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Abstract

Background: Exploratory analysis of multi-dimensional high-throughput datasets, such as microarray gene
expression time series, may be instrumental in understanding the genetic programs underlying numerous biological
processes. In such datasets, variations in the gene expression profiles are usually observed across replicates and time
points. Thus mining the temporal expression patterns in such multi-dimensional datasets may not only provide
insights into the key biological processes governing organs to grow and develop but also facilitate the
understanding of the underlying complex gene regulatory circuits.

Results: In this work we have developed an evolutionary multi-objective optimization for our previously introduced
triclustering algorithm δ-TRIMAX. Its aim is to make optimal use of δ-TRIMAX in extracting groups of co-expressed
genes from time series gene expression data, or from any 3D gene expression dataset, by adding the powerful
capabilities of an evolutionary algorithm to retrieve overlapping triclusters. We have compared the performance of
our newly developed algorithm, EMOA-δ-TRIMAX, with that of other existing triclustering approaches using four
artificial dataset and three real-life datasets. Moreover, we have analyzed the results of our algorithm on one of these
real-life datasets monitoring the differentiation of human induced pluripotent stem cells (hiPSC) into mature
cardiomyocytes. For each group of co-expressed genes belonging to one tricluster, we identified key genes by
computing their membership values within the tricluster. It turned out that to a very high percentage, these key
genes were significantly enriched in Gene Ontology categories or KEGG pathways that fitted very well to the
biological context of cardiomyocytes differentiation.

Conclusions: EMOA-δ-TRIMAX has proven instrumental in identifying groups of genes in transcriptomic data sets
that represent the functional categories constituting the biological process under study. The executable file can be
found at http://www.bioinf.med.uni-goettingen.de/fileadmin/download/EMOA-delta-TRIMAX.tar.gz.

Keywords: Microarray gene expression data, Developmental biology, Tricluster, Multi-objective optimization, Eigen
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Background
One of the main aims of functional genomics is to under-
stand the dynamic features encoded in the genome such
as the regulation of gene activities. It often refers to high-
throughput approaches devised to gain a complete picture
about all genes of an organism in one experiment. Several
steps, such as transcription, RNA splicing and translation
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are involved in the process of gene expression, which
is subject to a great many of regulatory mechanisms.
Analysis of such gene expression data provides enormous
leverages to understand the principles of cellular systems,
diseasesmechanisms, molecular networks etc. Genes hav-
ing similar expression profiles are frequently found to be
regulated by similar mechanisms. Previous studies eluci-
dated the impact of highly connected intra-modular hub
genes on such regulations [1–3]. Detecting hub genes
and analyzing their roles may facilitate understanding the
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basal control mechanisms of a certain normal or disease
cellular phenotype to develop.
Microarray technology is used to measure the expres-

sion of thousands of genes over a set of biological repli-
cates simultaneously. In recent years, such expression
signatures have increasingly been monitored for sets of
time points in order to follow the course of biological
processes. In case of such three-dimensional datasets, at
each time point the activity of all genes is measured for a
number of biological replicates. Although the experimen-
tal setups are kept identical for these replicates, variations
between them can still occur. For instance, stochastic
effects can result in delays or accelerations of a cer-
tain cell state transition. Thus, grouping similar biological
replicates may facilitate the analysis of time series gene
expression data. Moreover, expression profiles of genes
may also vary over different time points. Appropriate
computational methods are therefore required to ana-
lyze such high-throughput datasets specifically to identify
temporal expression patterns over biological replicates
and time points. Clustering, one of the unsupervised
learning approaches, has been used to explore such two-
dimensional gene expression datasets. Clustering algo-
rithms aim to maximize similarity within or to minimize
similarity between clusters, based on a distance measure
[4]. Clustering is able to group genes or samples over a set
of samples or genes, respectively, but it has been reported
in previous studies that genes are not necessarily to be
co-expressed over all samples. Hence to find such local
patterns, i.e. genes having similar expression profiles over
a subset of samples in 2D gene expression datasets biclus-
tering algorithms are used [5]. In previous studies, biclus-
ters have been found to be biologically more significant as
these algorithms aim to extract groups of correlated genes
from a subset of samples. Such subspace clustering tech-
niques find clusters in multiple overlapping subspaces.
To deal with time series gene expression datasets, biclus-
tering algorithms fail to extract genes that have similar
expression profiles over a subset of samples during a sub-
set of time points. To perform co-expression analysis in
such three-dimensional gene expression datasets triclus-
tering algorithms have to be employed. Zhao et al. pro-
posed the TRICLUSTER algorithm that aims to retrieve
groups of genes that have similar expression profiles over
a subset of samples during a subset of time points [6]. In a
recent work, Tchagang et al. proposed a triclustering algo-
rithm (OPTricluster) for mining short time series gene
expression datasets. OPTricluster effectively mines time
series gene expression data having approximately 3-8 time
points and 2-5 samples. According to their definition of a
tricluster, genes belonging to a tricluster must have con-
stant, coherent or order preserving expression patterns
over a subset of samples during a subset of time points.
In case of an order-preserving tricluster, there must be

