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Distribution Analyzer, a methodology for
identifying and clustering outlier
conditions from single-cell distributions,
and its application to a Nanog reporter
RNAi screen
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Abstract

Background: Chemical or small interfering (si) RNA screens measure the effects of many independent experimental
conditions, each applied to a population of cells (e.g., all of the cells in a well). High-content screens permit a readout
(e.g., fluorescence, luminescence, cell morphology) from each cell in the population. Most analysis approaches compare
the average effect on each population, precluding identification of outliers that affect the distribution of the
reporter in the population but not its average. Other approaches only measure changes to the distribution with a
single parameter, precluding accurate distinction and clustering of interesting outlier distributions.

Results: We describe a methodology to identify outlier conditions by considering the cell-level measurements
from each condition as a sample of an underlying distribution. With appropriate selection of a distance metric, all
effects can be embedded in a fixed-dimensionality Euclidean basis, facilitating identification and clustering of
biologically interesting outliers. We demonstrate that measurement of distances with the Hellinger distance
metric offers substantial computational efficiencies over alternative metrics. We validate this methodology using
an RNA interference (RNAi) screen in mouse embryonic stem cells (ESC) with a Nanog reporter. The methodology
clusters effects of multiple control siRNAs into their true identities better than conventional approaches describing the
median cell fluorescence or the commonly used Kolmogorov-Smirnov distance between the observed fluorescence
distribution and the null distribution. It identifies outlier genes with effects on the reporter distribution that would have
been missed by other methods. Among them, siRNA targeting Chek1 leads to a wider Nanog reporter fluorescence
distribution. Similarly, siRNA targeting Med14 or Med27 leads to a narrower Nanog reporter fluorescence distribution.
We confirm the roles of these three genes in regulating pluripotency by mRNA expression and alkaline phosphatase
staining using independent short hairpin (sh) RNAs.
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(Continued from previous page)

Conclusions: Using our methodology, we describe each experimental condition by a probability distribution. Measuring
distances between probability distributions permits a multivariate rather than univariate readout. Clustering
points derived from these distances allows us to obtain greater biological insight than methods based solely
on single parameters. We find several outliers from a mouse ESC RNAi screen that we confirm to be pluripotency
regulators. Many of these outliers would have been missed by other analysis methods.

Keywords: Genome-scale screen analysis, Fluorescence distribution, High-content screening methodology,
Nanog RNAi screen, Hellinger distance, Kolmogorov-Smirnov distance

Background
High-content screening has become a popular experimental
tool to study the effects of a large number of compounds
or single-gene knockdown conditions on individual cells,
offering a fine-grained cell-level characterization of re-
sponse to a large number of treatments [1–3]. Studies that
utilize high-content microscopy have become more prac-
tical thanks to the development of siRNA and chemical
libraries and have provided mechanistic insights into
the regulation of complex phenotypes [4]. Embryonic
stem cells (ESCs) are among the most popular of the
systems studied with high-content screening in the
search for regulators of pluripotency and differenti-
ation. In these studies, fluorescent reporters are often
driven by pluripotency genes such as Pou5f1 (gene id
18999) [5–10], Nanog (gene id 71950) [11–13] and
Zfp42 (gene id 22702, also known as Rex1) [14, 15].
Transcriptional heterogeneity in ESCs has been dem-

onstrated to regulate pluripotency and cell fate decisions
[16–21]. An analysis of the regulators of heterogeneity
of ESC populations is thus of substantial scientific inter-
est. However published ESC screens [5–15, 22, 23] have
yet to exploit the cellular-level data in their analyses,
although others have utilized variants of the Kolmogorov-
Smirnov (KS) statistic to compare single-cell distributions
[24–27]. While such screens theoretically permit the study
of an entire population of treated cells, most currently-
applied computational methods, including those that
analyze the cell-level distribution with the KS statistic, re-
duce the effect of a treatment to a single (univariate) par-
ameter, such as median or mean cell fluorescence [28–32]
or KS distance of the fluorescence distribution to the null
effect distribution [24–27]. In doing so, a significant
amount of potentially informative data about the indi-
vidual cells, each with distinct levels of reporter expres-
sion, is typically disregarded. For example, effects
leading to more uni- or bi-modal, or to narrower or
broader, fluorescence distributions, may not affect the
mean or median fluorescence but may be of substantial
biological interest. As we demonstrate below, such situa-
tions regularly arise in the context of high-content screen-
ing and convey biologically relevant information. Therefore,

a generalizable method for screens that can extract a multi-
variate readout from the univariate single-cell distributions
is desired.
Here, we describe the types of screens amenable to

such distribution-based analysis, provide a novel and
broadly applicable approach and describe the needed
steps to reduce terabytes of high-resolution images of
treated cells to a small number of the most relevant and
interpretable parameters measuring the effects. We dem-
onstrate its validity when applied to the raw data of our
previously-described small interfering (si) RNA screen
using a fluorescent Nanog pluripotency reporter mouse
(m) ESC line [12]. Using our approach we are able to a)
reliably distinguish between conditions whose effects ap-
pear comparable when scored using conventional meth-
odologies, b) identify outliers in the screen using a
specified Z-score cutoff and c) classify outliers based on
changes to their cell-level fluorescence distributions,
assigning them to prototypical outlier effect categories.
In the process, we identify a number of novel regulators
of pluripotency that would have been missed by conven-
tional methodologies.

Methodology
A distribution-based methodology can be applied to
analyze high-content screens in which the effect from
each experimental condition (e.g., a well treated with a
particular siRNA or chemical) is measured at the single-
cell level. These measurements are typically made when a
collection of cells within a well of a screening plate is im-
aged. Specialized software packages process the images to
extract parameter(s) for each cell, e.g., average fluores-
cence per cytoplasmic pixel. Cellular-level data is also
routinely measured in screens using a flow cytometer that
detects fluorescence and/or scatter. The methodology de-
scribed below is for univariate cell-level input data (when
each cell is described with one parameter). It provides a
multivariate condition-level (or well-level) output.
The distribution-based methodology consists of the fol-

lowing steps as summarized in Fig. 1a, b. R source code
for the described methodology and analysis, including
sample data, can be found in Additional file 1: Code S1.
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Fig. 1 (See legend on next page.)
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Normalization
Because large-scale screening is necessarily staggered
across multiple data acquisition sets (e.g., into 384-well
screening plates or flow cytometer runs, each of which
has its own set of controls), normalization is a prerequis-
ite for comparing samples from different sets. Cell cul-
ture technique, post-fixation handling and microscopy
all contribute to technical variability.
Normalization ensures, for example, that a cell highly

fluorescent relative to the other cells on plate A is
treated the same way as a highly fluorescent cell on plate
B. Similarly, it ensures that non-fluorescing cells on plate
A have approximately the same background fluorescence
level as non-fluorescing cells on plate B.
Parametric affine transformation (i.e., translation plus

