, and is less demanding with regards
to computational power.

Classification

Classification is the process of learning a generalized
model from a set of training data. Each training data con-
sists of a feature vector, describing certain properties of
the object, and the associated target class. From this input,
the classifier learns a model which can be seen as function
pointing from feature space to the target class value. The
constructed model must be specific enough to classify the
classes correctly.

In supervised learning, a human expert annotates the
training samples with the target class values to get the
ground truth needed for the learning process. The human
expert has to be strict and label only the phases that can
be clearly recognized in the given training dataset. If the
labeling is carried out with care, the learned model will
correctly distinguish between classes and patterns.

In the following, state-of-the-art classifiers are
described, which were used in the evaluation of cell cycle
phase differentiation.

Decision trees

The inner nodes of a Decision Tree are conditions based
on a single attribute, while the branches correspond to
the conditional cases of the node attribute, and leaf notes
represent the class variable. Classification is achieved by
traversing the tree starting at the root, following the

Page 5 0f 10

matching conditional cases, down to a leaf node. The
classification result is the label of the leaf node.

Training of Decision Trees is accomplished using the
ID3 algorithm [14], which splits the training data set at
that attribute where the split results in the highest infor-
mation gain. The information gain is defined as entropy
before minus the sum of entropy of all sets after the split.
High information gain means that there is less entropy
after the split, which means that the sets contain more
similar objects. This split step is applied recursively to
every new subtree and stops when the sets are unique.
Decision trees are sensitive to overfitting though, which
can be addressed by pruning the tree. This is accom-
plished by limiting the tree depth to a certain level or by
stopping the learning process if the entropy drops below a
certain value.

Support vector machines

Support Vector Machines (SVM) are binary classifiers that
split up the feature space along a hyperplane (ﬁ/, b) with
normal vector w and bias b. The result for the classifica-
tion of sample x is indicated by the decision function ¢ =
sign ((#, %) + b), which refers to the position of the sample
with respect to the hyperplane (i.e. above or below).

If the training data is linearly separable, many possible
hyperplanes exist that classify the training data correctly.
The best way to generalize to unseen data is to choose the
hyperplane with the maximal margin to the training data.
This results in the (eponymous) support vectors, paral-
lel to the hyperplane, touching the nearest training data.
The learning process is defined as optimization problem
to construct the hyperplane with the maximal distance to
the feature vectors. In order to classify not linearly separa-
ble training data, the slack variables &, > 0 are introduced.
The hyperplane is calculated by minimizing

Lo o “
SIWE+CD &
n=1
with respect to w, under the side constraint
c ((17v, 55) + b) > 1 — &, for all X, with the tuning parame-
ter C. The optimization problem is solved using its dual
representation.

A popular extension to handle not linearly separable
training data is the kernel function. The idea is to map
the feature space into a higher dimensional vector space,
where the training data may be linearly separable. The
kernel is a function so that K (x,y) = (¢ ), (y)) with
¢ the mapping from feature space to the higher dimen-
sional vector space. This design allows to compute the
inner product, which is needed in the dual representation,
without mapping the x and y to the new space.

Classification problems with more than two classes are
commonly addressed with the Error Correcting Coding
Matrix (ECCM) approach. For each class, a distinct SVM
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classifies the membership versus all other classes. The
ECCM defines bit strings encoding the original class
values. A bit string of all binary classification results,
obtained from classification based on the single class
SVMs, is used to determine the final classification result.
This is achieved by choosing the bit string with the mini-
mal Hamming-distance.

Boosting

The idea of boosting is to build a strong classifier out of
three weak classifiers and thus increase the classification
rate. The strong classifier is defined as linear combination
of weak classifiers, which are small decision units such as
one-level decision trees.

Unlike the original approach with only three weak clas-
sifiers, the AdaBoost [15] method is capable of training
an arbitrary number of weak classifiers. It performs an
implicit feature selection by selecting in each iteration the
feature with the highest improvement of the classification
result. In this way, the feature space is reduced to the set
of important features, saving computational time in the
actual classification process.