a permutation of the time points such that expression
levels of genes form a monotonic function [7]. In our pre-
vious work we have proposed a triclustering algorithm
δ-TRIMAX by introducing a novel mean squared residue
score (MSR) to mine a 3D gene expression dataset and
each tricluster must have an MSR score below a thresh-
old δ [8, 9]. In spite of its proven merits [8, 9], δ-TRIMAX
has some limitations: a) it can not retrieve overlapping
triclusters, b) due to its greedy approach it often gets
stuck at local optima. Finding overlapping triclusters is
important in biological context, since each gene may par-
ticipate in several biological processes, thus being subject
to multiple regulatory influences [10]. A subset of genes
may therefore be involved in a set of biological processes
and consequently belong to several triclusters. However,
the goals of δ-TRIMAX algorithm were to maximize the
volume and minimize the MSR score of the resultant tri-
clusters. Hence the problem of optimizing such multiple
conflicting objectives can be classified as multi-objective
optimization problem where a set of alternative solutions
of equivalent quality exists instead of one single opti-
mal solution. To optimize the conflicting objectives of δ-
TRIMAX we have used a non-dominated sorting genetic
algorithm-II (NSGA-II) [11] as a multi-objective opti-
mization method to develop EMOA-δ-TRIMAX (Evolu-
tionary Multi-objective Optimization Algorithm for δ-
TRIMAX). It could demonstrate that EMOA-δ-TRIMAX
effectively copes with the problems of δ-TRIMAX.
The main purpose of studying developmental biology

is to gain insight into the biological processes by which
an organism, or one particular organ, grows and devel-
ops. Cell differentiation refers to the biological processes
by which a less specialized cell develops into a special-
ized cell type. For instance, stem cells can differentiate into
different specialized cell types such as cardiomyocytes,
neural progenitors etc. [12, 13]. In this work we aim at
analyzing gene expression profiles during the differenti-
ation of human induced pluripotent stem cells (hiPSCs)
into cardiomyocytes in order to reveal key genes, poten-
tial biological processes and/ or pathways by which stem
cells gain new phenotypic features of adult heart cells. To
study the temporal expression patterns over developmen-
tal time points and biological replicates, we have applied
our proposed triclustering algorithm EMOA-δ-TRIMAX
on a real-life dataset that contains mRNA expression pro-
files of hiPSCs differentiating into cardiomyocytes [12].
Figure 1 shows the general work flow of this work. After
retrieval of triclusters by applying EMOA-δ-TRIMAX we
first performed enrichment analyses of KEGG pathways
and transcription factor binding sites (TFBSs) among the
clustered genes to demonstrate biological significance of
each resultant tricluster. In the next step, we identified
key genes for each resultant tricluster and performed bio-
logical process and KEGG pathway enrichment analysis



Bhar et al. BMC Bioinformatics  (2015) 16:200 Page 3 of 19

Fig. 1Workflow. General workflow applied in this work

to uncover potential biological processes that may govern
stem cell differentiation towards adult heart.

Methods
Definitions
Time series gene expression dataset (D): Such a dataset
can be modeled as a G × C × Tmatrix, of which each ele-
ment dijk corresponds to the expression value of the ith
gene over the jth sample and across the kth time point
where i ∈ (g1, g2, ...., gG), j ∈ (c1, c2, ...., cC), k ∈ (t1, t2, ...., tT ).
Tricluster (M): A tricluster can be defined as a sub-

matrix M(I,J,K) = [mijk], where i ∈ I, j ∈ J, k ∈ K. Sub-
matrix M represents a subset of genes (I) that have similar
expression profiles over a subset of samples (J) during a
subset of time points (K).
Perfect shifting tricluster: A tricluster M(I,J,K) is called

perfect shifting tricluster if each element of the triclus-
ter is represented as: mijk = � + αi + βj + ηk , where �

is a constant value of the tricluster and αi, βj and ηk are
the shifting factors of ith gene, jth sample, kth time point
respectively.
Mean squared residue: Mean squared residue score

(MSR) of shifting tricluster M(I,J,K) can be modeled
as [8, 9]

MSR = 1
|I||J||K |

∑
i∈I,j∈J ,k∈K

r2ijk = 1
|I||J||K |

∑
i∈I,j∈J ,k∈K

(mijk − miJK − mIjK − mIJk + 2mIJK )2,
(1)

where the mean of the ith gene is miJK = 1
|J||K |

∑
j∈J ,k∈K

mijk , the mean of the jth sample is mIjK = 1
|I||K |

∑
i∈I,k∈K

mijk , the mean of the kth time point is mIJk = 1
|I||J|∑

i∈I,j∈J mijk , and the mean of tricluster is mIJK = 1
|I||J||K |∑

i∈I,j∈J ,k∈K mijk .
The MSR score of a tricluster represents the level of

coherence among the elements of the tricluster. Hence
a lower MSR score means better quality of a tricluster.
For a perfect shifting tricluster the MSR score is zero. If
we use some global normalization, like min–max normal-
ization globally on the whole dataset, it does not affect
the algorithm. Moreover, it can be shown that gene–wise
Z-normalization only on a tricluster does not affect the
MSR score. However, when we apply similar normaliza-
tion on the whole dataset, it affects the triclusters, and in
turn affects our algorithm. Still we prefer to normalize the
dataset in order to eliminate the variability in gene expres-
sion profiles due to experimental errors and noises and
as normalization reduces the effects of scaling patterns,
scaling patterns could also be identified partially.

Steps of EMOA-δ-TRIMAX
The steps the of δ-TRIMAX algorithm [8, 9] have been
described in the Additional file 1. Figure 2 shows the steps
of our proposed EMOA-δ-TRIMAX algorithm.