a linear scale) is the conventional normalization method
used in the screening field [31]. Affine transformations
include all of the normalization methods implemented
in the popular screen analysis R package cellHTS2 [31],
including control-based normalization (e.g., percent of
control, normalized percent inhibition) and non-control
based normalization (e.g., plate median normalization,
Z-score, B-score) methods.
However, the methodology identifies certain prob-

ability distribution functions as outliers in a non-
parametric space of probability distribution functions.
Its normalization should ensure that the distribution
distance (described below) between probability distri-
butions of identical conditions across datasets (plates)
is as close to zero as possible. An affine transformation
(whether by control or non-control methods) offers no
such guarantee. Therefore, affine transformation is not
generally recommended.
Instead, an initial non-parametric normalization is re-

quired to compensate for the technical variation between
screening plates. Because the probability distributions
derive from individual cell measurements, the non-
parametric normalization is determined from and applied
to cell-specific values rather than well-specific values.
While an affine transformation is entirely defined by

two values (e.g., mean and standard deviation), a non-
parametric normalization is specified by a collection of
values. We determine these values from a reference
dataset (plate). Any representative plate from the screen

that has passed quality control validation (see Screen
Quality Control in Results) is an appropriate choice for
reference plate.
The non-parametric normalization can be non-control

based or control-based. Prior to normalization across
plates, parameter values, e.g., fluorescence, for each cell
are transformed to a logarithmic scale.

Non-control based non-parametric normalization
If cell populations across datasets (e.g., all of the cells on a
screening plate) can be considered comparable (typically,
because the controls on each screening plate are fixed and
the vast majority of the non-control experimental condi-
tions have no effect), non-control based non-parametric
normalization can be employed. Given w cells on a refer-
ence plate, whose fluorescence is ranked from 1 to w, and
v cells on the plate to be normalized, whose fluorescence
is ranked from 1 to v, the fluorescence of the ith ranked
cell on the plate to be normalized is assigned the value of

the w−1ð Þ i−1
v−1 þ 1

� �th
ranked cell in the reference dataset,

with linear interpolation.
For example, if there are w = 1,200,001 cells in the 384-

well reference plate and v = 1,000,001 cells in the plate to
be normalized, the fluorescence of the cell with the
750,001th highest ranked fluorescence on the plate to be
normalized will be reassigned to the fluorescence of the

1; 200; 000 750;000
1;000;000 þ 1

� �th
¼ 900; 001th highest ranked cell

in the reference plate. Normalization effects on plates of
siRNA libraries for our Nanog-GFP reporter line following
non-control based non-parametric transformation are
shown in Additional file 2: Figures S1a, S1b, Additional
file 3: Figure S2c and Additional file 4: Figure S3.

Control-based non-parametric normalization
If only the controls across datasets (plates) can be consid-
ered comparable (e.g., if the non-control wells on one plate
are expected to have consistently different distributions
than the non-control wells on another plate), a control-
based non-parametric normalization is required.
Given b different types of controls present on every plate,

labeled i1, i2, … ib (e.g., b = 5 types of controls on each plate
named siGFP, siSox2, siNon-targeting, Empty, and siNlk),

(See figure on previous page.)
Fig. 1 Workflow for distribution-based methodology. a Processing of raw images into distributions. Images are segmented based on nuclear
staining (blue) and cytoplasmic GFP (green) to yield cytoplasmic fluorescence intensities for each cell (green or grey, if below background). These
values are used to estimate a probability distribution for the parameter. b Schematic of single-cell distribution-based methodology. Parameter
values are converted into a probability distribution estimate. The distances between each probability distribution are used to assign each condition a
point in Euclidean space. Dimensionality reduction is performed using PCA and clustering applied to distinguish effects and categorize the outliers.
c NG4 line vector [11]. The BAC-based GFP reporter is driven by the Nanog promoter. d Schematic of siRNA screen as previously described [12]. Pools
of siRNA covering the mouse genome are printed onto 55 384-well plates along with controls in triplicate. NG4 cells are reverse transfected and
cultured for 3 days under mild differentiation conditions. Cells are fixed, nuclei stained and plates imaged at cell-level resolution
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and n(ij) cells present in the wells on the plate treated with
control ij, a reference plate of controls is generated specific
to a given plate to be normalized. The cell (fluorescence)
values from the reference plate for each control condition ij
are sampled with replacement n(ij) times, where n(ij) is the
number of cells of type ij on the plate to be normalized.
The sampling procedure is performed by pseudorandom
number generation with a fixed seed. This procedure ad-
dresses the variability in the number of cells (and wells) of a
given control type across datasets.
Thus the number of control cells on the generated ref-

erence plate is guaranteed to be identical to the number
of control cells on the plate to be normalized, namelyX

b
j¼1n ij

� �
. The sorted values from the plate to be nor-

malized are mapped to the sorted values of the gener-
ated reference plate. The values of all other cells not
considered controls on the plate to be normalized are
derived by linear interpolation from this mapping. Any
values outside the interval of control values are assigned
the value of the closest data extreme.
For example, consider a plate with two types of controls,

A and B, that is to be normalized to a reference plate. The
values of cells on the reference plate corresponding to i1
(“control A”) are (5,2,4) and the values of cells on the ref-
erence plate corresponding to i2 (“control B”) are (6,4,8,7).
The values of cells on the plate to be normalized corre-
sponding to control A are (4,3,5,4) and the values of
cells on the reference plate corresponding to control B
are (8,7,5). Note that the number of cells of each con-
trol type on the two plates may differ. The values from
the reference plate are sampled 4 times from control A
and 3 times from control B, yielding (in one outcome
of a random sampling) (2,5,4,5) for control A and
(7,4,7) for control B. All these control values on the ori-
ginal and simulated reference plate are aggregated and
sorted to define the mapping from which interpolation
is performed: (3,4,4,5,5,7,8)→ (2,4,4,5,5,7,7). By this
mapping, non-control cells with the values (1,3.5,5,
8,6,10) are interpolated to their new normalized values
of (2,3,5,7,6,7).
Control-based non-parametric normalization is limited

by the smaller number of cells on a dataset that can be
used for normalization versus non-control based methods,
possibly resulting in a coarser interpolation.
An example of control-based non-parametric trans-

formation is shown in Additional file 3: Figure S2b.

Comparison of normalization methods
The effects of two plates following parametric normali-
zation by Z-score [31], control-based non-parametric
normalization and non-control based non-parametric
normalization were compared (Additional file 3: Figure
S2). The distributions between control wells closely

lined up across plates following normalization by all
methods, including the theoretically inappropriate Z-
score normalization, suggesting that many approaches
to normalization are likely valid.