It is possible to apply the ECCM approach mentioned in
Section ‘Support vector machines’ to obtain a multi-class
boosting classifier. However, there is a specially adapted
version called AdaBoost.SIP [16]. Instead of construct-
ing an ECCM with a strong classifier for each class, the
ECCM contains a column for each learned weak classifier,
defining an optimal class partition.

Results and discussion

The presented approach was implemented using the soft-
ware platform KNIME (The Konstanz Information Miner,
www.knime.org), which already comprises feature sets
and classification algorithms which could be employed in
this work. The workflow was trained and evaluated on
79 images (0.5 GB) comprising 654 nuclei from the con-
focal and 843 nuclei from the widefield microscope (see
Table 1). The workflow was executed on a computer with
an Intel Xeon W3540 @2.93 GHZ and 6 GB memory,
where the average computing time per image amounted to
about 10 seconds.

Table 1 Sample sizes of cell classes of confocal and widefield
microscopy images

class Confocal Widefield
G 354 616

Early S 138 166

Mid S 48 61

Late S 114 227

Total 654 843
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The workflow was evaluated with respect to (1) segmen-
tation accuracy, (2) feature performance, (3) classifica-
tion accuracy for both confocal and widefield microscopy
images. In the following Section ‘Segmentation, the clus-
ter splitting process is evaluated in comparison to the
watershed algorithm. The evaluation of the different
feature sets is presented in Section ‘Features’ and the
performance of the different classifiers is considered in
Section ‘Classification’ Finally, results for the different
phases of the cell cycle, i.e. class-specific results, are
provided in Section ‘Class-specific results. The signifi-
cance of comparing widefiled vs confocal microscopy is
discussed in Section ‘Widefield vs. confocal microscopy
segmentation’

Segmentation

The segmentation result of the proposed cluster splitting
algorithm was evaluated against the manually annotated
nuclei and compared to the classical watershed algorithm.
Figure 4 shows the segmentation result of both meth-
ods for interesting cell clusters in a confocal microscopy
image. An entire widefield microscopy image and the
corresponding final segmentation result is shown in
Fig. 5.

In order to evaluate appropriate splitting of the clus-
ters, the point annotation providing the target classes can
be used to distinguish correctly from erroneously split
clusters. The measurements used to evaluate the seg-
mentation were the probability of correctly segmented,
over-segmented and under-segmented nuclei.

The probability of over-segmented nuclei is the num-
ber of fragments without a matching annotation divided
by the total number of nuclei. The probability of under-
segmented nuclei is the number of nuclei with more than
one matching annotation divided by the total number
of nuclei. The probability of correctly segmented nuclei
is defined as 1 — over-segmented — under-segmented.
Table 2 shows the performance of the segmentation
process.

Both methods show a high percentage of correctly
segmented cell nuclei. The watershed method with its
excessive splitting strategy shows a much high over seg-
mentation. Up to 28 % of the nuclei are unnecessarily split.
In comparison, the worst case for the developed cluster
splitting is 15 % over segmentation.

Furthermore, the watershed methods leaves up to 4.8 %
of the segments not completely decomposed, while the
cluster splitting reduces the amount of remaining clusters
to 1.6 %.

In summary, these data show that the geometri-
cal cluster splitting is able to avoid unnecessary splits
(which the watershed method would perform) and at the
same time splits clusters the watershed method would
ignore.
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segments refined with the cluster splitting algorithm (right)

Fig. 4 Comparison of segmentation approaches: Confocal image (left) and segmentation refined with the watershed method (middle). Same

However, it should be noted that the methods
and parameters in the proposed semi-automated
pipeline were chosen to provide correct segmenta-
tion results on the cell images processed in this work.
The actual preprocessing steps and parameter settings
also highly depend on the biological sample, hence
other biological images may require different prepro-
cessing steps. Further options for preprocessing of
cell images are available through e.g. Image] [17] or
CellProfiler [18].