Multi-objective optimization problem
The multi-objective optimization problem is equivalent
to finding the vector x̄∗ =[ x∗

1, x∗
2, . . . , x∗

n]T of decision
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Fig. 2 EMOA-δ-TRIMAX algorithm. Steps of the EMOA-δ-TRIMAX algorithm

variables that satisfies a number of equality and inequal-
ity constraints by optimizing the vector function f̄ (x̄) =
[ f1(x̄), f2(x̄), . . . , fr(x̄)]T subject to some constraints. Here
the constraints correspond to the feasible region F that
holds all the acceptable solutions; x̄∗ stands for an optimal
solution. For a minimization problem, Pareto optimal-
ity can be formally delineated as: A decision vector x̄∗
is referred to as Pareto optimal if and only if there is
no x̄ such that ∀i ∈ {1, 2, .., r}, fi(x̄) ≤ fi(x̄∗) and ∃i ∈
{1, 2, . . . , r}, fi(x̄) < fi(x̄∗). In words, x̄∗ is called Pareto
optimal if there exists no possible vector x̄ that induces a
diminution of some criterion without a contemporaneous
increase of at least one other criterion [11, 14].

Genetic algorithm
A genetic algorithm is a search heuristic that imitates the
process of Darwinian evolution [11, 14]. Here the popula-
tion is generated randomly and consists of a set of chro-
mosomes that encode the parameters of the search space.
A fitness function corresponds to the objective function to
be optimized and is used to estimate the goodness of each
chromosome in the population. Genetic operators such as

selection, crossover and mutation are used to evolve sub-
sequent generations. If some particular criterion is met
or the maximum generation limit is reached, then the
algorithm finishes its execution.

Encoding chromosome
Each chromosome is represented by a binary string that
has three parts. A chromosome encodes a possible tri-
cluster. For a time series gene expression dataset having
G number of genes, C number of samples and T number
of time points, the first G bits correspond to genes, the
next C bits represent the samples and the last T positions
stand for the time points. Hence each string is repre-
sented by (G+C+T) bits, having a value either 1 or 0. A
value 1 means the corresponding gene or sample or time
point is a member of the tricluster. Suppose for a 3D gene
expression dataset having 10 genes, 5 samples and 8 time
points, a string {10010011100011101010101} represents
that genes {g1, g4, g7, g8, g9}, samples {s3, s4, s5} and time
points {t2, t4, t6, t8} are the members of the tricluster. The
initial population consists of a set of randomly generated
chromosomes. Retrieval of overlapping genes belonging
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to several triclusters are guaranteed by the step of chro-
mosome encoding. As each bit of a chromosome in the
population represents the presence or absence of genes,
replicates and time points in one resultant tricluster, often
we could find an overlap between the positions of any two
chromosomes containing a value 1. Thus different chro-
mosomes can encode overlapping triclusters. Some genes
and/ or samples and/ or time points could be added to the
initial population inspite of lying far away from the fea-
ture space. To remove such nodes from the population,
δ-TRIMAX has been used as a local search heuristic.

Objective functions
After applying δ-TRIMAX as a local search heuristic, each
string in the population represents one δ-tricluster having
an MSR below a threshold δ. Now we compute values of
the following three objective functions for each individual
in the population. The first objective function is

f1 = MSR
δ

, (2)

where MSR is the mean squared residue score of one
tricluster. Hence, f1 needs to be minimized. The second
objective function is

f2 = |I| ∗ |J| ∗ |K |
|G| ∗ |C| ∗ |T | , (3)

where (|I| ∗ |J| ∗ |K |) is the volume of the tricluster and
(|G| ∗ |C| ∗ |T |) is the volume of the dataset. Our goal
is to maximize the value of f2. Finally the third objective
function is

f3 =
∣∣∣∣∣1 − 6

∑
d2i

n(n2 − 1)

∣∣∣∣∣ , (4)

where di is the difference between the ranks of average
expression values (sorted either in ascending or descend-
ing order) over a subset of samples at ith time point of
each pair of genes in one tricluster and n is the number of
time points in that tricluster. Here the goal is to maximize
the non-parametric Spearman correlation coefficient (f3)
[15] of the resultant triclusters.

Motivations of objective functions
As the aim of our proposed algorithm is to find triclusters
having a lower MSR score and a higher volume, the first
two objective functions (f1 and f2) ensure to accomplish
those goals. Moreover the objective function f3 is used
to maximize the correlation coefficients among genes
belonging to the resultant triclusters. We have taken the
absolute values of the correlation coefficients just con-
sidering the fact that coregulated genes can be both up-
and down-regulated by the transcription factors across a
subset of time points.

Genetic operators
Here, non-dominated sorting and crowding distance are
used for fitness assignment and comparison [11]. A
crossover is a generalization of several mutations per-
formed at once, which we have not applied in this work
[16]. Instead, we have used bit string mutations with a
high mutation probability to generate offspring popula-
tion from a parent population. In this case, the mutation
occurs at random positions through bit flips. For instance,
for a binary string {1011010010} we generate a random
number ranges from 0 to 1 for each bit of the string. If
this random number for a particular bit is less than or
equal to the mutation probability, mutation occurs and
the value 1 or 0 is changed to a value 0 or 1, respec-
tively. The mutation probability remains same for each
of the bits of chromosome. After applying the muta-
tion operator on each individual of the population, some
genes/samples/time points can be added to the population
that are lying far away from the feature space. To cope with
this problem we have applied δ-TRIMAX as a local search
heuristic.

Elitism
We have included elitism to keep track of non-dominated
Pareto optimal solutions after each generation [11]. Stop-
ping criteria is measured by the convergence metric delin-
eated in equation (8).

Tricluster eigengene
We applied the singular value decomposition method
(SVD) on the expression data of each resultant tricluster
to detect its eigengene [17]. For instance, Xi

g×(c∗t) stands
for the expression matrix of ith tricluster, where g, c and t
represent the number of genes, samples and time points of
ith tricluster. Now we apply SVD on the data matrix (nor-
malized to mean=0 and variance=1). Now, the SVD of ith
tricluster can be represented as,

Xi = UDVT , (5)

where U and V are the orthogonal matrices.Ui is a g ∗ (c ∗
t) matrix with orthonormal columns,Vi is a (c ∗ t)× (c ∗ t)
orthogonalmatrix andDi is (c ∗ t)× (c ∗ t) diagonalmatrix
of singular values. Assuming that singular values in matrix
Di are arranged in non-decreasing order, we can represent
the eigengene of the ith tricluster by the first column of
matrix Vi, i.e.

