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Abstract

Background: Clustering protein sequences according to inferred homology is a fundamental step in the analysis
of many large data sets. Since the publication of the Markov Clustering (MCL) algorithm in 2002, it has been the
centerpiece of several popular applications. Each of these approaches generates an undirected graph that represents
sequences as nodes connected to each other by edges weighted with a BLAST-based metric. MCL is then used to
infer clusters of homologous proteins by analyzing these graphs. The various approaches differ only by how they
weight the edges, yet there has been very little direct examination of the relative performance of alternative
edge-weighting metrics. This study compares the performance of four BLAST-based edge-weighting metrics: the bit
score, bit score ratio (BSR), bit score over anchored length (BAL), and negative common log of the expectation value
(NLE). Performance is tested using the Extended CEGMA KOGs (ECK) database, which we introduce here.

Results: All metrics performed similarly when analyzing full-length sequences, but dramatic differences emerged as
progressively larger fractions of the test sequences were split into fragments. The BSR and BAL successfully rescued
subsets of clusters by strengthening certain types of alignments between fragmented sequences, but also shifted the
largest correct scores down near the range of scores generated from spurious alignments. This penalty outweighed
the benefits in most test cases, and was greatly exacerbated by increasing the MCL inflation parameter, making these

than the other three metrics in all scenarios.

metrics less robust than the bit score or the more popular NLE. Notably, the bit score performed as well or better

Conclusions: The results provide a strong case for use of the bit score, which appears to offer equivalent or superior
performance to the more popular NLE. The insight that MCL-based clustering methods can be improved using a
more tractable edge-weighting metric will greatly simplify future implementations. We demonstrate this with our
own minimalist Python implementation: Porthos, which uses only standard libraries and can process a graph with
25 m + edges connecting the 60 k + KOG sequences in half a minute using less than half a gigabyte of memory.

Keywords: MCL, Protein clustering, Sequence clustering, Homology prediction, Graph, Genomics, Bioinformatics,
Transcriptomics, Short-read sequencing, High-throughput sequencing

Background

Clustering protein sequences by inferred homology
(descent from a common ancestral sequence) is a funda-
mental step for many analyses involving the growing
number of large sequence data sets. Functional and
structural predictions may be greatly accelerated by ana-
lyzing only a single representative sequence from each

* Correspondence: trgibbons@gmail.com

'Department of Cell Biology and Molecular Genetics, University of Maryland,
College Park, Baltimore 20742, Maryland

Full list of author information is available at the end of the article

( ) BiolVled Central

cluster and then transferring these annotations to the
other cluster members. Other methods, such as phylo-
genetic inference, can only be applied to individual hom-
ologous groups. In either case, errors introduced in this
critical early step can propagate throughout downstream
analyses. It is therefore imperative that the sources and
causes of these errors are understood so that they can be
avoided, or at least mitigated.

Perhaps the most popular approach for identifying
homologous sequences shared between multiple ge-
nomes is to generate all against all pairwise alignments

© 2015 Gibbons et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0625-x&domain=pdf
mailto:trgibbons@gmail.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Gibbons et al. BMC Bioinformatics (2015) 16:218

using a program such as BLAST [1, 2], followed by the
application of fixed filtering thresholds or the Reciprocal
Best Hits (RBH) algorithm [3]. Fixed filtering thresholds
can be an efficient way to remove large numbers of very
poor hits, but are ineffective for most other uses [4].
RBH works well for analyzing pairs of proteomes
containing few inparalogs or other recently duplicated
protein-coding genes, but is not easily extended to more
complex cases that violate these conditions (we follow
here the molecular homology terminology of Sonnhammer
and Koonin [5-7]). Some attempts have been made to ex-
tend RBH for specific situations [5, 8], but the algorithm is
not easily generalizable.

The Markov Cluster (MCL) algorithm (and corre-
sponding program of the same name) is a robust and
widely used alternative to RBH [9-11]. It was designed to
handle data from an arbitrary number of organisms
whose proteins share arbitrarily complex evolutionary
histories. MCL operates on an abstracted graph-
representation of a set of BLAST hits in which each
sequence is stored as a node, and each BLAST hit is
stored as a weighted edge connecting a pair of sequences.
At the time of its release, the MCL program was unable
to directly read a table of BLAST hits, and so the Tri-
beMCL Perl module was published alongside the original
MCL program to handle this task [9]. The following year,
the OrthoMCL suite of Perl scripts extended the Tri-
beMCL method by normalizing the edge weights using
inter-organism averages, while simultaneously circum-
venting memory limitations by interfacing with a MySQL
relational database [10].