Features

To evaluate the effectiveness of the feature sets, a 10-
fold cross validation was performed. After a z-score nor-
malization, the data was divided in 10 pairs of training
and test sets using random sampling. For classifica-
tion, the KNIME decision tree predictor was used which
performed about 10% better than the support vector
machine.

The following features were considered:

1. Histogram features: This feature set comprises the
basic histogram features (Min, Max, Mean, Variance,
Skewness, Kurtosis).

2. Haralick texture features: This is a 104 dimensional
feature vector, that contains all Haralick texture
feature calculated on two vertical stripes of the polar,
in horizontal and vertical direction.

3. Histogram of intensities: This feature set is a 64 bin
histogram of intensity.

4. Histogram of curvatures: This feature set is a 64 bin
histogram of surface curvature.

The combination of histogram features and Haralick
features (1 and 2) forms the feature set proposed in this
work according to measured performance. The feature
vector proposed by [3] is equivalent to the combination of
feature 3 and 4.

Fig. 5 Microscopy image and final segmentation result: Original widefield input image (left) and processed image after segmentation and cluster

splitting (right)
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Table 2 Segmentation performance of the cluster splitting
algorithm versus the watershed method

Confocal Widefield
Cluster Watersh. Cluster Watersh.
Correct 0.864 0.671 0.847 0811
Over-seg. 0.12 0.281 0.15 0.183
Under-seg. 0.016 0.048 0.003 0.006

Performance of the feature groups was measured using
the classification accuracy. Figure 6 shows the accuracy for
all four feature groups and both combined feature sets.

The basic histogram features (feature group 1) show a
high accuracy especially on the confocal images. Despite
the small number of features in this group, the accuracy
for the confocal images is the highest of all four feature
groups. Haralick texture features achieve a good accuracy
and proved to be robust with respect to the quality dif-
ferences of the image source. The proposed feature set,
a combination of histogram features and Haralick texture
features, shows a high accuracy and low variation between
confocal and widefield microscopy images.

On widefield images, feature groups 3 and 4 are compa-
rable to the first two feature groups. In the case of confocal
images, both show a very low accuracy, which is also true
for their combination. Le. the feature set proposed by [3]
proved to be less robust than the feature set suggested in
this work.

Classification

In order to determine the best classification algorithm, the
workflow was trained on the proposed feature set using
the same 10-fold cross validation setup as in the feature
evaluation (Section ‘Features’). Each classifier presented in
Section ‘Classification’ was trained and evaluated. Figure 7
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Fig. 6 Feature performance: Classification accuracy for the four
semantic feature groups (basic histogram features, Haralick texture
features, histogram of intensity, histogram of surface curvature) and
both feature sets
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Fig. 7 Classifier performance: Classification accuracy for all the
classifiers on the proposed feature set

shows the classification accuracy. Due to the high hard-
ware requirements of the frequent item set mining of the
AdaBoost.SIP classifier, it was performed on four equally
sized subsets of the feature vector. In this way, it was pos-
sible to run the evaluation of the AdaBoost.SIP classifier
on the test PC. However, by running the AdaBoost.SIP
classifier on a subspace of the available features, not all
feature combinations are possible. For this reason, the
AdaBoost.SIP classifier may perform better after eliminat-
ing these hardware limitations.

We had initially expected that SVM would perform well,
since good classification results based on SVM have been
reported in the literature [3—5]. However, it should be
noted that their sample sizes are much higher. Since SVM
are known to need relatively large training data to perform
well, the smaller amount of training data may give rise to
the performance result of SVM in comparison to the other
classifiers. However, since manual annotation of training
data is an extremely time consuming task for biologists,
it should be emphasized that a classifier is required that
performs well on a limited amount of data.

Even though not significantly better than the decision
tree in terms of classification results, the AdaBoost.SIP
takes up to more than an hour for the learning process,
whilst the decision tree runs in only about one minute.
For this reason, the decision tree classifier was used to
perform all further evaluations.

