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Abstract

Background: Forward Time Population Genetic Simulations offer a flexible framework for modeling the various
evolutionary processes occurring in nature. Often this model expressibility is countered by an increased memory
usage or computational overhead. With the complexity of simulation scenarios continuing to increase, addressing the
scalability of the underlying simulation framework is a growing consideration.

Results: We propose a general method for representing in silico genetic sequences using implicit data structures. We
provide a generalized implementation as a C++ template library called Clotho. We compare the performance and
scalability of our approach with those taken in other simulation frameworks, namely: FWDPP and simuPOP.
Conclusions: We show that this technique offers a 4x reduction in memory utilization. Additionally, with larger scale
simulation scenarios we are able to offer a speedup of 6x - 46x.
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Background

Forward Time Population Genetic Simulations (FTPGS)
are essential tools that aid in the study of complex interac-
tions which contribute to the evolutionary process. They
enable the more efficient study of allele frequency change
over time as a result of a set of models that reflect naturally
occurring processes such as mutation, recombination,
selection, gene flow, and genetic drift.

Over the years, a plethora of Forward Time Popula-
tion Genetic Simulators have been developed [1]. It is not
uncommon to find simulators that perform efficiently for
a very specific subset of scenarios in a given domain but
fail to provide a broad solution suitable for general use
[2, 3]. Several general simulation frameworks [4—6] have
been developed to allow users to build their own simula-
tor capable of addressing the scenarios they are interested
in. Often, these frameworks lack support for scalable per-
formance to study the larger simulation scenarios which
many investigators are pursuing [7].

Scalability refers to the ability of a program to handle an
increased amount of work. In software, this is measured
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in terms of both computational runtime, and resource
utilization. The scalability of a simulation depends upon
many elements. At a high level, a simulation is dependent
upon the choice of models, configurations of those mod-
els, and the desired scope of the simulation. Fundamental
to all of these is the implementation. For example, if the
models are not implemented with scalability in mind, then
the scalability of the entire simulation suffers.

The design and implementation of a model is often a
challenging problem with potentially many dependencies
interacting in various ways. For example, in FTPGS most
models being explored depend upon a genetic sequence.
As a result, if the representation of a genetic sequence
is not scalable, then the entire simulation becomes less
scalable.

Impact of genetic sequence representation

We refer to a genetic sequence as the in silico representa-
tion of the genetic material specific to each individual in a
population. The aim of a simulation is to, in effect, evolve
a set of genetic sequences. The various models that are
evaluated during a simulation may either work to modify
a genetic sequence, or analyze the set of genetic sequences
to identify specific characteristics. As genetic sequences
are such an integral component of any FTPGS, their in
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silico representation plays a significant role in the overall
scalability of a simulation.

Most FTPGS are constructed considering a genetic
sequence as a locus ordered list of alleles. This design is
intuitive as it mirrors that of genetic structures in nature.
In general, this common data structure is easily imple-
mented and provides relatively straightforward use. Also,
the models can take advantage of the ordering to improve
their efficiency. Although most simulators are built using
this common structure, they often differ in their com-
putational abstraction of an allele and the subsequent
computational optimizations that may result.

An allele is generally abstracted as a symbol reflect-
ing a specific state of a locus. From an implementation
perspective, there is a choice of how the state should be
represented. In some cases, it suffices to set a upper limit
on the number of states for every locus. Thus, every locus
can be represented as a fixed-length value, or symbol.
For example, it may suffice to consider any site as exist-
ing in one of two states: a reference state, or a mutated
state. Symbolically, these could be represented by 0 and I,
respectively.

Simulation environments such as simuPOP [5] and
NEMO [4] offer sequence representations that use a fixed-
length value for each locus being simulated. In effect, this
is a string representation of a genetic sequence. There are
several advantages of this approach. For instance, deter-
mining the allelic state of a known locus is a constant time
operation. Furthermore, some operations can be applied
to adjacently ordered loci simultaneously, resulting in a
reduction in computational cost. A disadvantage of the
string representation is that interpretation of the symbol
depends upon its location within the sequence. There-
fore, all loci must be represented in every sequence, and
each sequence is effectively a fixed-length string. This can
result in an under utilization of memory when alternate
alleles occur infrequently within a population.

One way to improve the memory utilization of a genetic
sequence is to remove those loci that are in a refer-
ence state. However, simply removing such loci could
potentially change the interpretation of a symbol in the
sequence as the relative positioning would change. There-
fore, it is also necessary to change the definition of a
symbol to encode the locus specific information in addi-
tion to a state. In effect, the symbol becomes a key, rather
than a value. The resulting genetic sequence is an indirect
list.

FWDPP [6] is an example of a C++ template library that
adopts this approach. By representing only keys for those
loci in a non-reference state, the length of a sequence
can be significantly reduced. This improves memory uti-
lization and computational performance in some algo-
rithms. Also, by adding a layer of indirection between
the genetic sequence and its state we gain the ability to
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more efficiently add alleles to the population. That is, a
new allele can be added to the population and only the
sequence in which it appears has to be updated. A less
obvious benefit is that modifying the value associated with
a key can also be performed and every sequence contain-
ing that key will automatically be updated. Our proposed
solution capitalizes on these benefits.