It has now been over a decade since the original publi-
cation of these programs, and the typical computer
workstation contains multiple processing cores and has
significantly more memory. These improvements in
hardware recently motivated another group to reimple-
ment OrthoMCL as a standalone, multithreaded C++
program orthAgogue [11]. With it, Ekseth et al. also
introduced an option to use the bit score as an alter-
native to the negative common log (-log;o) of the
expectation value (NLE) edge-weighting metric used
by both TribeMCL and OrthoMCL. While the authors
described several practical benefits of switching to the bit
score, they offered no demonstration of its performance
compared to the traditional NLE.

This study provides the first direct performance com-
parison between the NLE and BS. To avoid potential
confounding effects introduced by heuristic discrepan-
cies between different implementations, we wrote a cus-
tom version of OrthoMCL in Python. The program
stores and processes all metrics identically, and outputs
a set of graphs that differ only by their edge weights.
Two additional metrics, not previously used for
MCL-base clustering, were included: the bit score
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divided by either the self bit score (termed BLAST score
ratio [12, 13] or bit score ratio; BSR) or the anchored
alignment length (bit score over anchored alignment
length; BAL). These latter two metrics were included to
address fragmented and partial sequences that often re-
sult from short-read de novo DNA and RNA sequencing
projects. Bit scores and E-values from alignments be-
tween these fragmented sequences can easily fall into
the range of spurious hits between very distantly or un-
related sequences, causing the corresponding edges to
be removed by MCL and thus leading to unwanted clus-
ter fragmentation.

We compare here the performance of these four edge-
weighting metrics over a range of MCL inflation param-
eter values, and consider different sequence fragmenta-
tion scenarios varying from all sequences being intact, to
some or all being split into two or three subsequences.
Contrary to our expectations, we observed that the bit
score matched or exceeded the performance of all other
edge-weighting metrics in each scenario. This suggests
that the performance of the popular pipeline is actually
improved by switching to the relatively simple bit score
as an edge-weighting metric.

Results and discussion

Test database creation

Evaluation of inference methods requires a reference
data set for which the correct solutions are known. It is
not possible to go back and directly observe the evolution
of extant species, and there is no single, universally recog-
nized reference dataset for the problem of clustering pro-
tein sequences based on inferred homology, although the
manually curated Eukaryotic Orthologous Groups (KOG)
database is a popular choice [14]. For this study, we used
an extension of the Conserved Eukaryotic Genes Mapping
Approach (CEGMA) database [15], which is a subset of
the KOG database.

The KOG database was derived from the proteomes of
seven eukaryotes whose genomes had been sequenced,
annotated, and published by 2003 (Saccharomyces cere-
visiae [16], Caenorhabditis elegans [17], Arabidopsis
thaliana [18], Drosophila melanogaster [19], Encephali-
tozoon cuniculi [20], Homo sapiens [21], and Schizosac-
charomyces pombe [22]). Each KOG (cluster) is an
assertion that the sequences within it share a more re-
cent common ancestor with each other than with se-
quences in any other KOG, guaranteeing neither that a
KOG is free of outparalogs, nor that it contains all mem-
bers of a particular group of (co)orthologs. This is par-
tially due to the consideration of functional data by the
human curators, and because only 50-75 % of the pre-
dicted proteins from each organism were included.
Despite this reduction from its potential size, the 60,758
KOG-annotated protein sequences still proved to be
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inconveniently large for the dozens of all vs. all BLASTP
jobs required for this study.

The CEGMA database is a more computationally
tractable alternative, containing sequences from only
458 KOGs that span all six free-living eukaryotes [15].
From these KOGs, however, the CEGMA developers
removed all sequences from the parasite E. cuniculi, as
well as inparalogous sequences, which we observed to
be a major source of false negative errors when cluster-
ing sequences based on inferred homology. Restoring
these sequences to the 458 CEGMA KOGs also restored
the false negative errors observed when analyzing the
complete KOG database (Additional File 1: Figure S1).
The addition of sequences from four other eukaryotes
(Anopheles gambiae [23], Ciona intestinalis [24], Chlamy-
domonas reinhardtii [25), and Toxoplasma gondii [26]), for
which the CEGMA developers have provided annotations,
led to a test data set we refer to as the Expanded CEGMA
KOGs (ECK) database. ECK has been used for all tests in
this study, except where otherwise noted. Statistics for all
three databases are shown in Table 1.