Ei = Vi
1. (6)

KEGG pathway enrichment
To establish the biological significance of the genes
belonging to each resultant tricluster for both datasets
we have performed a KEGG pathway enrichment analy-
sis using the GOStats package in R with a p-value cutoff
(BH-corrected p-value) of 0.05 [18, 19].
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TFBS enrichment analysis
Genes that exhibit similar expression profiles are sup-
posed to be regulated by the same mechanism. To ana-
lyze the potential co-regulation of co-expressed genes,
we have done a transcription factor binding site (TFBS)
enrichment analysis using the TRANSFAC library (ver-
sion 2012.2) [20]. Here we used 52 million TFBS predic-
tions that are conserved between human, mouse, dog and
cow [21]. Out of these 52 million conserved TFBSs we
have selected the highest-scoring 1% for each TRANS-
FAC matrix to identify the most specific regulator (tran-
scription factor) - target interactions. We have applied a
hypergeometric test and Benjamini Yekutieli-FDR for p-
value correction to find over-represented binding sites (p-
value ≤ 0.05) in the upstream regions of genes belonging
to each tricluster [22, 23].

Datasets
Description of the artificial datasets
Artificial dataset 1 (AD1): First, we have applied the
proposed algorithm to an artificial dataset containing
1000 genes, 5 samples and 4 time points. We have then
embedded 3 perfect shifting triclusters (standard devia-
tion (σ ) = 0) of size 100 × 4 × 4, 80 × 4 × 4 and
60 × 4 × 4 into the dataset. In the next step, we have
implanted 3 noisy triclusters with different levels of noise
(σ = 0.1, 0.3, 0.5, 0.7, 0.9) into the synthetic dataset.

Artificial dataset 2 (AD2): Moreover, we have gener-
ated another artificial dataset which contains 200 genes,
10 replicates and 10 time points. Afterwards, we have
implanted 3 perfect shifting triclusters (standard devia-
tion (σ ) = 0) of size 50× 3× 3 , 50× 3× 3 and 50× 3× 3
into the dataset. In the next step, we have added different
levels of noise (σ = 0.1, 0.3, 0.5, 0.7, 0.9) into the synthetic
dataset.

Artificial dataset 3 (AD3): To evaluate the performance
of the proposed algorithm in case of the datasets contain-
ing different number of time points, we have generated

Table 1 Values of input parameters of EMOA-δ-TRIMAX namely,
λ and δ for different levels of noise in case of the artificial dataset
1 (AD1)

Noise levels (σ ) Values of λ Values of δ

0 1.2 0.0002

0.1 1.2 0.025

0.3 1.2 0.115

0.5 1.2 0.26

0.7 1.2 0.49

0.9 1.2 0.85

Table 2 Values of input parameters of EMOA-δ-TRIMAX namely,
λ and δ for different levels of noise in case of the artificial dataset
2 (AD2)

Noise Levels (σ ) Values of λ Values of δ

0 1.2 0.00002

0.1 1.2 0.045

0.3 1.2 0.06

0.5 1.2 0.29

0.7 1.2 0.59

0.9 1.2 0.8

three additional artificial datasets of size 200 (genes) × 10
(replicates) × 20 (time points), 200 (genes) × 10 (repli-
cates) × 25 (time points) and 200 (genes) × 10 (replicates)
× 30(time points) in which we have embedded 3 perfect
shifting triclusters of size 30 × 3 × 8, 30 × 3 × 6 and 30 ×
3 × 4.

Artificial dataset 4 (AD4): In order to show the perfor-
mance of the algorithm for the dataset containing missing
values, we have randomly deleted the values of 0.5%, 1%,
1.5% and 2% of all elements of one artificial dataset of size
200 × 10 × 20 containing three triclusters of size 30 × 3
× 8, 30 × 3 × 6 and 30 × 3 × 4.

Description of real-life datasets
Dataset 1: In this work, this previously published dataset
has only been used for comparing the performance of the
proposed algorithm with that of the other existing triclus-
tering algorithms since one of the algorithms we wanted
to compare our approach with, OPTricluster, can only be
efficiently applied to a short time series gene expression
dataset and thus, was not suitable to be used for dataset 2
(see below) [7]. Dataset 1 holds 54675 Affymetrix human
genome U133 plus 2.0 probe ids, 3 samples and 4 time
points (0, 3, 6 and 12 hours) (GSE11324) [24]. The goal
of this experiment was to determine cis-regulatory sites
in previously uncharted genome regions, responsible for
conveying estrogen responses, and to identify the cooper-
ating transcription factors that also contribute to estrogen
signaling in MCF7 breast cancer cells.

Dataset 2: This dataset contains 48803 Illumina
HumanWG-6 v3.0 probe ids, 3 replicates and 12 time
points (days 0, 3, 7, 10, 14, 20, 28, 35, 45, 60, 90 and 120)

Table 3 Values of input parameters of EMOA-δ-TRIMAX namely,
λ and δ for different levels of noise in case of the artificial dataset
3 (AD3_{a, b, c})

λ (AD3_a) δ (AD3_a) λ (AD3_b) δ (AD3_b) λ (AD3_c) δ (AD3_c)

1.2 0.0002 1.2 0.02 1.2 0.02
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Table 4 Values of input parameters of EMOA-δ-TRIMAX namely,
λ and δ for different levels of noise in case of the artificial dataset
4 (AD4)

% of missing values λ δ

0.5 1.2 0.02

1 1.2 0.02

1.5 1.2 0.02

2 1.2 0.02

(GSE35671) [12]. All these replicates are independent of
each other. The aim of this study was to provide insights
into the molecular regulation of hiPSC differentiation to
cardiomyocytes.