Although offering several advantages, there are some
disadvantages associated with the indirect sequence rep-
resentation. There are scenarios where this representation
will consume more memory than an equivalent fixed-
length string. In addition, it is necessary to decode, or
dereference, a key to determine the corresponding locus
and state. This can become a significant amount of over-
head over time. We will discuss these in greater detail in
later sections.

Motivating our approach

Our design is motivated by several observations. First,
although the set of alleles may be considered infinite over
time, only a finite subset of these alleles will appear in any
generation of a finite population. In other words, the set
of alleles dynamically changes between generations. From
a data structure perspective, the indirect sequence allows
changes to the set of alleles to be propagated through the
population more efficiently. However, during the analytic
stages of a simulation the set of alleles is effectively static,
or fixed. As a result, the fixed-length string representation
offers several algorithmic benefits which make it more
desirable.

In this work, we will describe a genetic sequence repre-
sentation that combines the advantages from both fixed-
length string and indirect sequences. In addition, we
describe the model modifications that take advantage of
the representation. We will discuss the advantages and
disadvantages of this representation as they relate to fixed-
length and indirect sequences, and scalability. Finally, we
introduce a C++ template library called Clotho that offers
a general implementation of the proposed representation.

Methods

Our design aims to succinctly represent the genetic
sequences within a generation of a population. We strive
to represent only those alleles that are present in the
generation, and rely upon external structures to retain
information pertaining to those alleles that were at one
time present in the population. Rather than returning
space freed by the removal of alleles to the system, we re-
purpose it to represent a new allele that arises in a future
generation.

To achieve these aims we utilize an indirection tech-
nique similar to that mentioned earlier. Alleles are main-
tained in an indexed structure. The index of the allele
effectively becomes the key of the allele. However, in our
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design the genetic sequence does not explicitly store the
index of only those alleles which it contains. A genetic
sequence is instead represented by a binary sequence that
enumerates the set of alleles.

Here, we briefly review how to represent a set of ele-
ments as a binary sequence. Next, we describe how the set
of alleles changes between generations and how the binary
representation aids the process of identifying the changes.
Then we show how a model can take advantage of this
sequence representation. Finally, we present an example
of the flexibility in our design.

Sets as binary sequences

Forward Time Population Genetic Simulations are used
to study the change in allele frequency over time for a
population of individuals under various models. We refer
to an allele as being a 2-tuple (I1, X), where II is the
genetic position, and ¥ is the allelic state, or genetic
sequence, at that position. In general, the genetic position
is a right-open interval over the natural numbers, and rep-
resents the relative start and end positions of the genetic
sequence. For simplicity, however, we will consider alleles
as being the alternate forms for specific sites. Further-
more, we will assume that two alleles are equivalent if they
represent the same genetic position and the same genetic
state.

In an abstract sense, a genetic sequence is a set of non-
overlapping alleles. By combining the set of alleles for
each sequence in a population, a superset, S, can be cons-
tructed. From the opposite perspective, if the set of alleles,
S, is known for a population, then every sequence of the
population is a subset of S. In other words, a population is
a family of sets over S, which we will represent as F.

Representing a subset of S as a bit sequence of length
M = |S] is relatively straight forward. Each element of S
can be assigned a specific bit index in the sequence. A set
bit indicates that the element assigned to that bit is present
in the subset. In general, this is how one could enumerate
all possible subsets of S.

There are several observations to be made about this
representation. First, assigning elements to bits is arbi-
trary as long as it remains consistent for all subsets. We
will assume that there is an invertible function f which
maps elements, in this case alleles, to bit indices, and vice
versa. Second, adding new alleles to S does not require
changing any existing subsets of S. That is, any sequence
which exists in F can remain unchanged when a new allele,
A, is added to S. To see this consider that new alleles may
always be assigned to the next highest available bit index.
Because A is new, existing sequences of F do not contain
A. Updating existing sequences to reflect the addition of A
amounts to appending a zero to an end of each sequence.

Generally, zero extending a sequence is not technically
difficult to achieve, however it can be costly to perform.
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As a result it is often beneficial to consider each sequence
as having a soft- and a hard-end. The soft-end is the high-
est set bit position in the sequence, and the hard-end is the
total number of possible alleles, M. By definition, all bits at
positions greater than the soft-end are zero, so appending
more zeros becomes meaningless. However, it is useful,
from a computational perspective, to pad the soft-end
with some zeros to provide for better memory alignment.

Utilizing this observation allows zero extension proce-
dures to be performed on an as needed, or per sequence,
basis. In effect, zero extension is only necessary when an
existing sequence gains an allele that has been assigned
to a bit position after its soft-end. It is worth pointing
out that although each sequence may be physically rep-
resented as a variable length bit sequence, all sequences
may be logically interpreted as being a fixed-length string
of M bits. Figure 1 provides a general overview of this
representation.

Enumerating the subsets of S in this manner also offers
several computational advantages. First, the standard set
operations directly translate to Boolean Algebra opera-
tions. In addition, Boolean operations can be applied to
multiple bits, or blocks, in a single step as all bits are inde-
pendent. Furthermore, the performance of a set operation
is no longer dependent on which elements are present in
the set, rather they depend upon the maximum number of
elements in S. That is, the Boolean operations are depen-
dent upon the length of sequence and the width of a block,
and not the states of the bits in the block. In general, the
performance of Boolean operations on a bit sequence is
O(%), where W is the width of a block in bits. Often, W
is the word size of a processor.