Construct a distribution for each condition by kernel
density estimation
For each condition, the readout from single cells is
used to construct a smooth estimate of the probability
density function (PDF, also called the probability distri-
bution) by Gaussian kernel density estimation [33]. The
probability density function is estimated over the do-
main [a,b], defined by the domain of the reference plate
cell-level values. Non-parametric normalization (above)
guarantees that cell values from every plate fall within
this domain.
Each probability distribution p(x) on [a,b] may be

approximately represented as a discrete probability dis-
tribution p(xi) = (p(x1),…,p(xm)) on a set of m bins whose
bin centers are (x1,…,xm), where x1 = a and xm = b. The
width of the bins is determined by the bandwidth of
the kernel density estimation, chosen to be 0.9 times the
minimum of the standard deviation and the inter-
quartile range divided by 1.34 times the sample size to
the negative one-fifth power [33]. The discrete prob-

ability distribution is scaled such that
X

m
i¼1 p xið Þ ¼ 1.

A sufficient number of cells must be present in each
condition in order to estimate the true probability
distribution with reasonable confidence. A minimum-
cells parameter is chosen so that the error in gener-
ation of the distributions remains smaller than the
variation between known null-effect conditions. We
disregard conditions in which fewer than minimum-
cells cells are identified following image processing
(e.g., conditions that lead to substantial cell death) to
avoid constructing unreliable estimates of the fluores-
cence distribution.
In our screen dataset, the KS statistic between the

probability distribution estimate and the actual cell mea-
surements was consistently greater than 0.05 in wells
with fewer than 100 cells when m = 512 (Additional file 5:
Figure S4). In contrast, the median KS statistic between
empty wells and the screen-averaged null-effect was 0.087.
Therefore, the minimumcells parameter for density esti-
mation in DistributionAnalyzer was set to a default value
of 100 because generation of a probability distribution
from wells with >100 cells in our dataset added an
amount of error that is less than existing experimental
variation. A larger value of minimumcells may also be
selected by the user for biological reasons. The software
can optionally disregard conditions in which the error
in estimating the probability exceeds a given KS, whose
default is 0.05.
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The number m of equally spaced bins for density esti-
mation is a user-definable parameter in DistributionAna-
lyzer with a default of 512. The error in estimation of
distributions from individual cell measurements, as mea-
sured by the KS statistic, is essentially unchanged for
m = 256, 512 and 1024 (Additional file 6: Figure S5), par-
ticularly for larger m, as the bandwidth in kernel density
estimation does not depend on m.
In practice, these requirements do not present a signifi-

cant challenge to conducting a screen. A 384-well plate
can (and typically will) contain several thousand cells per
well. In our screen, 99.4 % of all (non-control) wells had
>100 cells, 98.9 % had a KS error <0.05 when m = 512,
and 98.8 % met both criteria. Most of the screened wells
that did not meet these criteria were controls, such as
siWee1, chosen to induce cell death (data not shown).
The series of transformations resulting in a construc-

tion of a probability distribution is depicted in Fig. 1a
and Additional file 2: Figure S1c.

Measure distances between distributions by selection of a
distance metric
A distance metric is used to compute a dissimilarity score
between two distributions. There are many appropriate
choices of distance metric. Any standard or classical metric
defined on the full (Fréchet) space of one-dimensional
probability distributions on an interval is available [34].
For example, the two-sample KS statistic (distance) has

been widely used in the screening literature to measure
distances between distributions [24–27] and is defined as

KS p xið Þ; q xið Þð Þ ¼ maxy j
X

xi≤y p xið Þ−
X

xi≤y q xið Þj. The
KS statistic is only one of many available statistics suit-
able for measuring the “distance” of an empirical distri-
bution function to a reference distribution function (a
“goodness of fit” test). The Anderson-Darling statistic, the
Ryan-Joiner statistic, and the Chi-Squared statistic, for ex-
ample, are arguably even more popular choices [35–37], as
are the Lévy distance (Lévy-Prokhorov metric), Wasserstein
(earth-mover) distance and Hellinger distance [38–41].
Moreover, any one of these statistics, as well as any

“f – divergence” (including Chi-squared divergence,
Kullback–Leibler divergence, total-variation divergence,
Jenson-Shannon divergence, alpha divergence, etc.) can be
used (by symmetrization) to define at least one distance
metric on empirical distribution functions.
Among the many established distance metrics to calculate

the distance between probability distributions, we select the
Hellinger distance [41, 42], which is defined for two discre-
tized probability distributions p(xi) and q(xi) on an interval

[a,b] as HD p xið Þ; q xið Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

m
i¼1

ffiffiffiffiffiffiffiffiffiffi
p xið Þ

p
−

ffiffiffiffiffiffiffiffiffiffi
q xið Þ

p� �2
r

and ranges from 0 to √2. The selection of the Hellinger
distance offers substantial advantages in computational

complexity as well as in clustering accuracy and inter-
pretation (see Results).
The comparative study of metric choices is in generality

more appropriately treated in mathematical (information
geometry) literature.

Represent each condition effect as a point in
high-dimensional Euclidean space
We construct an isometric embedding [43] (mapping)
such that each condition is represented as a point in
Euclidean space whose Euclidean distance to any other
condition is the metric distance between the corre-
sponding distributions (Fig. 1b, left).

For an arbitrary choice of distance metric
Determining such an isometric embedding for n points
from a statistical manifold (the space in which the distri-
butions reside) [43] is always possible by the Nash em-
bedding theorem with a Euclidean space of dimension at
most n-1, for example by the method of multidimen-
sional scaling (MDS) [44]. Thus, regardless of the metric
choice, we can always represent the n distributions as a
set (of size n) of n-1 dimensional points. Computation-
ally, the procedure of MDS up to an arbitrary dimen-
sionality (up to n-1) can be performed using the
“cmdscale” command in R. This sequence is depicted in
Fig. 1b.
The net effect of this procedure will be to represent

each distribution p(x) in the set of n distributions as a
point (r1, r2,…,rn-1).

For the choice of the Hellinger distance metric
The computationally intensive task of MDS on all
pairwise distances can be sidestepped entirely with the
selection of the Hellinger distance.

Consider the maps r1;…; ; rmð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
p x1ð Þp

;…;
ffiffiffiffiffiffiffiffiffiffiffiffi
p xmð Þp� �

and s1;…; ; smð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
q x1ð Þp

;…;
ffiffiffiffiffiffiffiffiffiffiffiffi
q xmð Þp� �

.
The Hellinger distance between two discretized prob-

ability distributions p(xi) and q(xi) can be simplified as

HD p xið Þ; q xið Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

ffiffiffiffiffiffiffiffiffiffi
p xið Þp

−
ffiffiffiffiffiffiffiffiffiffi
q xið Þp� �2s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

ri−sið Þ2
s

:

The vector (r1,…,rm) is thus an isometric embedding as
sought, as the pair-wise Euclidean distance between any
(r1,…,rm) and (s1,…,sm) is the pair-wise Hellinger distance
between the discretized distributions p(xi) and q(xi). In
this manner, the computationally expensive construction
of an isometric embedding (e.g., by classical MDS), can
be avoided. Moreover, as this embedding for the Hellin-
ger distance is of dimensionality m rather than the typic-
ally much larger dimensionality n-1, determined by the
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number of experimental conditions, dimensionality re-
duction (below) by Principal Component (PC) Analysis
(PCA) is far more computationally tractable.
Note that the Euclidean embedding (r1,…,rm) is simply

the square root of the discrete probability distribution.