Dataset 3: This experiment was carried out to study
the dynamics of expression profiles of 54675 Affymetrix
human genome U133 plus 2.0 probe ids in response to
IFN-beta-1b treatment across four time points over 6
patients (GSE46280) [25].

Results and discussion
Results on an artificial dataset
To evaluate the performance of the proposed algorithm
on the artificial datasets described above (2.6.1), we have
used the affirmation score [8, 9] defined as

SM∗(Tim,Tres) =
√
SM∗

G(Tim,Tres) × SM∗
C(Tim,Tres) × SM∗

T (Tim,Tres),

(7)

where, Tim is the set of implanted triclusters, Tres repre-
sents the set of triclusters extracted by any triclustering
algorithm, SM∗

G(Tim,Tres) is the average gene affirmation
score, SM∗

C(Tim,Tres) is the average sample affirmation
score and SM∗

T (Tim,Tres) is the average time point affir-
mation score of Tres with respect to Tim. The value of
SM∗(Tim,Tres) ranges from 0 to 1. If Tres = Tim, then the
affirmation score is 1.
The affirmation score was also used to compare the

performance of the proposed algorithm with that of the
other triclustering algorithms and one biclustering algo-
rithm [26]. Before applying the biclustering algorithm to
the artificial dataset we have converted G × C× T dataset
into a G × CT dataset. To compute the value of δ, we have

Fig. 3 Comparison in terms of affirmation score. Comparison between EMOA-δ-TRIMAX, δ-TRIMAX, TRICLUSTER, OPTricluster and the biclustering
algorithm proposed by Cheng and Church in terms of affirmation score for the artificial dataset 1
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first clustered the genes over all time points and then the
time points over the subset of genes for each gene cluster
in each sample plane using the k-means algorithm. Taking
a randomly selected sample plane, we have computed the
MSR score of the submatrix of each gene and time-point
cluster and repeated this procedure 100 times. Then we
have taken the lowest value as the value of δ. Although it is
possible to minimize the MSR score without introducing
the threshold parameter δ, minimizingMSRwithout using
any threshold may either yield some small sized triclus-
ters which may not provide any biologically meaningful
information or produce large sized triclusters which may
contain genes and/or samples and/or time points lying
far apart from the feature space. Thus using a thresh-
old parameter δ may balance the size and quality of the
resultant triclusters. The value of λ has been experimen-
tally set to maximize the speed of the proposed algorithm
and minimize the risk falling into a local optimum. The
values of δ and λ used to run the proposed algorithm
and our previously proposed δ-TRIMAX algorithm on the
artificial datasets are enlisted in Tables 1, 2, 3 and 4. We
have tuned the input parameters of other triclustering

algorithms rather than using the default parameter values
in order to achieve better results on the artificial datasets.
The OPTricluster algorithm, which was proposed to mine
only short time series gene expression datasets and yields
triclusters containing all the time points, has only been
applied to the dataset AD1 as this dataset contains tri-
clusters having the same number of time points as the
entire dataset. For the rest of the artificial datasets used
in this work, the time point affirmation scores will be
deteriorated for OPTricluster algorithm which in turn
affects the overall affirmation score. From Figs. 3 and 4
we can observe that the proposed algorithm outperforms
the other algorithms for each of the artificial datasets in
terms of affirmation score. Figure 5 shows that although
the affirmation scores of the proposed algorithm become
worse in case of the dataset containing missing data
points, it still outperforms the other algorithms. More-
over, Table 5 indicates the fact that EMOA-δ-TRIMAX
can effectively deal with the datasets having different
number of time points.
Moreover we compared the performance of the pro-

posed algorithm with that of the existing ones in terms

Fig. 4 Comparison in terms of affirmation score. Comparison between EMOA-δ-TRIMAX, δ-TRIMAX and TRICLUSTER algorithm in terms of
affirmation score for the artificial dataset 2
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Fig. 5 Comparison in terms of affirmation score. Comparison between EMOA-δ-TRIMAX, δ-TRIMAX and TRICLUSTER algorithm in terms of
affirmation score for the artificial dataset 4

of CPU time. From Fig. 6, we can see that the proposed
algorithm takes relatively more time to retrieve one tri-
cluster as Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) has been used to optimize multiple objectives.

Robustness of the evolutionary algorithm
In order to show the robustness of the proposed algo-
rithm, we have used the artificial datasets 1 and 2 with
different levels of noise described above (2.6.1). For each
of these datasets, we have run the proposed algorithm for
20 times and reported the standard deviations of the affir-
mation scores obtained after each run in Table 6 which
establishes the robustness of the proposed algorithm as in

Table 5 Comparison between EMOA-δ-TRIMAX, δ-TRIMAX and
TRICLUSTER algorithm in terms of affirmation score for the
artificial dataset 3 (AD3_a, AD3_b, AD3_c)

Dataset EMOA-δ-TRIMAX δ-TRIMAX TRICLUSTER

AD3_a 1 1 1

AD3_b 1 1 1

AD3_c 1 1 1

case of each of the two datasets, the affirmation scores are
very close to the mean.