The representation of genetic sequence as a bit sequence
is not a new concept. Indeed, bit sequences have been
used to represent sets of known bi-allelic loci [5], or at
points in time during a simulation when the set of alleles is
known [8]. We intend to show that they may also be used
when § is dynamic.

The alleles of a population
The population’s set of alleles, S, changes with each gen-
eration as a result of natural processes such as mutation
and fixation. These processes act to either create new, or
remove alleles within a population. Over time we expect
some alleles will become lost or fixed in a population.
An allele is considered Jost if the allele does not exist
in any sequence of the current generation. Conversely, a
fixed allele is present in every sequence of the population.
We term alleles that are neither fixed nor lost as being
variable.

As mentioned earlier, our representation strives to rep-
resent only the variable alleles within a generation. Vari-
able alleles are of most interest in Population Genetics as
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Fig. 1 General in silico sequence representation overview. The unique alleles of the population are referenced by a central, indexed structure. The
individuals I, of the population reference bit sequences in the family F indicated by the dashed lines. The red boxes highlight the bit sequence up
to its soft-end. The blue arrows indicate the mapping between an Alleles and bit index as assigned by f. Metadata bit sequences representing the
Fixed, Lost, and Non-Variable alleles are shown in the blue box

they represent the alleles which make individuals unique.
Non-variable alleles may provide valuable information,
however, from a computational perspective, represent-
ing non-variable alleles in every sequence of a popula-
tion amounts to an under utilization of computational
resources. For example, if we knew a priori that allele A is
fixed in the population, then by definition every sequence
of the population has A. In effect, the representation of
A in every sequence amounts to redundant information.
That is, if we could externally preserve the fact that A is
fixed in the population, then we could effectively remove
A from every sequence without losing any information
about the population. This would reduce the amount of
physical memory used to represent each sequence. Fur-
thermore, any algorithm which operates over the length of
sequence would perform more quickly since the sequence
length has been reduced. Therefore, the identification of
non-variable alleles is an important component to achiev-
ing a scalable simulation.

Identifying the non-variable alleles within a population
amounts to performing basic set theoretic operations on
the population’s sequences. The fixed alleles are easily
found by performing a set intersection of the sequences
within the current generation of a population. Lost alle-
les are a bit trickier. In order for an allele to be lost, it had
to have existed at one time. This means that a lost allele
exists in the set of possible alleles S, but does not exist
in any of the sequences in the most recent generation. In
terms of set operations, this set is determined by taking

the set difference of S and the union of the population’s
sequences.

The bit sequence representation makes identification of
non-variable alleles a straightforward and efficient proce-
dure. Computing the intersection of the bit sequences is
equivalent to computing the bit sequence which is the bit-
wise AND of all the bit sequences of F. Similarly, the set
of lost alleles is the set of bit positions which are all unset
in every sequence. More specifically, it is the bitwise nega-
tion of the bitwise OR of all sequences of F. We term the
union of the fixed and lost sets as being the set of free alle-
les. It is the bitwise OR of the fixed and lost bit sequences.
Figure 1 also illustrates these sets in the metadata region.

The free bit positions amount to unused memory in F.
Ideally, for a scalable solution we strive to minimize the
amount of unused memory. However, here we opt to allow
it to remain under the assumption that it will be reused
in the future by new alleles. This allows us to simply copy
a sequence from a parent generation to a child genera-
tion, operating upon the child sequence as necessary. This
is advantageous because we avoid performing a costly bit
shifting algorithm on sequences between generations.

New alleles resulting from the natural processes can be
added to S following a simple algorithm. First, replace
an allele associated with a free bit position, and remove
the bit position from the free set. If the free set is empty,
then the new allele can simply be appended to the bit
sequence. It is worth noting that replacing an allele asso-
ciated with a free bit position does not impact already
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existing sequences in F. By definition, no sequences in
F contain an allele currently occupying a free bit posi-
tion. Therefore, replacement will not result in any loss of
information.

Algorithmic impact

Algorithms that depend upon the existence of an allele
rather than the value of an allele can best leverage the
bit sequence representation. However, many algorithms in
FTPGS do depend upon the properties of an allele. These
algorithms generally incur an additional computational
overhead when the bit sequence representation is used.
The majority of the computational overhead is a result of
having to perform bit walking to locate desired bit states,
and subsequently dereference the value. Here we focus on
minimizing the cases where bit walking is required using
a simple recombination algorithm as an example.

Recombination is a naturally occurring process by
which two parental chromosomes exchange genetic mate-
rial generally resulting in a new child chromosome. This
process is modeled as a copy and conditional swap-
ping of two sequences. From an algorithmic perspective,
the process begins with two parental sequences, Py and
P;. The child sequence, Cy, is constructed by iteratively
copying one parental sequence until a crossover event is
encountered, which causes the swap of the source parental
sequence.

The algorithm for this process can be broken into two
steps: generation of crossover events, and construction of
the child sequence. Generating a list of crossover events
generally allows for more efficient block copying routines
to be used during the child sequence construction. As
an example, if the genetic sequences are represented as
fixed-length locus ordered strings, then the events serve
as sequence offsets. Computationally this means we can
perform a direct memory copy between offsets of the par-
ent sequence to the appropriate child sequence. This is
generally more efficient than copying sequences locus by
locus.