Singular value decomposition
The condition effects on the set of single-cell distributions
are represented as a n x p matrix Q, constructed from the
n p-dimensional points (the embedding). For the Hellinger
distance metric, p = m. For all other distance metrics, p =
n-1. The matrix Q represents the set of effects in a Euclid-
ean space. We perform PCA on Q by computation of the
(truncated) singular value decomposition (SVD) (Fig. 1b,
right). This is performed with the “svd” function in R.
For example, if each kernel density estimate is repre-

sented as values at m = 512 discrete points and there are
20,000 conditions screened in technical triplicate along
with 5,000 other control sites, n=65,000. The isometric
embedding using the Hellinger distance is also of dimen-
sionality p =m and a 65,000 X 512 matrix is obtained.
For an arbitrary distance metric, this matrix will be
65,000 x 64,999.

The SVD of Q breaks down each condition’s effect (the
matrix row Qi

→
) into a linear combination of right singular

vectors (PCj effects), scaled by the corresponding left sin-
gular vector weightings wi

→
, such that Qi

→ ¼ wi1 PC1
→ þwi2

PC2
→ þ⋯þ wip PCp

→
, with

Pp
j¼1wij

2 ¼ 1.

Features of the SVD when using the Hellinger distance
embedding
Because the Hellinger distance embedding is defined as
the square root of the discrete probability distribution
(see above), the SVD of Q built from the Hellinger
distance breaks down each “square root distribution”
(represented as a row vector Qi

→
) into a linear combin-

ation of eigen-“square root distributions.”
The first right singular vector (shown in black in Fig. 2a)

is the average of all such “square root distributions.” Be-
cause almost all conditions are expected to have no effect,
it can be thought to represent the “overall” null param-
eter effect across all samples in the screen. BecauseX

m
j¼1wij

2 ¼ 1 , conditions that most closely overlap

with the null “square root distribution” (|wi1| closest
to 1) will have nearly zero weight in their remaining

Fig. 2 Applying the distribution-based methodology to Nanog siRNA screening data. a The first 4 PCs (right singular vectors) from the application of the
methodology using the Hellinger distance metric to the screen data, noted as PC1, PC2, PC3 and PC4. The fluorescence distribution of each condition
(well) is approximately the square of a linear combination of these PCs. b Cumulative square root residual sum of squares plot for first 10 PCs. Nearly all
the screen information is captured using few PCs. c Plot of the PC1 values across the genome-wide screen. Conditions with |Z-score| >2 in PC1 that differ
strongly from the overall distribution are shown in blue. siGFP is shown in green, siSox2 in yellow and siNlk in red. All other conditions are shown in black.
d Histogram of Hellinger distance of all probability distributions to the mean probability distribution over all screen sites
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PCs. Conditions with smaller |wi1| values have poorer
fits to the null distribution and represent the most dis-
tinct “square root distributions,” comprised in greater
part of effects along the higher-order right singular
vectors.
The higher-order right singular vectors represent the

greatest sources, in order, of modulations to the null
effect. While the weights for the first right singular
vector are all of the same sign (conventionally posi-
tive), the weights of the higher-order right singular
vectors can be either positive or negative. Although a
biological interpretation of the right singular vectors
is, in general, not guaranteed, the second right singular
vector (red in Fig. 2a) may represent an “up or down”
effect in overall fluorescence, while the third right sin-
gular vector (blue in Fig. 2a) may represent an effect
on reporter variance.

Dimensionality reduction
An appropriate number k of PCs is chosen so that only
the PCs that explain more than a minimum threshold of
residual fit to the true distributions (Fig. 1b) are saved.
The remaining PCs are considered experimental noise
and discarded. This residual fit threshold is chosen arbi-
trarily to be 0.001 (i.e., one thousandth of the variation
in the data). However, because the utility of a method-
ology designed to produce a multivariate output from
univariate distributions would be limited for k < 3, the
minimum value for k is set to 3.
With the residual fit threshold described above, we

found k = 4 PCs for our screen, although application to
other screen datasets often yielded k = 3 (data not
shown). The k left singular vectors (as an n by k matrix)
scaled by the k corresponding singular values, may be
interpreted as n points in k-dimensional space.
The null effect (and its corresponding null distribu-

tion) can either be represented as a) the k-dimensional
point at the scaled center (mean) of all conditions, if
most conditions can be assumed to have no effect, as
was the case in our screen, or b) the k-dimensional point
at the center of the points representing the null-effect or
non-targeting controls, also scaled to unit magnitude.
Each k-dimensional point (wi1, wi2,…, wik) can be con-

verted back into an approximation of the embedding, called

Qi
∼→
, where Qi

→
≈ Qi

∼→ ¼ wi1 PC1
→ þwi2 PC2

→ þ…þ wik PCk
→

.

Features of the dimensionality reduction when using the
Hellinger distance embedding
The magnitude of the vector (r1,…,rm) can be computed
as ∥r1;…; rm ∥ ¼Pm

i¼1r
2
i ¼

Pm
i¼1pðxiÞ ¼ 1 . Therefore

each (r1,…,rm) has unit magnitude and is a point on the
surface of an m-dimensional sphere of unit radius. The k-
dimensional row vectors from the SVD that approximate

each vector (r1,…,rm) also have nearly unit magnitude.
They thus represent points that fall very near the surface
of a k-dimensional sphere of unit radius. Because the Hel-
linger distance embedding is an invertible map from the
discretized distributions, each point can also be converted

back into a probability distribution as Qi
∼2→
.

Outlier identification
The Euclidean distance of each condition from the
null effect (however it is determined) represents how
much each condition changes the distribution. These
distances are rescaled and treated as Z-scores, with an
adjustable significance cutoff, typically |Z-score| >2.
Outliers are arbitrarily defined as conditions whose
median |Z-score| >2 over at least 2 technical repli-
cates. All condition effects with median |Z-score| ≤2
are considered to be non-significant. A Z-score criter-
ion is applied because most conditions have no effect
and distances between null effect condition distribu-
tions to the null effect mean distribution are nearly
normally distributed (Fig. 2d and Additional file 7:
Table S1).
Acceptable alternative outlier identification criteria

exist [6, 7, 24–32, 45–47] but are not discussed here.

Outlier categorization
The conditions with significantly changed (outlier)
distributions, each of which is represented as a k-
dimensional point, are categorized using partitioning
around medoids clustering (Fig. 1b, right) with a spe-
cified number of clusters. The number of clusters may
be determined by several means:

a) A cluster number that maximizes the silhouette
width criterion to divide the screen outliers into
their most “natural” compact grouping.

b) A cluster number greater than 2 that maximizes the
silhouette width criterion to divide the screen outliers
more finely than using an “up-or-down” grouping.

c) A user-specified cluster number to divide the screen
outliers into a known number of states defined by a
biological mechanism.