Results on real-life datasets
As a data preprocessing step, we have used robust multi-
array average (RMA) method to normalize the datasets.
The values of the input parameters of EMOA-δ-TRIMAX
are provided in Table 7. We have set the values of λ

and δ of EMOA-δ-TRIMAX and our previously proposed
δ-TRIMAX algorithms for each of the real-life datasets
according to our criteria explained in section ‘Results on
an artificial dataset’. As using default parameter values
may often produce poor results, the input parameters of
other algorithms were tuned in order to obtain better
results on each of the real-life datasets. Table 8 shows the
percentage of probe ids, replicates and time points that
are covered by the triclusters obtained with the proposed
algorithm.

Convergence of solutions
In order to show the convergence of solutions towards
the Pareto optimal front around its center region, we have
computed minSum values in each generation as follows
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Fig. 6 Comparison in terms of CPU time. Comparison between EMOA-δ-TRIMAX, δ-TRIMAX and TRICLUSTER algorithm in terms of CPU time for the
artificial datasets 1 (a), 2 and 3 (b)

minSum(	) = min
x∈	

(f1(x)+(1−f2(x))+(1−f3(x))), (8)

where 	 denotes the current population and f1, f2 and f3
correspond to the objective functions defined in section
‘Methods’. We have found that the solutions converge
towards a Pareto optimal front in case of each of the
real-life datasets (Fig. 7).

Performance comparison
We have applied our proposed algorithm on the three
aforementioned real-life datasets and compared its per-
formance with that of other triclustering algorithms. For

Table 6 Standard deviations of the affirmation scores yielded by
the EMOA-δ-TRIMAX algorithm for artificial dataset 1 (AD1) and 2
(AD2)

Noise levels (σ ) Standard deviation (AD1) Standard deviation (AD2)

0 0.05 0.003

0.1 0.05 0.004

0.3 0.02 0.02

0.5 0.005 0.02

0.7 0.003 0.03

0.9 0.004 0.02

this comparison, we have computed a Tricluster Diffusion
(TD) score and a Statistical Difference from Background
(SDB) score [27]. The TD score has been defined by
equation 9.

TDi = MSRi
Volumei

, (9)

where MSRi and Volumei stand for the mean squared
residue score (see eq. (1)) and for the volume of each resul-
tant tricluster i. The volume of the ith tricluster can be
defined as (|Ii|∗|Ji|∗|Ki|), where |Ii|, |Ji| and |Ki|, represent
the number of genes, samples and time points of the ith
tricluster, respectively. A lower TD score represents bet-
ter quality of triclusters. Figures 8, 9 and 10 plot the TD

Table 7 Values of input parameters of EMOA-δ-TRIMAX for each
of the real-life datasets

Datasets Dataset 1 Dataset 2 Dataset 3

λ 1.2 1.2 1.2

δ 0.012382 0.008 0.008754

Number of generations 100 100 100

Population Size 100 100 100

Mutation probability 0.9 0.9 0.9
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Table 8 Percentage of probe ids, replicates and time points
covered by the resultant triclusters for each of the real-life
datasets

Datasets Dataset 1 Dataset 2 Dataset 3

Coverage of probe ids 99.02% 88.14% 93%

Coverage of replicates 100% 100% 100%

Coverage of time points 100% 100% 100%

scores (in log scale) of the resultant triclusters produced
by all algorithms, showing that EMOA-δ-TRIMAX yields
triclusters having lower TD scores than those produced by
other algorithms for each of the three datasets.
The statistical difference from background (SDB) score

signifies whether a set of n triclusters is statistically dif-
ferent from the background data matrix. The SDB score
is defined by equation 10. A higher SDB score signifies
better performance of the algorithm.

SDB = 1
n

n∑
i=1

1
r
∑r

j=1 RMSRj − MSRi

MSRi
, (10)

where n is the total number of triclusters extracted by the
algorithm. MSRi represents the mean squared residue of
the ith tricluster retrieved by the algorithm and RMSRj
stands for the mean squared residue of the jth random
tricluster having the same number of genes, experimen-
tal samples and time points as the ith resultant tricluster.
Here a higher value of the numerator indicates a better
quality of the resultant tricluster. In our study we have
set r to 100. OPTricluster can not be applied to Dataset 2
as it effectively mines only short time series gene expres-
sion data having approximately 3-8 time points. From
Tables 9, 10 and 11 we can observe the highest SDB scores
for EMOA-δ-TRIMAX algorithm in case of the dataset 1,
dataset 2 and dataset 3.

Biological significance
KEGG pathway enrichments have been found for each
resultant tricluster for datasets 1, 2 and 3. To compare
the performance of our proposed algorithm with that of
the other algorithms using KEGG pathway enrichment we
used a hit score [28]. The hit score for KEGG pathway
enrichment can be delineated by equation 11.

Hit(K) = max{∣∣N1
T
∣∣ , ∣∣N2

T
∣∣ , . . . , ∣∣Nn

T
∣∣}

|T | , (11)

whereNi
T is the intersection gene set of triclusterT and its

enriched KEGG pathway term i; |T | is the total number of
genes in tricluster T. A higher hit score signifies that more
genes in T participate in a canonical pathway.
We have observed TFBS enrichment for 98%, 96% and

94% of all resultant triclusters for datasets 1, 2 and 3,

Fig. 7 Convergence of solutions. Convergence of solutions towards
the Pareto optimal front.minSum values are plotted for Dataset 1 (a),
Dataset 2 (b) and Dataset 3 (c)
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Fig. 8 Comparison in terms of Tricluster Diffusion score for Dataset 1. Performance comparison between EMOA-δ-TRIMAX, δ-TRIMAX, TRICLUSTER
and OPTricluster in terms of TD (in log scale) score for Dataset 1

Fig. 9 Comparison in terms of Tricluster Diffusion score for Dataset 2. Performance comparison between EMOA-δ-TRIMAX, δ-TRIMAX and
TRICLUSTER in terms of TD (in log scale) score for Dataset 2
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Fig. 10 Comparison in terms of Tricluster Diffusion score for Dataset 3. Performance comparison between EMOA-δ-TRIMAX, δ-TRIMAX, TRICLUSTER
and OPTricluster in terms of TD (in log scale) score for Dataset 3

respectively. We used a Hit score (equation (12)) to com-
pare the performance of EMOA-δ-TRIMAX with that of
other triclustering algorithms using the results of TFBS
enrichment.