With our genetic sequence representation the general
steps of recombination remain the same, however the con-
struction of a child sequence takes a slightly more general
form as the alleles are not necessarily naturally ordered.
First, notice that the crossover events effectively define a
set of chromosomal segments. These segments can be cat-
egorized as being maternal or paternal segments. That is,
the bit state of Cy for all alleles within paternal segments
will be copied from Py; the bit state of Cy for all alleles
residing within maternal segments will be copied from P;.
A basic algorithm for constructing a child sequence would
iterate over the set of alleles, classify each allele according
to the segment that they reside within, and copy the state
of the allele from the appropriate parent.
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While the above procedure serves as the basic algo-
rithm, as stated it is a less than desirable process. Not
only does it involve classifying every allele, but it also
involves bit walking multiple sequences. Ideally classifica-
tion should be limited to only those alleles for which the
parents differ. That is, if both parental sequences share a
state for a specific bit position, then the parental source
of the allele is technically not important as the child
sequence will inherit that state. Identification of shared or
different bit states in a block is done by computing the
intersection or symmetric difference, respectively.

The resulting algorithm is to build the child sequences
a block of W bits at a time. For each pair of blocks from
the parent sequences, a block, D, representing the sym-
metric difference, or bitwise XOR, of the pair is computed.
If D contains at least one differing bit, then it is neces-
sary to bit walk D and classify each of the corresponding
allele according to the set of chromosomal regions. The
classification step results in a block of bits where set bits
indicate alleles residing within maternal segments. This
bit block is used to mask the bits from parental sequences
to construct the child blocks accordingly. Finally, the child
blocks are appended to their respective sequences. The
general algorithm is provided in Algorithm 1.

Algorithm 1 Binary Sequence Recombination Algorithm

Require: Py and P; is input Clotho parent sequences

Require: R is the set of parental regions
Require: f~! maps bit positions to alleles
Co <[]
C1 <]
m < buildMask(R, f~1)
for all bit block a € Py, bit block b € P; do

> Initialize empty child sequences

> Returns a bit block of all ones by default

diffs < (a®b) Am

diffMask < 0

for all set bit positions i € diffs do
diffMask| i] < classify(f~1 (i), R)

end for

c0 <« ((a A —diffMask) v (b A diffMask))

cl < ((a A diffMask) v (b A —diffMask))

> Is allele in a parental region?

Append ¢0 to Cp
Append c1 to C;
end for

return (Cy, C1)

While this symmetric difference observation helps to
reduce the amount of bit walking, classifying each dif-
fering allele may still result in a significant amount of
overhead. A further reduction may be achieved if more
information about the alleles can be discerned from the
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bit sequence. That is, it is possible to utilize the ordering
of alleles at the bit sequence level.

Ordering the alleles of a population

To this point, we have made minimal use of the allele
ordering resulting from the allele indexing function f. We
have relied upon the constraint that the mapping of an
allele to a bit position is defined at the population level,
and simply assumed that each allele is ordered indepen-
dently of one another. Indeed, the order of alleles does
not have a direct impact on the performance of set oper-
ations. However, other algorithms may be able to leverage
a relative ordering to achieve better scalability.

Consider the recombination algorithm mentioned ear-
lier. For genetic sequences that are fixed-length strings of
well-ordered loci, the copy and conditional swapping can
take advantage of block copying. As the bit sequence rep-
resentation is effectively a fixed-length string, if we can
order the alleles of the population by their genetic loca-
tion, then we should be able to adapt this technique to
improve the recombination algorithm over bit sequences.

The dynamic nature of the population’s set of alleles
makes maintaining a well-ordered condition a challeng-
ing problem. We propose, however, that the set of alleles
does not need to be well-ordered, rather only the alle-
les within a block need to be well-ordered. For example,
assume we are attempting to recombine the differing alle-
les within a block. If we analyze the first and last alleles of
the block and determine that there are no recombination
events between them, then we can simply copy the state of
a parent sequence to the child sequence. Thus, eliminat-
ing the need to perform the classification process for this
block of alleles.

We may take this a step further by requiring that every
block of W bits reflects the same genetic structure. That
is, we add the requirement that f assign alleles to free bits
at specific positions within a block, rather than the next
available. This can be achieved by considering that a theo-
retic upper bound, L, for the number of bases in a genetic
sequence can be computed from the simulation parame-
ters. The range [0, L) therefore represents the unit-length
of each sequence. Uniformly mapping the range [0, L)
onto the range [ 0, W) allows a bit i of a block to effectively
represent the contiguous region [i * %, (i+1) % %) of
the genetic sequence. In effect, each bit implicitly provides
additional information about the relative genetic position
of the corresponding allele.

As an example, consider a genetic sequence of length
L = 256 and a block width W = 8. Each bit of a block rep-
resents a contiguous % = 32 base sub-sequence. Assume
anew mutation occurs at base 100 of the genetic sequence.
With the unit-length requirement f would map 100 to bit
position 3 as it represents [ 96,128). If there is an exist-
ing block with a free bit position 3, then the new mutation
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can replace the allele currently occupying that space as
we described earlier. Otherwise, a new block of alleles is
necessary.

By adding the unit-length requirement we gain the abil-
ity to map the set of parental regions to a block. That is,
consider the set of maternal segments. We can construct a
bit block where a set bit indicates an overlap between the
maternal segment and the contiguous region represented
by the bit position. By doing so we are able to effectively
create a bit mask which can be used to select only those
bit positions that potentially represent an allele residing
within a maternal region.