Results
We applied our methodology to the processed cell-level
data from our previously described genome-wide RNAi
screen [12]. This screen used the NG4 mESC Nanog-
GFP pluripotency reporter line [5, 11] cultured under
mild, retinoic acid (RA)-induced differentiation condi-
tions (Fig. 1c). GFP fluorescence is produced under
control of the Nanog promoter region and is expected
to correlate with pluripotency. mESCs were transfected
with siRNA pools in 384-well plates, cultured in LIF-
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containing media for 1 day and grown for 2 additional
days without LIF and with 10 nM RA (Fig. 1d). Confocal
fluorescent microscopy on the fixed, Hoechst-33342
nucleus-stained cells provided images with cell-level reso-
lution for each condition in the ThermoScientific siGEN-
OME library targeting 16872 mouse genes along with
assay-specific controls in technical triplicate. Under these
conditions siRNA pools that decrease reporter fluores-
cence as well as those that increase it can be identified.
Therefore, positive as well as negative effects on the pluri-
potency loss can be identified in one screen.
We applied our methodology to measure effects of

each condition on the distribution as measured by the
Hellinger distance. We computed the Euclidean em-
bedding of Hellinger distances in our screen and per-
formed a SVD on the embedding to identify the PC
scores (Fig. 2ab). We found that a k = 4 dimensional
best fit subspace was more than sufficient to capture
the screen effects (Fig. 2b). The relative residual sum
of squares (RRSS) for the 4-dimensional projection
was >99.5 % and the second through fourth dimen-
sions captured >94 % of the RRSS not already
captured by the first (i.e., the residuals from second,
third, …, m = 512th).

Screen quality control
The well-to-well variation from the empty and siGFP
controls in our screen was assessed. The t-test between
the set of Hellinger distances of GFP-reducing controls
to null effect and the Hellinger distances of empty
wells to the null effect was computed for each plate
(Additional file 4: Figure S3). Most p-values were on the
order of 10−4 or smaller, reflecting a strong discrimination
between empty wells and GFP-reducing controls.
The plate-to-plate variation from the empty and siGFP

controls in our screen was assessed (Additional file 4:
Figure S3). The standard deviation of Hellinger distance
of empty wells to the null effect was 0.076. Analysis of
variance on the set of Hellinger distances for the empty
controls to the null effect determined that the sum of
squares for plate-level variation was 8.2 (140 degrees of
freedom, p < 10−15), while the sum of squares for re-
sidual variation (i.e., biological or technical variation not
due to plate-level variation) was 29.2 (6320 degrees of
freedom). Thus, after non-control based non-parametric
normalization, the majority of variation in absolute terms
was not attributable to plate-to-plate variation. However,
not all plate-to-plate variation could be eliminated.

Hellinger Distance embedding vs KS statistic to null effect
When used to produce a univariate output (i.e., distance
from each well fluorescence distribution to the null ef-
fect fluorescence distribution), both the Hellinger and
KS metric distances were highly correlated (Pearson’s

R = 0.96) (Additional file 8: Figure S6). The PC scores
from the Euclidean embedding of Hellinger distances
were compared with the values of the KS statistic from
each well relative to the null effect, with the KS statistic
treated strictly as a metric (distance) or allowed to be
negative (so-called “signed KS statistic” in which a cu-
mulative distribution function (CDF) to the right of the
reference CDF is positive and to the left of a reference
CDF is negative) (Additional file 9: Figure S7). The KS dis-
tance was highly correlated with the PC1 scores (R = 0.92),
while the signed KS statistic was highly correlated with the
PC2 scores (R = 0.97). However, neither the KS distance
nor the signed KS statistic correlated strongly with the
PC3 scores (R = 0.19 and 0.04, respectively) or any other
higher order PC scores (data not shown).

Control effect categorization
On each 384-well screening plate, there were a set of bio-
logical and technical control siRNAs chosen because they
decreased (siGFP or siSox2 (gene id 20674)) [48] or ap-
peared to increase (siNlk (gene id 18099)) GFP fluores-
cence based on preliminary studies (data not shown).
siGFP and siSox2 dramatically reduced fluorescence (me-
dian Z-score of Hellinger distance to null distribution 5.51
and 4.61, respectively), while siNlk increased fluorescence
but to a lesser degree (median Z-score 1.72).
The majority of conditions from siGFP and siSox2

were significant outliers (|Z-score| > 2) when scored by
conventional median cell fluorescence (769 of 809 siGFP,
743 of 769 siSox2 conditions and 287 of 633 siNlk con-
ditions). A similar number of conditions were outliers
when scored by our distribution methodology (787 of
809 siGFP, 699 of 769 siSox2 conditions and 264 of 633
siNlk conditions), confirming the screen’s consistency
and our outlier identification ability (Fig. 3a, left panel).
Representative images are shown in Fig. 4e.
The loss of pluripotency gene expression in siSox2 (ra-

ther than just GFP reporter expression in siGFP) drives
cells to differentiate and disrupts cell-cell pluripotency
signaling [48]. Careful visual examination of the images
from siSox2 and siGFP (Fig. 4e) and their respective dis-
tributions (Fig. 3a, left panel and 3b) highlighted subtle
distinguishing features consistent with this biology. We
observed a more flattened cellular morphology in siSox2-
treated wells compared with siGFP or siNon-target wells.
In contrast, we observed small clusters of cells that contin-
ued to express GFP in siGFP conditions, consistent with
their undisrupted cell-cell signaling. This difference is also
reflected in the distributions of siSox2 vs siGFP (Fig. 3b).

Clustering by distribution versus conventional scoring
approaches
We assessed the feasibility of distinguishing the three
distinct siRNA conditions using either our distribution-
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based methodology or one of several conventional scor-
ing approaches. These conventional approaches included
computation of Z-scores from the fluorescence of the
median cell per well; computation of the KS statistic of
each well to the null effect; and computation of an
embedding from a parametric Gaussian mixture model
representation of each distribution. We hypothesized
that our distribution-based methodology would perform
better than conventional approaches because it would
capture subtle features only notable between pairs of
distributions, particularly when the average levels of
fluorescence in conditions were comparable, as in the
siGFP and siSox2 treated wells.
We first clustered the median cell fluorescence values

for each well from the 3 control siRNA types into 3

groups by partitioning around medoids. The 3 siRNA
categories were assigned to their true group with 78 %
accuracy, with siNlk controls very reliably assigned into
a single group (Fig. 3c and Additional file 7: Table S1).
However, because both siGFP and siSox2 conditions de-
creased median cell fluorescence to similar levels (Fig. 3c,
left panel and 3a, middle panel), the distinction in the
clustering between siSox2 and siGFP conditions was
poor. Twenty percent of siGFP and 38 % of siSox2 con-
ditions were incorrectly clustered.
We next clustered the effects computed by our

distribution-based methodology (the “distribution scores”)
to determine whether it could reliably distinguish such
changes. When the first 4 PC weights of the distribution
scores were used to cluster the effects into 3 categories,