Hit(TF) = max{∣∣P1T
∣∣ , ∣∣P2T

∣∣ , . . . , ∣∣PnT
∣∣}

|T | , (12)

where PiT is the intersection gene set of tricluster T and
its enriched TRANSFAC matrix i; |T | is the total number
of genes in tricluster T. A higher hit score signifies that

Table 9 Performance comparison between EMOA-δ-TRIMAX,
δ-TRIMAX, TRICLUSTER and OPTricluster in terms of SDB score for
Dataset 1

Algorithms SDB score

EMOA-δ-TRIMAX 2.49851

δ-TRIMAX 2.140935

TRICLUSTER 2.094091

OPTricluster 0.4956035

more genes in T are regulated by a common transcription
factor.
At first we have calculated the hit scores Hit(K) and

Hit(TF) for each resultant tricluster using KEGG path-
way and TFBS enrichment results, respectively. For each
tricluster (T) we generated 100 random gene lists hav-
ing the same size as the tricluster (T). The Hit scores for
each randomly generated gene list were computed using
KEGG pathway and TFBS enrichment results. As final
step we have applied the non-parametric Mann-Whitney-
Wilcoxon test to compute the significance between these
two sets of hit scores in terms of p-values [29]. From
Figs. 11 and 12 it can be seen that EMOA-δ-TRIMAX

Table 10 Performance comparison between EMOA-δ-TRIMAX,
δ-TRIMAX and TRICLUSTER in terms of SDB score for Dataset 2

Algorithms SDB score

EMOA-δ-TRIMAX 13.88559

δ-TRIMAX 12.10529

TRICLUSTER 7.520363
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yields more significant triclusters than the other algo-
rithms in terms of hit scores computed from the enriched
KEGG pathways and TRANSFACmatrices for each of the
real-life datasets because a higher percentage of triclus-
ters obtained by the proposed algorithm have a smaller
p-value than those produced by the other algorithms
for each of the real-life datasets. Particularly striking is
the inverse trend of Hit Scores in the TFBS enrichment
observed with EMOA-δ-TRIMAX, which has by far the
largest population at the lowest p-values, and the other
algorithms, where an increasing number of clusters is
found with increasing p-values (Fig. 12 a–c).

Importance of clustering biological replicates in 3D gene
expression datasets
Time series microarray experiments are performed to
measure the expression profiles of genes at a set of time
points. At each time point, the experiments are often
repeated for a certain number of times, which in turn
yield the expression profiles of the genes over a set
of biological replicates at each time point. Though the
expression profiles of these biological replicates are mea-
sured at the same time point keeping the experimental
setup unchanged, peculiarities in experimental protocol
or physiological variation of the population may cause
disparity in the expression profiles of technical or biologi-
cal replicates, respectively. Thus grouping those replicates
which exhibit similar expression profiles might play an
important role to identify those replicates that behave
similarly. This enables us to retrieve biologically meaning-
ful information from these samples rather than leveling
effects by forcing together samples exhibiting dissimi-
lar expression profiles. Here, we have tried to unravel
the reason of not always getting all the replicates as the
members of each resultant tricluster. In Fig. 13, we have
plotted the mean of the Euclidean distances between
the expression profiles of each pair of clustered samples
over the clustered genes and time points along with that
of each pair of all replicates. From this figure, we can
notice the enhancement of the average intra-cluster dis-
tances between replicates while incorporating the missing
replicates into our resultant triclusters for each of the
real-life datasets. Thus, grouping the closest biological

Table 11 Performance comparison between EMOA-δ-TRIMAX,
δ-TRIMAX, TRICLUSTER and OPTricluster in terms of SDB score for
Dataset 3

Algorithms SDB score

EMOA-δ-TRIMAX 9.454915

δ-TRIMAX 8.945816

TRICLUSTER 7.076184

OPTricluster 0.4383489

Fig. 11 Comparison in terms of Hit score using KEGG pathway
enrichment. Performance comparison between EMOA-δ-TRIMAX,
δ-TRIMAX, TRICLUSTER and OPTricluster in terms of Hit scores for
Datasets 1 (a), 2 (b) and 3 (c)
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Fig. 12 Comparison in terms of Hit score using TFBS enrichment.
Performance comparison between EMOA-δ-TRIMAX, δ-TRIMAX,
TRICLUSTER and OPTricluster in terms of Hit scores for Datasets 1 (a),
2 (b) and 3 (c)

Fig. 13 Importance of clustering replicates. Average Euclidean
distances between the expression profiles of each pair of clustered
(red) and all (blue, dashed line) replicates over the clustered genes
and time points for Dataset 1 (a), Dataset 2 (b) and Dataset 3 (c)
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replicates improves the quality of the resultant triclus-
ters and thus may play instrumental roles in extracting
more biologically meaningful information. From Fig. 13
we can see that Dataset 3 has the most divergent repli-
cates. It is not astonishing to us as in Dataset 1, the
expression profiles were measured during the response
of a well-controlled cell culture to estrogen; in Dataset 2,
the expression profiles were monitored during the devel-
opment differentiation of a cell culture over a long time
period, with many chance to diverge whereas, in case of
Dataset 3, replicates correspond to six human individuals
where the applied interferon-beta elicited highly divergent
responses.