In Algorithm 1, we construct a bit mask, m, which we
then apply to the bit block resulting from the symmet-
ric difference of the parental sequence blocks. Basically,
m is used to select specific bit positions. The buildMask
function is assumed to construct a bit mask from the
set of parental regions, R, relative to the allele indexing
function f. In the general case, we buildMask may simply
return a bit block of all ones, and all bit positions resulting
from the symmetric difference are selected. By changing
f to use unit-length requirement, we can assume that the
buildMask will react accordingly and provide the desired
bit mask as described above. The remainder of the recom-
bination algorithm remains unaffected by the change
of f.

We present the unit-length requirement as an exam-
ple of how to further utilize the ordering of alleles, rather
than as a perfect solution. Block ordering alleles can aid in
reducing some overheads of a recombination algorithm,
though the simulation scenarios where the additional
unit-length requirement is beneficial may be limited. For
example, if two alleles map to the same bit position,
then they cannot be represented within the same block.
In other words, a unique block is necessary for each of
these alleles. Thus, the addition of this requirement would
likely require more memory than is theoretically neces-
sary. As a result, we do not utilize this requirement in our
experimentation.

Results

We have performed a series of benchmarking tests to
compare the scalability of our proposed approach with
the approaches provided by other simulation frameworks.
FWDPP [6] has adopted a designed based upon represent-
ing a genetic sequence as an ordered list of keys. SimuPOP
[5] provides the ability to represent a genetic sequence as
either a fixed-length binary string or as an ordered list of
keys. Although these frameworks are vastly different in
terms of capabilities, here we narrow our focus to compar-
ing the memory utilization and computational runtime for
common simulation scenarios. To validate our simulator
we compare the average pairwise difference of populations
produced by our simulator with those produced by MS [9].
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All simulations are performed on a workstation computer
with a 6-core Intel Xeon 3.5GHz processor, 32GB of RAM,
and running 64-bit Fedora Linux version 20. Finally, all
simulators utilized the Mersenne Twister random number
generation algorithm (MT19937).

Simulation scenarios

In this work, we are mainly interested in assessing the
memory utilization and computational load performed
in FTPGS. To do this we consider a basic evolution-
ary scenario where a population is evolved following a
neutral mutation model with recombination. In this sce-
nario a diploid population is evolved over a number of
generations. Individuals from a parental generation are
randomly selected and paired to produce to a child in
the next generation. The genetic sequences of each parent
are recombined and a random daughter sequence from
each parent is selected to be passed along to the child.
Finally, mutations are randomly introduced to the child
generation.

From a functional perspective, this scenario entails the
basic steps performed in all FTPGS. The simplicity of this
scenario should limit sources of computational overhead
to only those which result from the different sequence
representations. We use this scenario to set a baseline
computational runtime for each simulator.

To further evaluate the computational impact of our
sequence representation, we perform an additional com-
putational step of computing a fitness value for each indi-
vidual. Although computed, the fitness value is not used in
the simulation process. In effect, the evolutionary scenario
remains a neutral mutation model with recombination,
while demonstrating the cost of performing a more com-
plex model. Thus, it is intended to illustrate the impact of
performing a simple operation on each sequence in each
generation, and how by changing the representation of a
sequence can have a significant impact on performance.

While each simulation framework considered here is
highly configurable, we restrict ourselves to testing these

Table 1 Simulation scenario configuration parameters
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scenarios with two scales for the number of mutation
events per generation, 6. As we are considering a diploid
population, 0 is given by 4N.u where N, is the effective
population size, and  is the mutation rate per sequence. If
the effective population size is considered to be constant,
then changing 6 is effectively equivalent to changing the
length of a genetic sequence being simulated. A full list-
ing of the configuration parameters by scale is provided in
Table 1.

For simplicity, we assume a simple directional bi-allelic
SNP mutation model, where the mutation rate per base
is a constant rate of y; = 1078, This assumption allows
us to utilize simuPOP’s [5] binary module to represent a
sequence, in addition to their mutant module. For reasons
we will present shortly, we limited our experimentation
with simuPOP [5] to the base evolutionary scenario, with
the smaller scale configuration.

Memory scaling

There are three genetic sequence representations being
considered in this work: a fixed-length string, an ordered
list of keys, and our hybrid approach. SimuPOP [5] offers
the user the ability to select either a fixed-length string, or
an ordered list of keys. FWDPP [6] provides an ordered
list of keys representation. Finally, our Clotho library
offers the hybrid approach. Our analysis of the memory
utilization focuses on the idealized amount of memory
necessary to represent a single generation of a population
given a sequence representation. By idealized we mean
that we ignore additional memory which may vary based
upon implementation details, or padding introduced to
maintain memory alignment.

As described above, the fixed-length interpretation of
our representation relies upon the number of alleles in the
population, M. Therefore, our representation requires a
maximum of 2NM bits to represent a generation. Because
we assume bi-allelic sites, M may be less than or equal
to the length of a chromosome L. In the worst case then

Parameter Symbol (equation) Scale 1 Scale 2
Generation T 100,000 100,000
Population Size N =N, 10,000 10,000
Chromosome Length L 1,000,000 10,000,000
Mutation Rate per base o 108 1078
Mutation Rate per sequence w(= upl) 1072 107"
Recombination Rate per base b 108 10-8
Recombination Rate per sequence p = (ppl) 1072 107"
Mutation Events per generation 0 (= 4Nep) 400 4,000
Recombination Events per generation P(= 4N p) 400 4,000
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our representation will use equivalent memory to a fixed-
length string. However, we represent only variable alleles
within the population. In these scenarios, the variable
alleles are equivalent to segregation sites under a neutral
mutation model. The expectation for the total number of
segregation sites in a population was described in [10],
and is given by Eq. 1.