Software implementation

Each implementation of the TribeMCL BLAST-graph
clustering algorithm uses custom software to convert a
table of BLASTP hits into a MCL-readable graph. Com-
plex software inevitably contains unique elements that

Table 1 Statistics for the KOG, CEGMA, and ECK databases. The
Eukaryotic Orthologous Groups (KOG) database contains
sequences from seven eukaryotic genomes that were available
at the time of its creation in 2003. The Conserved Eukaryotic
Genes Mapping Approach (CEGMA) database is a subset of 458
KOGs that contain at least one sequence from each of the six
free-living KOG organisms, from which inparalogs were then
removed. These inparalogs were restored in the Expanded
CEGMA KOGs (ECK) clusters, and sequences from four additional
taxa annotated by the CEGMA developers were added

KOG CEGMA ECK

Segs  KOGs Segs CEGs Seqs ECKs
Homo sapiens 19,039 4597 458 458 1350 458
Arabidopsis thaliana 13,744 3285 458 458 1,175 458

Caenorhabditis elegans 10,581 4,235 458 458 635 458
Drosophila melanogaster 8,445 4351 458 458 611 458
Saccharomyces cerevisiae 4,003 2668 458 458 606 458
Schizosaccharomyces pombe 3,728 2,762 458 458 557 458
Encephalitozoon cuniculi 1218 1,073 - - 311 291
Anopheles gambiae - - - - 453 453
Ciona intestinalis - - - - 432 432
Chlamydomonas reinhardtii -~ - - - - 407 407
Toxoplasma gondii - - - - 303 303
Database Totals 60,758 4,852 2,748 458 6,840 458
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can lead to performance differences between implemen-
tations of the same algorithm. Most of these differences
will be slight and arise from seemingly minor decisions,
such as whether to use the larger score from a pair of re-
ciprocal BLAST hits (which are typically very similar,
but occasionally unequal), or to average the two. It is dif-
ficult to catalogue these differences across published
implementations, and harder still to gauge their impact.
To remove such confounding factors from our compari-
son of the performance of different edge-weighting met-
rics, we wrote our own implementation, which stores all
competing metrics within a single data structure and
acts on them identically. It then prints a set of topologic-
ally identical graphs, differing only by edge weights.
Recent publications have focused on improving the
computational performance in the graph creation [11]
and clustering steps [27]. However, in our tests, the run-
time of every approach has been dominated by the
shared BLASTP step. Even our unoptimized Python im-
plementation required only a small fraction of the CPU
cycles of BLASTP, and used only a few hundred mega-
bytes of memory for the complete 60 k + sequence KOG
database. Our implementation, along will all other
scripts used in our analysis pipeline, are publicly avail-
able at https://github.com/trgibbons/BlastGraphMetrics.
This software was not intended for use beyond this
study, so we also developed a more user-friendly imple-
mentation of the blast2graphs.py program called Porthos,
which includes a basic version relying only on standard
Python libraries. Our hope is that Porthos will alleviate
many challenges associated with software installation, and
that the code may serve as a helpful guide for future
reimplementations. Porthos can be found at https://
github.com/trgibbons/porthos.

BLAST graph topology and E-value cutoff
All edge-weighting metrics used in this study are derived
from only the top scoring hit between each pair of se-
quences within a given test database. The theoretical
limit for the number of such top hits is the square of the
number of sequences in the database, although in prac-
tice the number of BLAST hits that pass any reasonably
stringent E-value threshold will be much less than
this theoretical limit. Consequently, each BLAST graph
passed to MCL will be sparse, comprised of connected
components that share no edges between them. Each of
these connected components can be evaluated by the
same criteria used to evaluate the clusters output by
MCL, providing a baseline for the performance of MCL
using any metric for weighting the edges of the adja-
cency graph.

Figure 1 shows the topology of the BLAST graph for
the ECK database using an E-value cutoff of 1le-5. Each
connected component can be considered a BLAST
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Fig. 1 Pre-clustering BLAST graph for ECK database with

E-value < Te-5. BLAST graph representing sequences as nodes that have
been arranged into rings corresponding to the connected components.
Blue edges connect sequences from the same KOG. Yellow edges

connect sequences from different KOGs. The blue circles represent

single-KOG clusters that have been successfully resolved using only
BLAST's E-value threshold option (1e-5 in this case)

cluster. Before subsequent clustering with MCL, 237/458
ECKs have been perfectly reconstructed (contain all
members of exactly one ECK) using BLASTP alone.
Thirty one ECKs were split into multiple BLAST clusters
and therefore cannot be rescued by MCL, which will
divide connected components, but never combine them.
In the end, only 54 BLAST clusters stand to be improved
by MCL. The goal at this stage is to choose an edge-
weighting metric that will give MCL the greatest chance
to resolve or improve these multi-ECK BLAST clusters
without (further) incorrectly splitting the 291 single-
ECK BLAST clusters.