Identifying key genes of triclusters and analyzing their
roles during hiPSC differentiation into cardiomyocytes
To detect key genes, we have first represented each tri-
cluster by its eigen-gene and then computed the Pearson
correlation coefficient between each gene of the triclus-
ter and its eigen-gene. We then ranked the probe-ids in
descending order of Pearson correlation coefficient. We
consistently observed that the genes corresponding to,
for instance the 10 top-most probe-ids exhibited clear
functional characteristics with relevance for cardiac devel-
opment (or concomitant processes, see below) when being
mapped to GOBPs (Gene Ontology Biological Processes)
or metabolic pathways (from KEGG). Therefore, we con-
sidered them as “key genes” of that tricluster. Usually,
no similarly clear categorizations were found for all the
genes of one tricluster. For instance, if we perform biolog-
ical process enrichment test using all genes of tricluster
64, we would not find the biological processes like S-
adenosylhomocysteine, lipoprotein metabolic processes
as the enriched ones. From Fig. 14 we can see that the
identified key genes of the triclusters are highly corre-
lated with the corresponding eigen-gene vectors. It has
been stated in the original work that cardiomyocyte dif-
ferentiation (dataset 2) occurs during days 0, 3, 7, 10,
14, 20, 28, 35 whereas days 35, 45, 60, 90, 120 are the
post-differentiation time points [12]. On day 14, the heart
beating was first observed. Figure 15 summarizes the cor-
responding GOBPs (Gene Ontology Biological Process)
and metabolic pathways of the corresponding tricluster
key genes during different stages of cardiomyocytes differ-
entiation. It is of interest to observe enrichment of several
biosynthetic and metabolic processes such as lipoprotein,
naphthalene, S-adenosylhomocysteine, serotonin, fucose,
putrescine, ketone, prostanoid, fatty acid, carbohydrate,
spermidine etc. and amine, putrescine, folate biosynthetic
processes during stem cell differentiation into cardiomy-
ocyte. Each of the aforementioned metabolic and biosyn-
thetic processes is known to play an instrumental role
in either heart development or in preventing cardiovas-
cular diseases [30–41]. Moreover, the enriched biological

processes show the parallel occurrence of neural and
cardiac development [42]. This is not too surprising since
a previous study reported that the crosstalk between the
neuronal and the cardiovascular system may play a piv-
otal role in the development of both systems [43]. The
lists of enriched processes also reveal the occurrences
of smooth, cardiac and skeletal muscle cell differentia-
tions during cardiomyocyte development; this finding is
also supported by previous reports [44]. Moreover, the
instrumental role of the canonical Wnt receptor signal-
ing pathway involved in heart development can also be
deduced from the list of enriched biological processes
involved in all stages of differentiation. A previous study
inferred Wnt signaling pathway as an important regulator
during cardiomyocyte differentiation [45]. Furthermore,
through our analysis we have identified the enrichment of
biological process such as histone H3 acetylation or the
hippo signaling which are also inferred to be functionally
associated with the characteristics of hiPSC-derived car-
diomyocytes [46, 47]. The Additional file 1: Tables S1-S5
contain the lists of enriched GOBPs/ KEGG pathways of
the triclusters shown in Fig. 15. Additionally, in Additional
file 1: Tables S6-S8, we have enlisted genes that are already
known to play important roles in cardiovascular diseases
and development, in addition to genes that are hypothe-
sized to be functional in this context by interpreting and
associating their general biological functions.

Conclusion
In this work, we have shown that the improved ver-
sion of our previously proposed triclustering algorithm
EMOA-δ-TRIMAX outperforms the other algorithms
when applied to four synthetic datasets as well as on
three real-life datasets used in this work. Moreover, after
retrieving groups of co-expressed and co-regulated genes
over a subset of samples and across a subset of time points
from a microarray gene expression dataset of hiPSC-
derived cardiomyocyte differentiation, using the singular
value decomposition method we have detected triclus-
ter key genes most of which have already been shown
or inferred to play instrumental roles in cardiac devel-
opment. Thus, the other identified key genes can be
hypothesized to be meaningful in this context as well,
which needs to be experimentally validated. Furthermore,
the enriched biological processes for the identified key
genes of each tricluster not only resulted in a set of
biological processes, associated with stem cell differen-
tiation into cardiomyocytes but also a set of metabolic
processes, the majority of which are known to play crucial
roles in preventing cardiac diseases. Thus, the identified
metabolic processes can be used to provide insights into
potential therapeutic strategies to the treatment of car-
diovascular diseases. Moreover, the triclusters for which
the identified key genes are found to be involved in heart
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Fig. 14 Average Pearson correlation coefficient (PCC) between key genes. Average Pearson correlation coefficient (PCC) between 10 top-most
probe ids of triclusters and the corresponding eigen-gene vectors during different phases of cardiomyocyte differentiation

Fig. 15 Summarizations of GOBPs and metabolic pathways of the key genes of resultant triclusters. Summarization of enriched GOBPs and
metabolic pathways of the key genes of the mentioned triclusters during hiPSC differentiation to cardiomyocytes. Green, red, blue and black
colored boxes represent the time points Days 0 to 35, Days 35 to 120, Days 14 to 120 and Days 0 to 120, respectively



Bhar et al. BMC Bioinformatics  (2015) 16:200 Page 18 of 19

development might be facilitative to unravel regulatory
mechanisms during different stages of cardiomyocyte
development.

Additional file

Additional file 1: Algorithm I (δ-TRIMAX).
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