2N-1 1
M=E@S)=4Np ) - (1)
i=1

Our experimental results indicate that in the last 10,000
generations of our simulation the average number of alle-
les in a population to be M = 4,173 when u = 0.01,
and M = 42,088 when u = 0.1 over the final 10,000
generations. These are within 1.2% of the theoretically
expected values. In both cases, M is significantly less than
the expected sequence lengths of L = 10° and L = 107,
respectively.

The ordered list of keys approach utilizes a dynamic
length structure allowing for each sequence to use a min-
imum amount of memory. A key used to represent a
mutant site is represented by a constant K bits. If there
are [ mutant sites within a sequence, then [K bits are
necessary to represent the sequence.

Figures 2 and 3 show the total number of blocks, or keys,
necessary to represent the population’s sequences for both
Clotho and FWDPP [6]. The number of bits per block and
key are equal to W = 64. The early growth of M results

Page 8 of 14

in a rapid growth in the amount of memory require-
ments of the bit sequence representation used in Clotho.
However, its growth stabilizes quickly and it grows much
slower in later generations of the simulation. Conversely,
the ordered list of keys used by FWDPP [6] grows rela-
tive to the number of alleles per sequence L. After roughly
8000 generations, the total number of blocks necessary to
represent all ordered list sequences of a population begin
to exceed that of population represented by bit sequences.

Although we have described a population as having 2N
sequences, both Clotho and FWDPP [6] make use of the
observation that there are likely to be duplicate sequences
within the population. The idea being that if a parental
sequence does not undergo mutation or recombination
before being passed along to the next generation, then it
is exactly the same between generations. It is therefore
unnecessary to physically replicate the sequence. Simu-
lated individuals maintain references to sequences, rather
than unique copies of sequences, and a dynamic set of
unique sequences is maintained. This allows Clotho to
represent the sequence space in roughly 2.4 MB and
75 MB of memory when i = 0.01 and u = 0.1, respec-
tively. Similarly, FWDPP [6] uses about 7.2 MB and
350 MB. Unfortunately, simuPOP [5] attempts to uniquely
represent all 2N sequences of the population.

The mutant representation provided by simuPOP [5]
is conceptually similar to that of FWDPP [6], although
with two key differences. First, simuPOP [5] groups both
a genetic position and a state to form a slightly larger

1.4e+06
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Fig. 2 Comparison of the number of blocks need to represent a population of 10,000 individuals and a mutation rate of 0.01. Each block consists of
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Memory Comparison; N=10000; u=0.10; p=0.10
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Fig. 3 Comparison of the number of blocks need to represent a population of 10,000 individuals and a mutation rate of 0.1. Each block consists of
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key than that of FWDPP [6]. Second, fixed alleles are not
removed from individual sequences. Consequently, the
memory require per generation continually grows as more
mutant alleles become fixed in the population. Combin-
ing these with the previously mentioned unique copies of
each sequence, the final generation used roughly 185 MB
of memory when L = 10°.

We also tested the binary representation provided by
simuPOP [5]. As expected, this fixed-length string rep-
resentation required the most memory. For a sequence
length of L = 10° simuPOP [5] required roughly 2.3 GB
per generation. This is about 990x more memory than
Clotho, and 320x more than FWDPP [6]. A single gener-
ation with L = 107 would require 23 GB. Unfortunately,
it is often necessary to represent both a parent and child
generation in memory. Therefore, we were unable to test
the L = 107 scale with simuPOP because our test machine
had insufficient memory.

Runtime scaling

The design of Clotho offers several advantages which sig-
nificantly reduce the computational load per generation.
Perhaps the most advantageous aspect of this design is
the improved data locality. Locality of reference [11], often
referred to as data locality, is the concept that data ele-
ments which are close to one another tend to be operated
upon together. Modern computing systems rely heavily
upon this principle to enhance performance. Many of
the actions taken by the system are effectively hidden
from the perspective of software design. However, the

implementation of software can limit the scope of possible
enhancements.

As an indirect data structure, our representation only
retains enough information to determine the existence of
an allele in the sequence. All other information about the
allele is stored in a separate data structure elsewhere in
memory. It is therefore necessary to access multiple areas
of memory. Generally, this is not efficient, especially when
the areas are distant from one another. Fortunately, mod-
ern systems are designed with cache memory which allow
distant memory locations to temporarily be moved closer
together. However, cache memory space is significantly
smaller than main system memory, and therefore limits
the amount of data which can be relocated at a time.

The compactness of the binary sequence aids in free-
ing up more space for use by other objects. In effect, the
system is able to utilize the additional free space, specif-
ically free cache space, to temporarily move more of the
sequence data closer to its corresponding allelic informa-
tion. In other words, the indirect data structure requires
additional computational work to determine allelic infor-
mation. However, by having more free space available, the
system is able to mitigate the cost of this work.