Predictably, a cutoff of 1e-3 decreased the number of
fragmented ECKs and increased the average size of
multi-ECK clusters, although it had little effect on the
number of perfectly resolved ECKs (239 vs 237). The
effects of the E-value threshold on sequence clustering
have previously been addressed in some detail [28, 29],
so we chose not to explore this further and instead set-
tled on a fixed threshold of le-5.

Simulated sequence fragmentation

Part of the motivation for this study was the problem
posed by fragmented sequences resulting from de novo
transcript assembly. It is not possible to generate align-
ments that span the full-length of a protein sequence
when part of the sequence is missing. Previous studies
have not addressed the impact of this on either the
weighted adjacency matrix or the resulting clusters. This
study explored the effects of fragmentation on clustering
by splitting portions of the sequences in the ECK data-
base into two or three subsequences before performing
the all-vs-all BLASTP alignments. To determine if
sequences from different organisms played equivalent
roles in cluster formation, each fragmentation scheme
was first applied along organismal lines (Fig. 2, a & ¢),
then randomly, such that a sequence’s organism of origin
did not affect its likelihood of being fragmented into a
particular number of subsequences (Fig. 2, b & d).

The number of sequences contributed from a particu-
lar organism varies within each ECK. To ensure that the
relative proportions of sequence fragmentation remained
constant within a given ECK across test scenarios,
fragmentation labels were applied to each sequence
within each ECK according to organismal origin, prior
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Fig. 2 lllustration of simulated sequence fragmentation. This example illustrates the four different ways in which the fragmentation scheme 1323
would be applied to a toy input test database with only three clusters containing sequences from only four organisms. The four resulting test
sets represent a cross of two variables, arranged here into rows and columns. The sequences in the top row (a & b) have been split into even
subsequences. The sequences in the lower row (c & d) have been randomly fragmented into uneven subsequences. In the left column (a & c), the
user-defined integer assigned to each organism directly determines the number of subsequences into which each sequence is split. In the right
column (b & d), these integers are first mapped to all sequences within a cluster, but are then shuffled within that cluster before fragmentation

to fragmentation. One set of test sequences was gener-
ated by fragmenting them according to these labels (i.e.,
sequences labeled with a “2” were split once, those
labelled with a “3” were split twice, and sequences la-
belled with a “1” were left intact), then the labels were
shuffled and reapplied to obtain a second set of frag-
mented sequences.

Within these “ordered” and “shuffled” test sets, the ef-
fects of applying evenly spaced breakpoints (Fig. 2, a & b)
were tested against the application of randomly spaced
breakpoints (Fig. 2, ¢ & d), resulting in a total of four
test data sets for each fragmentation scheme. No differ-
ences were observed between the “ordered” and “shuffled”
test sets for any fragmentation scenario (Additional
file 1: Figures S2 & S3). In contrast, the distribution
of break points within each sequence, and therefore
often the alignment of break points across homolo-
gous sequences, had a dramatic effect in every test case
(see following section).

Edge-weighting metrics and sequence fragmentation

The transformation of a set of BLAST hits into an
MCL-readable graph encompasses the majority of the
steps that distinguish the popular software packages
from one another and is at the heart of this study.
TribeMCL, OrthoMCL, and later versions of MCL itself,
all use the NLE from the top hit between each pair of se-
quences as the basis for the edge weights in the BLAST
graph. In addition to the NLE, the recently published
orthAgogue program also offers a sum of bit scores from
all non-overlapping hits between two sequences as an
alternative edge-weighting metric.

There are several practical benefits gained by using the
bit score in place of the NLE [11], most notably the abil-
ity to combine scores from non-overlapping hits using
simple addition. Another important benefit is that, while
BLAST (v2.2.28+) rounds E-values below 1e-180 to zero,
all bit scores are accurately reported. The log of zero
is undefined and, so these “missing” values must be
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heuristically supplemented. Even alignments between
protein sequences of modest length (ca. 200—300 amino
acids) can generate E-values exceeding this rounding
threshold, so this is not merely a theoretical concern. In
practice, many of the strongest NLE edges in the graph
end up being weighted by heuristics, rather than by the
rigorous statistical metrics produced by BLAST. Using
bitscores to weight the edges avoids this complication.