Fig. 3 Distinguishing between siRNA conditions using median cell- and distribution-based clustering. a The weighting along the first three PCs
for each siNlk, siGFP and siSox2 condition (well) with >100 cells is plotted as a point in three dimensions. The mean (presumed null) effect across
all conditions is shown as a grey sphere. Grey circle defines all conditions within a 2 Z-score Hellinger distance from the mean effect. Left: siNlk,
siGFP and siSox2 wells are colored in red, green and yellow, respectively. Center: Color assignment is determined by 3 medoid clustering of the
median cell fluorescence. Right: Color assignment is determined by 3 medoid clustering of the first 4 PCs weights. b Mean fluorescence distribution for
siGFP, siSox2 and siNlk conditions (green, yellow and red, respectively) and mean distribution across all conditions in siRNA screen (grey). Distribution
mean is derived from average over all replicates in distribution score (PC) space. The distributions from several representative null-effect wells
are shown in black. c Median cell fluorescence for each control siRNA condition (well), ordered by category (siNlk, siGFP and siSox2). Colors
represent 3 medoid clustering either by median cell fluorescence (left) or by distribution (right), as in Fig. 3a. Values beneath each siRNA
represent number of conditions assigned to each cluster
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the distinction between siSox2 and siGFP controls was
substantially improved compared with the conventional
analysis (Fig. 3a, compare clustering assignment in right
panel to true assignment in left panel, and Fig. 3c,
right panel). The miscategorization rate of the 3 condi-
tions decreased by 41 % compared with conventional

analysis, bringing assignment accuracy to 87 %. Only
13 % of siGFP and 22 % of siSox2 conditions were in-
correctly clustered, with nearly all siNlk conditions cor-
rectly clustered.
A clustering of the signed KS statistic (i.e., the KS statis-

tic in which negative values are permitted) from the same

Fig. 4 Outlier clustering to identify effect categories. a Plot of the first three PC weightings of all outlier conditions. The weightings are clustered
around either 2 (top panels) or 4 (bottom panels) medoids, as suggested by the silhouette width criterion. Two views are shown on left and
right. Distinct clusters are displayed in separate colors. Cluster centers are displayed as large spheres. Grey sphere is mean effect across all
distributions. Non-outlier conditions are not displayed. The PC weightings of siMed14, siMed27 and siChek1 wells are displayed as small yellow,
dark green and purple spheres, respectively. b Probability distribution functions corresponding to scaled centers from either 2- or 4-medoid
clustering (top and bottom panels, respectively). The null effect probability distribution and a sample of mostly null effect distributions are shown
for comparison (thick and thin grey lines, respectively). The medoid distributions are plotted in the same colors as panel a. A low-fluorescing
subpopulation of cells in the probability distribution of cluster 2 conditions is noted with a blue arrow in the top panel. c Average silhouette
width criterion, a measure of clustering appropriateness, following partitioning around medoids of first four PC weightings of outliers. d Probability
distribution function of three technical replicates of siMed14, siMed27 and siChek1, shown in yellow, dark green and purple, respectively. A sample of
85 mostly null effect distributions are shown in grey. e Representative images for controls and outliers. Hoechst-stained nuclei are stained in blue and
cytoplasmic GFP is in green. Controls: Conditions on every plate are chosen to decrease GFP (siSox2 and siGFP), increase GFP (siNlk) or have no effect
(siNon-Targeting). Outliers: Technical replicates of siMed14, siMed27 and siChek1, which produce a narrower, narrower and wider GFP distribution,
respectively. Scale bars (white) represent 80 μm
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controls to the null effect distribution performed even
worse than the median fluorescence clustering, with 69 %
assignment accuracy (Additional file 10: Figure S8).
To address the possibility that a parametric description

of the distribution may be superior at distinguishing con-
trols than the more general distributional approach, we fit-
ted each siSox2, siGFP and siNlk control distribution to a
2-component Gaussian mixture model with unequal vari-
ances. A Euclidean embedding was constructed from the
fitted parametric distributions using the Hellinger distance
metric. When conditions were clustered into 3 categories
as above (Additional file 11: Figure S9), the controls were
distinguished with less accuracy than non-parametric
distribution-based clustering. Moreover, each parametric
distribution required the computationally intensive fitting
of a non-linear model and 5, rather than 4, parameters.
Thus, while the median fluorescence levels associated

with siGFP and siSox2 remain nearly the same (Fig. 3c, left
panel), the distribution-based methodology reliably distin-
guishes between their effects and identifies the true experi-
mental differences better than the most commonly applied
conventional analyses.

Hellinger Distance metric versus KS distance metric
To specifically assess the effect of choice of distance metric
within our methodology on the accuracy of clustering, we
analyzed a more computationally tractable subset of the
screen containing 2800 control wells representing the siGFP,
siSox2, siNlk and siNon-targeting controls. We compared
the Euclidean embedding derived from the Hellinger dis-
tances (found directly from the distributions) with the Eu-
clidean embedding of KS distances (computed by MDS).
When clustered using partitioning around 4 medoids (repre-
senting the 4 different control types), the first 4 dimensions
of the embedding using the Hellinger distance clustered con-
trols more accurately (83 %) than the first 4 dimensions of
the embedding using the Kolmogorov-Smirnov distance
(74 %) (Fig. 5). Therefore, in addition to its computational
advantages, the Hellinger distance for embedding of distribu-
tions is also a better choice than the KS distance when using
partitioning around medoids in this screen.

Confidence threshold
We next identified a confidence threshold for the screen, i.e.,
the minimum biological variation that can be detected by
the assay. We computed the Hellinger distances between all
pairs of empty well control distributions. The median Hellin-
ger distance between pairs of distributions from empty wells
(i.e., conditions assumed to be identical) was 0.17, with
95 % of pairs of empty wells separated by <0.36 and
99 % of empty well pairs separated by <0.45. The median
distance in Hellinger distribution space between members
of the siSox2 cluster and members of the siGFP cluster
(Fig. 3a, left panel) was substantially greater (0.36).

Therefore, the difference between siSox2 and siGFP when
measured by the Hellinger distance can be considered to
be outside of the screen null-effect experimental confi-
dence threshold.
In contrast, the median distance between the median cell

log fluorescence for empty wells in the screen was 0.10,
with 95 % of empty well pair distances <0.31. The median
distance in median log fluorescence between members of
the siSox2 cluster and members of the siGFP cluster (Fig.
3c, left panel) was 0.11, making the difference between
siGFP and siSox2 essentially indistinguishable from experi-
mental noise.