One may expect then that the data structures used in
FWDPP [6] and simuPOP [5] would share in the benefits
of cache memory, although with possibly less efficiency
as they use more memory. This is generally true, how-
ever their respective implementations work against the
system’s ability to utilize cache memory effectively. At a
high level, both rely upon logically ordering elements in
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a sequence. Basically, each sequence is sorted such that
the alleles are ordered based upon their genetic position,
however this does not mean that each allele, or key, occurs
in this order in memory. Unfortunately, the system gen-
erally relies upon the spatial locality of elements, that is
their order in memory, to effectively fill the cache. While
simuPOP [5] is better suited for cache efficiency, their
increased sequence lengths works against them in both
the mutant and binary representations.

For each of the simulators and test scenarios we
recorded the computational runtime time necessary to
construct each generation of a population. Figure 4 shows
the runtime per generation with p = p = 0.01 for
Clotho and FWDPP [6]. In both evolutionary scenarios,
Clotho offers a noticeable performance advantage. In the
first scenario, Clotho is able to complete in a little over
10.1 minutes (0.006 s/generation), and FWDPP finishes
in just under 49.5 minutes (0.030 s/generation). How-
ever, performing the additional step of computing a fitness
value Clotho slows down significantly. While FWDPP [6]
also slows, the impact of performing the additional fitness
computation is much less. It was able to complete in about
95 minutes (0.057 s/generation), whereas Clotho required
roughly 80 minutes (0.048 s/generation). We would expect
that FWDPP [6] would end up being faster than Clotho if
more generations were performed.

The results of the increased scale are shown in Fig. 5.
In the base scenario, Clotho provides on average a 46.5x
speedup per generation, reducing a 62.96 hour runtime
down to 1.34 hours. A 10-fold increase in the mutation
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rate results in about a 76x increase in runtime for FWDPP
[6], compared to an 8x increase with Clotho. Perform-
ing the additional fitness computation step expectantly
increased the runtime for each simulator. Despite the
additional overhead resulting from the binary representa-
tion, Clotho noticeably reduces the runtime of a simula-
tion, completing in 13.7 hours compared to 83.8 hours.

The results of performing the evolutionary scenario at
the smallest scale using simuPOP [5] are shown in Fig. 6.
The binary module requires a relatively constant amount
of time to generate each generation. This is expected given
the simulation scenario. The linearly increasing runtime
for the mutant module is also expected. It results from
the increasing number of fixed mutant alleles. In terms
of total runtime, simuPOP [5] needed 25.3 hours when
using the binary module, and 31.89 hours with the mutant
module. Clotho offers a speedup of over 145x and 185x,
respectively.

Other scales

We have also studied how the Clotho approach scales
with larger population sizes, N, and mutation rates, u.
We focused our efforts on only the base evolutionary sce-
nario as this would represent a lower bound for runtime.
Tables 2, 3 and 4 show the results.

As expected, the number of alleles in the population, M,
grows proportionally with the increase in N and u, respec-
tively. The memory required to represent the sequence
space also increases accordingly. Interestingly, increasing
the mutation rate from u = 0.1 to u = 1.0 results in
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Fig. 4 Comparison of runtime for simulated scenarios for a population of 10,000 individuals and mutation rate of 0.01
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Runtime Comparison; N=10000; n=0.10; p=0.10
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Table 2 Average number of alleles (M) in a population over

T = 100,000
10,000 20,000
0.01 3,971 8,011
0.1 39,803 80,379
1.0 396,816 804,105

Rows are mutation rate (u). Columns are Population Size (N)

roughly a 32x increase in runtime, whereas the increase
from p = 0.01 to u = 0.1 was roughly an 8x increase.

Validation

The base evolutionary scenario considered in this work
generates a population under the a neutral mutation
model with recombination. MS [9] is an efficient tool
which is also capable of generating populations under this
process. To validate our simulator we compared the pop-
ulation produced in the final generation of our simulation
scenarios with a population produced by MS [9] using
the appropriate configuration parameters. Specifically, we
compare the average pairwise difference, between a sam-
ple of 200 sequences randomly selected from each popu-
lation.

Under the neutral model of evolution we would expect
that the average pairwise difference would be equal to the
number of segregation sites. The number of segregation
sites is expected to be 6. We consider recombination in
our simulation. Therefore, we expect there to be some
deviation from the theoretical prediction. The results are
shown in Table 5.

Discussion

In this manuscript, we have described a method of repre-
senting a genetic sequence of alleles as a bit sequence for
FTPGS. We have shown that this representation is effec-
tive in improving the scalability of these simulations by
comparing our representation with a more commonly uti-
lized ordered list of keys. In this section we will present
some scenarios where this representation may not be well
suited. Also, while the ordered list of keys representation
is common, we discuss some related works that provide
alternate genetic sequence representations. Finally, we will
offer some future directions we intend to pursue.

Table 3 Average Total Size (MB) of F as bit sequences over
T =100, 000 generations

10,000 20,000
0.01 2 8
0.1 70 260
1.0 1,100 4,400

Rows are mutation rate (u). Columns are Population Size (N)
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Table 4 Total Runtime (hours) of Clotho over T = 100,000

10,000 20,000
0.01 0.2 04
0.1 13 5.1
1.0 41.8 167.4

Rows are mutation rate (). Columns are Population Size (N)

Limitations
As we alluded to earlier, our utilization of a binary
sequence to represent a subset of alleles has some dis-
advantages. Recall that each sequence is an implicit data
structure. That is, the relative position of set bits is used
to identify the alleles are in each sequence. An algorithm
that requires information specific to an allele has to per-
form a translation step to first identify a set bit then map
its relative position to the allele. It is beyond the scope of
this work to discuss the different techniques of identify-
ing set bits. It suffices to say that each has an unavoidable
computational cost, and can become significant in a large
scale simulation scenario. In effect, we have traded a level
of computational performance in an attempt to save mem-
ory. Conversely, there are simulation scenarios for which
this representation will increase memory requirements.