Use of the bit score introduces a different problem,
however, which the BLAST E-value was meant to solve.
The bit score is linearly correlated with alignment
length. In fact, by definition the bit score increases, on
average, by two bits of information for every pair of
aligned amino acids. This means that long sequences
have the ability to produce large bit scores from rela-
tively poor alignments, while short sequences may not
be able to generate large bit scores from even perfect,
full-length alignments. The E-value attempts to account
for these potential differences in sequence length (Equa-
tion 1), but (for the purposes of MCL-based clustering)
does so at the cost of the other practical limitations
mentioned above.

E-value = ﬂ (1)
2gs

m= query sequence length
N= concatenated sequence database length
BS=bit score

In their original 2002 paper, Enright et al. mentioned
that alternative metrics using length normalization
might outperform the NLE. Until recently, this area has
not received much attention in the literature. One rea-
son may be that high quality alignments between pairs
of full-length sequences are often (nearly) end-to-end.
As long as detectable homologs are of similar lengths
and are not fragmented, competing alignments will have
both similar scores and lengths, negating any effects
from length-based normalization. These assumptions
are violated by partial and fragmented sequences, which
are increasingly common as the products of high-
throughput short-read de novo sequencing projects. It
therefore seemed worth considering such metrics
alongside the NLE and the BS.

Of the novel metrics considered for this study, the
simplest is the bit score divided by the length of the
shorter of the two sequences. This metric penalizes par-
tial alignments between full-length sequences that share
only a small conserved domain, while aiming to give
equivalent weight to alignments between homologous
sequences, whether they are both full-length (Fig. 3a),
similarly fragmented, or one has been fragmented into a
subsequence of the other (Fig. 3b). To work as intended,
this metric assumes a direct linear relationship between
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alignment length and bit score. As stated above, the bit
score between two perfectly aligned sequences will be
twice the alignment length, on average, but the under-
lying distribution could be broad and/or skewed.

To observe a real distribution, we plotted bit scores
from full-length self-alignments (self bit score; SBS)
against sequence lengths for the complete KOG database
(Fig. 4). The correlation turned out to be remarkably
tight and close to the theoretical relationship (blue line).
Furthermore, preliminary results showed no appreciable
difference between this simple bit score/length metric
and a modified version using a ratio of the alignment bit
score to the smaller of the two SBSs (bit score ratio;
BSR), so only the results from the BSR are included
here. Despite the similar performance, the BSR is prefer-
able because it does not require modification of the tab-
delimited BLAST output, which does not contain the
sequence lengths by default, and because it remains the-
oretically possible for a sequence to generate a SBS sub-
stantially smaller or larger than twice its length.

As with simple length normalization, the BSR is de-
signed to rescue edges between homologous sequences
when one has been fragmented into a subsequence of
the other, and it likewise falters when both sequences
are incomplete and overlap on opposing ends (Fig. 3c,
middle alignment). In these cases, dividing by the full
length of the shorter of the two sequences (or the
smaller of the two SBSs) penalizes alignments for not ex-
tending beyond the homologous region shared between
the two sequences, and in this way does not faithfully
accomplish what is desired with such normalization.
Unfortunately, while bit scores can be easily combined,
they are not easily split. Computing a SBS for just the
alignable region would require re-running BLASTP after
identifying a set of alignable homologous regions. It is
therefore convenient that sequence length turned out to
be a reasonable proxy for the SBS in most cases, as it
is much more easily manipulated. These observations
inspired the final metric considered in this study.

For the BAL metric, the aligned sequences are first an-
chored relative to each other based on the coordinates
of the top BLASTP hit. The bit score from each align-
ment is then divided by the sum of the alignment length
and the lengths of the shorter overhanging sequences
extending from either side of the aligned region (Fig. 3).
In other words, the bit score from each top hit is nor-
malized by the length of the maximum alignable region
anchored by that hit. This inflates edge weights between
fragmented sequences, whether or not one is a subse-
quence of (a homolog of) the other, while simultaneously
deflating edge weights between full-length sequences that
share only a small conserved domain.