Outlier identification, false positive rate and false
negative rate
2384 of the 50339 non-control condition distributions,
corresponding to 604 genes with consistent effects, were
significantly distant from the null-effect distribution when
the |Z-score| > 2 threshold was applied (Fig. 2c and d and
Additional file 7: Tables S1 and Additional file 12:
Table S2). Depletion of multiple known biological regula-
tors of the pluripotent state, including Sall4 and T (gene
ids 99377 and 20997, respectively), differed significantly
from the null distribution (Z-scores of 2.92 and 2.60, re-
spectively). siRNA to retinoic acid receptors, expected to
inhibit RA-mediated differentiation, effectively blocked
the loss of fluorescence (Z-scores of 3.83, 1.94 and 2.00
for Rxra (gene id 20181), Rxrb (gene id 20182) and Rxrg
(gene id 20183), respectively). Note that computation of
Z-scores on distances to the null-effect distribution pro-
duces positive Z-scores for all large outliers regardless of
whether the condition increases or decreases GFP.
We calculated the Z-score of Hellinger distance between

the null-effect distribution and the distribution of each well.
We then computed the median of this Z-score over all
technical triplicate wells. 44 of 2154 triplicates of empty
control wells had a median |Z-score| > 2 and 6 of 211 tripli-
cates of siNon-targeting wells had a median |Z-score| > 2,
yielding a false-positive rate of 2.0 % and 2.8 %,
respectively. 5 of 216 triplicate siSox2 control wells had
a median |Z-score| < 2 and 0 of 233 triplicate siGFP
control wells had a median |Z-score| < 2, yielding a
false-negative rate of 2.3 % and 0 %, respectively. 3.7 %
of all tested non-control siRNA gene triplicates had a
median |Z-score| > 2, suggesting (assuming a 2 % false
positive rate) that 1.7/3.7 = 46 % of conditions identi-
fied as outliers are true positives when applying a |Z-
score| > 2 cutoff.

Screen outlier effect categorization
We next applied the same clustering strategy used for
the controls to the outliers from the entire screen data-
set, partitioning around medoids in their 4-dimensional
best fit basis (Fig. 4a). Using the average silhouette
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width criterion [49], we found that 2 clusters were opti-
mal, while 4 clusters were optimal if selection of 2 clus-
ters was not permitted (Fig. 4c). There was also a clear
decrease in the average silhouette width criterion with
more than 5 peaks, suggesting the existence of between
3 and 5 meaningful but less clearly distinguishable
probability distribution function categories. When we
partitioned all outlier conditions using both 2 and 4
clusters, we observed a set of distinct effects among the
clusters (Fig. 4b, top and bottom panels, respectively,
and Additional file 7: Tables S1 and Additional file 12:
Table S2).

The 2- and 4-cluster centers were converted back
into probability distribution space (Fig. 4b), with each
cluster center in Fig. 4a corresponding to an associated
prototypical fluorescence distribution. The 2-center
clustering divided outliers predominantly along their
value in the second PC (Fig. 4a, right), representing, to a
first approximation, increasing or decreasing fluorescence.
Interestingly, the effects for conditions “typical” of these
two cluster centers were not only confined to increasing or
decreasing fluorescence. Conditions “typical” of cluster 1
(predominantly decreasing fluorescence) retained very few
high-fluorescing cells. In contrast, conditions “typical” of

Fig. 5 Comparison of Euclidean embedding constructed from either Kolmogorov-Smirnov distances or Hellinger distances. a For a subset of 2800
control wells, the Kolmogorov-Smirnov distance was computed for all pairs of distributions and multidimensional scaling (MDS) applied to compute a
Euclidean embedding. The first two dimensions of the embedding were plotted for the given controls. b For the same controls, the Hellinger distances
were used to directly generate a Euclidean embedding and the second and third PCs plotted (the first PC represents overlap with the null effect). The
first 4 dimensions of the (c) Kolmogorov-Smirnov distance embedding and (d) the Hellinger distance embedding into 4 medoids were clustered and
plotted as in panels a and b. Table of overlap between clustering and true identities of controls when using (e) Kolmogorov-Smirnov embedding or
(f) Hellinger distance embedding
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cluster 2 (predominantly increasing fluorescence) contained
a population of low-fluorescing cells (Fig. 4b, top, blue
arrow). Similarly, the 4-medoid clustering identified effect
categories roughly corresponding to low (cluster 1), bi-
modal low (cluster 2), medium-low (cluster 3) and bimodal
high (cluster 4) fluorescence distributions (Fig. 4b, bottom).
In short, clustering of outlier distributions identifies proto-
typical effects whose features are not adequately described
in terms of increasing or decreasing fluorescence.
In order to extract functional information on the

behavior of the genes in each cluster, we performed
Gene Set Enrichment Analysis (GSEA) [50]. We
identified a unique signature of gene ontologies spe-
cifically and significantly enriched (nominal p-value
<0.05) in each cluster. For the 4-medoid clustering,
we found, among others, that cluster 1 was signifi-
cantly enriched for meiotic cell cycle genes; cluster 2
for genes associated with condensed chromosomes;
cluster 3 for translation regulator activity, histone
deacetylase complex and DNA helicase activity; and
cluster 4 for negative regulation of cell cycle, negative
regulation of cellular protein metabolic process and
RNA pol II transcription factor activity ontologies
(Additional file 13: Figure S10 and Additional file 14:
Table S3). Thus, gene ontology analysis can be
applied to distribution-based effect clusters to reveal
potentially unappreciated functional connections be-
tween sets of genes that produce similar effects.

Validation of selected high-confidence outliers
We sought to demonstrate the advantages of our method-
ology by confirming the biological role of a selected subset
of high-confidence outlier genes (HCOs) that were not
identified by the conventional analysis. To limit false posi-
tives (as described above), we required that HCO condi-
tions be represented as outliers, i.e., |Z-score| > 2 of
Hellinger distance to the null effect in 4-dimensional
basis, in at least 2 out of 3 technical replicates. To exclude
outliers with inconsistent effects, we also required that the
Hellinger distance between at least one pair of outlier
distributions for a particular gene was smaller than the
distance of either distribution to the null effect. We
applied the above HCO criteria to our Nanog reporter
ESC siRNA screen and identified conditions affecting the
distribution of GFP fluorescence (Additional file 7: Tables
S1 and Additional file 12: Table S2).
Among the HCO genes identified based on distribu-

tional changes, we observed GFP-reducing effects of
siBrd4 (gene id 57261) (median distribution Z-score
4.58, median fluorescence Z-score −2.49) and siSnai1
(gene id 20613) (median distribution Z-score 3.07,
median fluorescence Z-score 2.10) as well as a GFP-
increasing effect of siSnai2 (gene id 20583) (median dis-
tribution Z-score 2.34, median fluorescence Z-score