In general, the worst case scenario for our binary rep-
resentation is one in which the set of alleles for each
generation grows, but the number of alleles per sequence
remains comparatively small or fixed. If new alleles are
introduced to a child generation more frequently than
alleles are fixed or lost in the parent generation, then our
binary representation suffers. In computational terms, our
representation suffers from becoming increasingly sparse.

Our approach does attempt to combat the issue of
increasing sparsity. Recall that we re-use bit indices asso-
ciated with non-variable alleles in the parent generation
for alleles which are introduced in child generation. In this
way, we are able to maintain a minimal set of alleles for
each generation. While maintaining a minimal set of alle-
les is ideal, in some simulation scenarios, such as those
which consider an infinite allele mutation model [12], the
increasing number of alleles may be unavoidable. In these
scenarios, utilizing an ordered list of keys would be more
advantageous.

Finally, our reliance on an allele indexing function to
map between bit positions and alleles may be a bottleneck

Table 5 The average pairwise difference for a random sample of
200 sequences from a population of 20,000 with § = p = 400
and L = 100000

Observed Expected
MS 398 400
Clotho 405 400
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in some algorithms. Many traditional implementations
of evolutionary models rely upon the input genetic
sequences being well ordered. Generally our design does
not have this guarantee. Therefore, additional work is
necessary if a traditional implementation must be used.
For example, although being generally inefficient, our
sequences can always be translated into an equivalent
ordered sequence. However, as we continue development
of this work, we intend to provide implementations of evo-
lutionary models which do not assume ordered sequences.

Relate works

Recent works by [8, 13, 14] have suggested that repre-
senting a genetic sequence as a sequence of haplotype
units provides substantial benefit in FTPGS. Haplotype
units are segments of a genetic region where all alleles
within the segment are inherited together. This allows
for more efficient construction of child sequences. It also
improves fitness computation as the haplotypes pheno-
typic contribution of a region can be pre-computed [13].
Furthermore, the ancestral information of a haplotype
region can be maintained, allowing for the full ancestral
history of a sequence to be reconstructed [8].

In [8], they utilize bit arrays when representing neutral
sequences that are constructed from their BEG algorithm.
They also perform bitwise operations in the algorithms
for inheriting mutations in a haplotype unit in a parent
sequence. While this is primarily what we have proposed
in this work, it does differ in that the construction of
sequences is performed at a point when all mutations are
known. As a result, they are able to order all mutations
without relying upon the definition of an allele-indexing
function.

Our reliance on the definition of an allele indexing func-
tion is a key feature of our design. It allows us to efficiently
maintain the dynamic set of alleles. While we have framed
this manuscript with a single-base allele as our basic ele-
ment, our design is flexible and not limited to such alleles.
We believe that our design enables the creation of sim-
ulators which are based upon haplotype units without
difficulty. We intend to explore this in the near future.

Future directions

We plan to expand the genetic models available in Clotho.
Currently, we only provide some basic models of recom-
bination, mutation, and fitness. We intend to incorporate
models for quantitative traits, as well as functionality to
retain ancestral information. Certainly, we would like to
explore the use of haplotype units as the basic element in
our design.

From a computational perspective, we intend to explore
the use of parallelism to further reduce the runtime of
FTPGS. In many respects, FTPGS are embarrassingly par-
allel problems. The majority of the simulation can be
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expressed as a series of independent tasks. This task level
parallelism can be exploited through the use of multi-
threading capabilities of a standard workstation. Having
said this, our bit sequence representation opens the door
for additional parallelism.

We showed earlier that Boolean Algebra operations
being applied to blocks of alleles. Since the blocks of alle-
les of a sequence are independent, it follows then that the
task of applying a Boolean Algebra operation to an entire
sequence is an embarrassingly parallel problem. While the
multithreading available on a CPU may also be utilized
to improve these tasks, a GPGPU was designed to handle
parallel problems of this nature. We plan to explore the
use of a GPGPU to perform FTPGS.

Conclusion

Our design of Clotho is a general way for improving the
scalability of FTPGS on a basic desktop with a single CPU
and low amounts of memory. We have shown that by rep-
resenting genetic sequences as bit sequences we are able
reduce FTPGS memory requirements by roughly 4x. Fur-
thermore, the compact representation allows for the use
of Boolean Algebraic operations in many algorithms. This
aids in improving the runtime of larger scale simulation
scenarios, with some running as much as 46x faster than
an equivalent ordered list of keys representation. Some
algorithms are negatively impacted by the implicit data
representation incurring significant amounts of computa-
tional overhead which results from bit walking. However,
the additional overhead is often acceptable as larger scales
are still computable in significantly reduced times. We
intend to continue to expand the capabilities of Clotho
by incorporating more genetic models, and the ability to
utilize parallel computing hardware such as a GPGPU.

Availability

Clotho is implemented as an open source C++ template
library. The source code and example simulators con-
structed from this library are available as a GitHub project
at http://github.com/putnampp/clotho.
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