In practice, all three scenarios shown in Fig. 3 are
likely to be encountered when clustering data from
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Fig. 3 lllustration of edge-weighting metrics. Toy example demonstrating performance similarities and differences between the graph-weighting
metrics in three different simulated fragmentation scenarios: (a) alignment between two full-length sequences, (b) alignment between one
full-length sequence and one unevenly fragmented sequence, and (c) alignment between two unevenly fragmented sequences. Section
(d) lists information about each alignment, including the minimum self bit score (SBS), the anchored alignment length (AL), and each of the four
edge-weighting metrics. The coefficients of variation (c, = o/p) summarize the variation relative to the respective means for each metric

short-read de novo sequencing projects, and edges with
relatively small weights will be eliminated in favor of
those with larger weights. The coefficients of variation
(a ratio of the standard deviation to the mean) illustrate
how dramatically the BSR and BAL metrics can reduce
the range of scores between competing high-quality
alignments, increasing the likelihood that alignments be-
tween overhanging ends will persist and connect subclus-
ters within a group of fragmented homologous sequences.
An initial performance comparison was made across
all metrics using full-length sequences. Performance was
measured in two ways that respectively evaluate the
sensitivity (Fig. 5) and specificity (Fig. 6) for each metric
across a range of MCL inflation parameter values. The
MCL inflation parameter affects the granularity of the
clusters, with larger values leading to smaller clusters.
Popular values for inferring sequence homology are
around 1.5, although any value larger than 1.0 should
lead to convergence. Sensitivity was measured as the
number of clusters into which the members of a particu-
lar ECK have been split, and specificity as the number of
unique ECKs to which the members of a particular MCL
cluster belong. There are a total of 458 ECKs, so a

perfect score by either metric is 458 MCL clusters, each
containing all sequences for a single ECK. When all
sequences are intact, the performance of the various
metrics is nearly identical (Figs. 5 & 6, top row). Close
inspection reveals that the NLE is slightly less sensitive
than the other metrics for this data set, although the dif-
ference does not seem significant. In contrast, dramatic
differences emerged once some of the sequences were
split into subsequences (Figs. 5 & 6, lower rows).

The beneficial effects of the BAL normalization on
clustering sensitivity can be seen when all of the se-
quences are split into fragments of equal size (Fig. 7;
Additional file 1: Figure S4). For instance, when the
sequences are all split into halves, many of the break
points line up, preventing any alignable overlaps and en-
suring undesireable subclustering. Due to the sequence
length variation within some ECKs (Additional file 1:
Figure S5), however, a few BLASTP hits do connect
otherwise disperate subclusters, and the BAL metric was
able to successfully preserve many of these critical edges.
Unfortunately, when the breakpoints are randomized
and longer overlaps become more common, the benefits
from these few rescued edges are quickly overshadowed
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by an unintended negative side-effect of the normalization
(Figs. 5 & 6, lower rows).

Bit scores generated by high-quality alignments be-
tween full-length sequences are commonly 1-2 orders
of magnitude greater than high-quality alignments
between small sequence fragments or short overlapping
regions shared by long sequences. A comparable differ-
ential in bit scores can also be seen between high- and
low-quality full-length alignments, and this dynamic
range turns out to be critical to the success of MCL-
based homology inference. While the BSR and BAL do
help to differentiate between the distributions of high-
quality short alignments and low-quality long alignments,
they also tighten the overall distribution by down-
weighting the heaviest edges (Fig. 8). In doing so, these
metrics make it less obvious to MCL that these exception-
ally good alignments should be kept.

The most important discovery from this study is the
observation that the bit score performs as well or better
than all other metrics in all conditions we tested.

Considering the practical benefits of using the bit score
[11], it appears to be the best choice between the two
metrics currently in popular use, and not improved by ei-
ther of the other two normalization methods (BSR, BAL)
considered here.

Inter-organism normalization

One of the principle improvements introduced by
OrthoMCL over TribeMCL was inter-species nor-
malization. After a graph has been created and all
missing E-values have been replaced using their heuristic,
OrthoMCL computes the average edge weight over the
entire graph, and also for the set of edges between each
pair of organisms. It then multiplies each edge by a ratio
of the average edge weight between the two correspond-
ing organisms over the average edge weight for the entire
graph. This has the effect of increasing edge weights
between organisms whose sequences are more divergent
in sequence space, while decreasing edge weights be-
tween organisms that are relatively close.
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Fig. 5 Sensitivity performance comparison for each edge-weighting metric and fragmentation scenario. Sensitivity performance of MCL on graphs
weighted using each of the four metrics (columns) over a range of inflation parameter values (x-axes) in a variety of fragmentation scenarios (rows).
Vertically stacked bars indicate the number of clusters into which the members of a particular ECK have been split. Blue segments represent ECKs that
were completely contained within a single MCL cluster. Other segments represent ECKs that were split into two or more MCL clusters, with redder
color indicating higher degrees of fragmentation. The number of ECKs is fixed, so each stack sums to exactly 458. Five different simulated
fragmentation scenarios are displayed as faceted rows: 11111111111 — all sequences are intact; 11122222112 — approximately half of the sequences have
been split into two pieces; 22222222222 - all sequences have all been split into two pieces; 33311222111 — approximately one third of the sequences
have been split into two pieces, one third have been split into three pieces, and the remaining third were left intact; 33333333333 - all sequences were
split into three pieces
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Fig. 6 Specificity performance for each edge-weighting metric and fragmentation scenario. Specificity performance of MCL on graphs weighted
using each of the four metrics (columns) over a range of inflation parameter values (x-axes) in a variety of fragmentation scenarios (rows). Vertically
stacked bars indicate the number of unique ECKs from which the members of a particular MCL cluster originated. Blue segments represent MCL
clusters that contain sequences from only a single ECK. Other segments represent MCL clusters containing sequences from two or more ECKs, with
redder color indicating higher degrees of contamination. A large number of “pure” clusters containing only a small portion of a particular ECK can
appear desceptively good, so multiples of the desired 458 total clusters are indicated with dashed horizontal lines. Simulated fragmentation scenarios are
as described in Fig. 5