It should be noted that only the most common and
popular classification algorithms were investigated in this
work. There are many more classification algorithms
available in the literature, such as Kernel estimation meth-
ods, different variants of Boosting, Decision Trees (as well
as Random Forests), or Neural Networks. Also, a multi-
tude of open-source classification frameworks is available,
which could have alternatively been used for implementa-
tion. They are available either as generic frameworks (such
as WEKA [19] or KNIME [20]) or integrated into bio-
analysis tools (such as PSLID/SLIC [21], CellProfiler [18],
wndchrm [22], CellExplorer [23], ilastik [24] or BIOCAT
[25]), please see [26] for an overview.
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Class-specific results

This section evaluates the goodness of the classification
achieved using the proposed feature set and the decision
tree classifier. The measurements used to perform this
class level evaluation are precision and recall, which are
defined as follows:

Lp tp
—————, recallc =
tp+fp

Ctp+fn

where tp (true positive) is the number of cells correctly
classified as class C, fp (false positive) is the number of
cells erroneously classified as class C and fu (false neg-
ative) is the number of cells belonging to class C but
classified otherwise. Overall accuracy is the number of
correctly classified cells divided by the total number of
cells. Figure 8 shows precision and recall for the suggested
feature set, and the feature set proposed by [3].

In general, early S and mid S phase are distinguished at
a much lower precision than G and late S phase. The low
precision of recognizing early S phase cells is due to the
very similar pattern of PCNA localization in this phase
and the G phases. This effect is influenced by the convo-
lution of the images occurring in the microscope and is
therefore more pronounced in the widefield images, while
the confocal images show a more distinct early S phase
pattern. As for the mid S phase, there were only very few
cells in the population showing this pattern.

The results for the feature set proposed by [3] show the
same tendencies. However, in comparison to the proposed
feature set, precision and recall for the recognition of mid

precisionc =

1 |- —
0.8
0.6 -
0.4
0.2 |8 |
G Early S Mid S Late S
1 [ T T T T ]
08 [] y
0.6 - B
0.4 B
0.2} |
G Early S Mid S Late S
00 Precision confocal Il Recall confocal
[ 0Precision widefield I 8 Recall widefield
Fig. 8 Class-specific precision and recall. Top: Suggested feature set
(combined features 1 and 2). Bottom: Feature set (combined features
3 and 4) proposed by Ersoy [3]
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S phase are strongly decreased and for late S phase slightly
decreased.

For this reason, it can be concluded that the sug-
gested feature set, which combines histogram features and
Haralick texture features, allows a better discrimination of
mid S and late S phase.

Widefield vs. confocal microscopy segmentation

Though there are no easily accessible statistics concern-
ing the numbers of widefield vs confocal systems installed
in life science laboratories, it is obvious that widefield sys-
tems are much more widespread due to their comparably
low cost and ease of operation.

Widefield microscopy is always the technique of choice
for very light sensitive samples as image acquisition is
much faster. For 3D spatial resolution it can be combined
with deconvolution yielding results almost identical to
confocal microscopy. Exact knowledge of the point spread
function of the imaging system, which is not always eas-
ily available, is necessary for obtaining accurate results.
Though fast deconvolution algorithms have been devel-
oped enabling processing “on the fly’; they still represent
an additional step. This is one of the reasons why many
biology laboratories heavily rely on confocal microscopy,
in particular for colocalization analysis.

In order to provide an image analysis tool of general
utility it is thus important to demonstrate its feasibil-
ity for images acquired with either method, widefield
and confocal. As shown and discussed in Sections ‘Fea-
tures’ and ‘Class-specific results, the proposed pipeline
performs equally well for both microscopy techniques.

Conclusion

In this work, an optimal processing pipeline was devised
and evaluated with respect to segmentation accuracy, per-
formance of features and classification. By taking into
account images from both confocal and widefield micro-
scopes, it was also possible to compare the influence of
the image source on the overall classification quality of
different cell cycle phases.

Overall, it could be shown that the developed workflow
is capable of classifying the cell cycle stages in PCNA-
immunolabeled cells from single time point images at
a high quality, which is of great value to the biologists
compared to manual evaluation.
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