For each test data set, we generated a complete set of evaluated for this study. Supplemental Figure S6 & S7
graphs both before and after inter-organism normalization. ~ (Additional File 1) show the effects for full-length se-
The effect was positive but minimal in all test cases quence clustering. The decision to include the additional
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described in Fig. 5

Sensitivity
—-Log10Evalue BitScore BitScoreRatio AnchoredLength
C - Clusters
_ o] TRRSRSSSRNSY || Seseenanner | Seaaaaanar  “Seevwmmnn | oriCK
= L
3 300 -
&) 2
(5 200 - 3
(@]
& 100 - g
0 T T I I I I I . 5+
2 4 6 2 4 6

MCL Inflation Parameter
Fig. 7 Clustering sensitivity comparison when all ECK sequences were split into even halves (scenario 22222222222 “even”). Plots are otherwise as

organisms annotated by the CEGMA developers was
based primarily on a desire to better demonstrate the ef-
fect of inter-organism normalization. It is possible that
such normalization could significantly improve perform-
ance in certain cases, although our results demonstrate
that it’s not always worth the trouble.

In cases where normalization is desired, it is not ne-
cessary to use complex or highly optimized software.
We demonstrate this with our own Python program
Porthos, which uses only standard modules and accom-
plishes the task with fewer than 100 lines of code, in-
cluding the help menu. Despite this simplicity, Porthos

is able to cluster all 60,758 protein sequences from the
complete KOG database (2,572,291 best BLASTP hits) in
less than one minute and requiring less than half a giga-
byte of RAM. We present Porthos as both a simple, port-
able alternative to some of the more complex programs
and as a heavily-commented example for anyone seeking
to incorporate similar functionality into their own projects.

Conclusions

In every scenario evaluated in this study, the bit score
performed as well or better than the other three edge-
weighting metrics for MCL-based inference of protein
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Fig. 8 Distributions of intra- and inter-ECK edge weights by metric. Probability density plots for all four metrics, scaled by their respective mean
edge weights. Each distribution has been split into intra- and inter-ECK distributions
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sequence homology. The significance of this finding lies
in the practical benefits of using the bit score over the
alternative metrics, which all require extension and/or
postprocessing of tab-delimited BLAST results. We
further observed little benefit from inter-organism
normalization, indicating that an MCL-readable graph
file created by simply extracting the sequence identifier
and bit score columns from a standard tab-delimited
BLAST output file could produce results comparable to
those obtained from the popular OrthoMCL program.

Methods

Test database creation

The 458 Eukaryotic Orthologous Groups (KOGs) used
to create v2.5 of the Conserved Eukaryotic Genes
Mapping Approach (CEGMA) clusters (CEGs) were
extracted in their entirety from the complete KOG data-
base in order to recover the inparalogs removed by the
CEGMA developers. Protein sequences from four add-
itional organisms (Anopheles gambiae, Chlamydomonas
reinhardtii, Ciona intestinalis and Toxoplasma gondii)
that were annotated for an unpublished version of the
CEGMA database (http://korflab.ucdavis.edu/datasets/
cegma/) were then added to these 458 KOGs to increase
the taxonomic diversity. None of these four organisms
contributed more than a single sequence to any cluster,
and none contributed sequences to all 458 clusters. We
refer to the resulting 458 clusters as Expanded CEGMA
KOGs (ECKs). Nearly all analyses in this study were
carried out with these ECKs, although a few were repeated
using the CEGMA and/or KOG databases.

Analysis pipeline

A central Bash script called eckPipeline.sh was developed
to streamline our analysis pipeline. The pipeline has 5
major steps: 1) sequence fragmentation, 2) sequence align-
ment, 3) graph creation, 4) sequence clustering, 5) gener-
ation of supplemental files and summary statistics.

Sequence fragmentation

A pre-formatted sequence database and user-defined
fragmentation scheme are passed to the eckTestData.py
Python program, which applies the scheme to the input
database to generate a set of test databases that simulate
fragmentation of the sequences. Each fragmentation
scheme is encoded as an integer, with each digit being
mapped to an organism in alphabetical order. If the inte-
ger does not contain at least one digit for each organism
represented in the sequence database, it is repeated until
it reaches or exceeds this threshold, then truncated as
needed. The fragmentation schemes used in this study
were encoded as eleven-digit integers because the ECK
database contains sequences from eleven organisms
(Table 1).
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Each organism contributed a different number of se-
quences to the ECK database, so in order to simulate
half of the sequences in the database being fragmented
into a certain number of pieces, it was not sufficient to
simply use the first or last half of the organisms. No
combination of organisms perfectly divides the database
into equal halves containing exactly 3,420 sequences in
each, although a combination of the sequences from
A. gambiae, A. thaliana, C. elegans, S. cerevisiae, and
S. pombe gets very close with a total 3,426. Thus, the
fragmentation scheme that simulates half of the se-
quences being split into two pieces was encoded as
11122222112, and the scheme that simulates half being
split into two pieces and the other half split into three
was encoded as 22233333223.

From this mapping, the pipeline generates two pairs
(a total of four) test data sets. In the “ordered” pair, these
digits directly determine the number of fragments into
which the sequences from a particular organism will be
split. In the “shuffled” pair, the integer labels are first
mapped to the sequences within each ECK cluster, but
then they are shuffled before fragmentation (Fig. 2).
Within each pair of data sets, the “even” set uses evenly
distributed breakpoints within each sequence, while in
the “random” set they are randomly distributed.

The format of the sequence database is described in
the GitHub wiki.

Sequence alignment

Each of the four data sets generated in the first step are
formatted as BLASTP databases and then aligned against
themselves using BLASTP v.2.2.28+ with an E-value
cutoff of le-5 (—evalue le-5) and soft masking turned
on (-soft_masking true). The output is formatted as
a tab-delimited table with headers and two extra col-
umns for the query and subject sequence lengths
(—outfmt ‘7 std qlen slen’).

Graph creation

Graph creation is accomplished with the blast2graphs.py
Python program, which converts a table of BLAST hits,
with or without header lines, into a set of eight graphs
corresponding to the four edge-weighting metrics used
in this study, both before and after inter-organism
normalization. All metrics use only the best hit for each
pair of aligned sequences.

Normalization is accomplished by calculating, for each
metric, the average edge weight for the entire graph, and
the average weight for all edges connecting sequences
from each pair of organisms. Each edge is then multi-
plied by a ratio of the average graph edge weight
over the average weight between the corresponding
organisms.
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Sequence clustering

For each graph, MCL (v12-068) is used to generate clus-
ters with inflation parameter values ranging from 1.1 to
6.0, creating a total of 50 clusterings per graph.

Supplemental files and summary statistics

The mcl2rtab.py Python program is used to generate a
pair of files containing summary statistics for all 400
clusterings corresponding to the eight graphs generated
from a single BLASTP file. These files are then con-
verted into stacked barcharts using ggplot2 in R with the
barcharts.R program. One last custom Python program
called graphs2gml.py is used to generate annotated rep-
resentations of the graphs and clusterings in a variety of
popular file formats that can be read into interactive
graph visualization software, such as Cytoscape [30, 31].

Availability of supporting data
All custom software used in this study can be cloned
from a dedicated github repository: https://github.com/
trgibbons/BlastGraphMetrics.git. Instructions for instal-
lation and execution are included in the project wiki.

The ECK test database was derived from the publicly
available CEGMA and KOG databases. The CEGMA
database can be downloaded from the Korf lab website:
http://korflab.ucdavis.edu/datasets/cegma/. The KOG data-
base can be downloaded from the National Center for
Biotechnology Information website: ftp://ftp.ncbinih.gov/
pub/COG/KOG. The downloadEckDatabase.py program
can also be used to automatically fetch and format all three
databases from their respective websites.

Our simple Python orthology inference program Porthos
can be cloned from a separate dedicated github repository:
https://github.com/trgibbons/porthos.git.

Additional file

Additional file 1: Sensitivity performance comparison for each test
database.
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