2.40). The antagonistic effects of Snai1 and Snai2 in con-
trol of pluripotency have been recently reported [12] as
has a confirmation of the role of Brd4 in ESCs [51–53].
While these particular hits were identified previously
only using a median fluorescence-based analysis [12],
our distribution-based approach captured them equally
well.
We also identified a number of HCO genes that

would have been missed with a conventional effects
ranking based on median cell fluorescence. Among
them we found that siRNA pools targeting Chek1 (gene
id 12649) mRNA had a minimal effect on the median
GFP fluorescence (median Z-score 0.47) but signifi-
cantly affected the fluorescence distribution (median Z-
score > 2), leading to a broader distribution including
more higher-fluorescing cells (Figs. 4d and 4e). The
signed KS statistic of siChek1 to the null effect was also
not significant (median Z-score −1.14).
To address the potential role of Chek1 in pluripotency,

we constructed short hairpin (sh) RNA lentiviruses tar-
geting endogenous Chek1 mRNA and measured changes
in pluripotency gene mRNA levels. We found that after
depleting Chek1 levels by 73 %, the expression of nu-
merous pluripotency genes, including Sox2 and Nanog,
was depleted by more than 50 % relative to a shLucifer-
ase control (Fig. 6a).
To confirm these effects, we utilized a previously de-

scribed genetic complementation ”rescue” system [5,
23]. Here, endogenous Chek1 mRNA is constitutively
depleted by shRNA and gene expression rescued by
exogenous shRNA-insensitive doxycycline (Dox)-indu-
cible Chek1. We performed alkaline phosphatase (AP)
staining 5 days after removal of Dox. Chek1 depletion
in the -Dox condition dramatically reduced the number
of AP-positive colonies relative to the + Dox Chek1
maintenance condition, indicative of compromised
pluripotency (Fig. 6b). These connections are supported
by previous reports on Chek1 [54].
We also noted the presence of multiple Mediator gene

members in the HCO list, including Med7, Med14,
Med17, Med26 and Med27 (Fig. 3a, gene ids 66213,
26896, 234959, 70625 and 68975, respectively). Of these
genes, Med14, Med17 and Med27 would not have been
noted as outliers when scored by the median cell fluor-
escence parameter. For example, effects of siRNA pools
targeting Med14 and Med27 on the median cell fluores-
cence (conventional criteria) were non-significant in our
screen (median Z-score of −1.33 and −1.02, respectively,
across 3 technical replicates). In addition, in a Pou5f1
pluripotency reporter screen that assayed multiple
Mediator genes, only 1 of 5 shRNAs in the library tar-
geting Med27 scored as significant (Z-score < −2) by
the average cell fluorescence criterion used [47]. Al-
though siMed14 was significant by signed KS statistic
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Fig. 6 Effects of Chek1 and Mediator mRNA depletion on pluripotency. a mRNA changes following shRNA depletion of Chek1 relative to shLuciferase
levels. Error bars are mean ± s.d.. b Alkaline phosphatase staining of a Chek1 rescue line in which exogenous doxycycline-inducible expression of Chek1
rescues endogenous depletion. Cells are stained for AP activity following 5 days with (+) and without (−) doxycycline (Dox). Scale bars (in
black) represent 200 μm. c Flow cytometry analysis framework, as applied to shLuciferase-transduced NG4 cells. GFP expression of puromycin-resistant
mCherry + cells is classified into GFP-, GFP+ and GFP++ categories, representing GFP-negative, GFP-low and GFP-high cell populations, respectively.
d Effects of Mediator gene shRNA depletion on NG4 reporter fluorescence distribution. e mRNA changes following shRNA depletion of
Med14 and Med27 relative to shLuciferase levels. Error bars are mean ± s.d. f Alkaline phosphatase staining following shRNA depletion of
Mediator genes. Scale bars (in black) represent 200 μm
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to null effect (median Z-score 2.34), siMed27 was not
(median Z-score 1.60). In contrast, the effect of siRNAs
targeting Med14 and Med27 was clear in our Nanog re-
porter screen scored by the distribution-based method-
ology (median Z-score of 3.54 and 2.97, respectively).
siMed14- and siMed27-treated cells were characterized
by atypically uniform but intermediate reporter fluores-
cence (Figs. 3d, 3e and Additional file 7: Tables S1 and
Additional file 12: Table S2).
Several studies have demonstrated that Mediator com-

plex members regulate transcription of the pluripotency
gene, Pou5f1 [47, 55]. In addition, Med12 has been re-
ported to bind to the Nanog promoter [47]. We therefore
tested the hypothesis that loss of other Mediator compo-
nents might regulate Nanog promoter activity. In order to
assess the effects of several uncharacterized Mediator
components on the ability of Nanog-promoter GFP cells
to sustain Nanog expression, we constructed 4 shRNA
lentiviruses targeting distinct regions of the corresponding
mRNA and 3’UTR of each of the Mediator components
Med7, Med14, Med17, Med26 and Med27 and transduced
NG4 mESCs with them along with shLuciferase and
shNanog controls. As expected in light of Nanog’s nega-
tive regulation of its own promoter [56], repressing Nanog
led to an increase in Nanog promoter-driven fluorescence
(Fig. 6c and d). Surprisingly, we found that shRNAs
targeting Med14 and Med27 led to a dramatic increase in
the fraction of GFP-negative cells relative to Luciferase
shRNA. Similar but less dramatic effects were noted for
Med17 shRNAs. In all of these cases, Mediator gene
knockdown was accompanied by a decrease in the high-
expressing GFP fraction (noted as GFP++).
For Med14 and Med27, we confirmed the knockdown

of target genes by reduction in mRNA levels (Fig. 6e).
We observed that depletion of both Med14 and Med27
mRNA led to a significant reduction in mRNA of the
pluripotency genes Esrrb, Tcl1 and Rex1 (gene ids
26380, 21432 and 22702, respectively). Further, ESCs
treated with Med14 shRNA strongly up-regulated the
lineage markers Cdx2, Gata4, Gata6, Mixl1, Sall4 and
Tead4 (Fig. 6e, gene ids 12591, 14463, 14465, 27217,
99377 and 21679, respectively). Alkaline phosphatase stain-
ing on the shRNA-treated cells demonstrated a marked loss
of activity relative to the shLuciferase control (Fig. 6f).
We thus find that conditions affecting the Nanog-pro-

moter driven fluorescence single-cell distribution can be
reliably identified from high-content screening data. Sev-
eral biologically relevant regulators of the pluripotent
state were missed by conventional analysis approaches
but identified by our distribution-based methodology.

Discussion
The principal utility of our distribution-based method-
ology stems from its ability to capture all types of

changes to a population of reporter cells. While the con-
ventional mean or median cell parameter approach to
identifying outliers in a screen is sufficient to identify
conditions that dramatically shift all cells to higher or
lower values, it would not capture effects that, for ex-
ample, lead to a high-variance distribution with more
cell parameter levels at the extremes or a highly uniform
intermediate one.
We find that even scoring effects using the univariate

KS statistic to the null effect (Additional file 10: Figure S8)
is inadequate. The KS statistic most notably failed to iden-
tify two of the three hits from our methodology (siChek1
and siMed27) that we experimentally proved. The lack of
correlation of the widely used KS statistic with PC3
Z-scores (Additional file 9: Figure S7) is one of its key
shortcomings, particularly when conditions that primarily
affect PC3 scores are of biological interest.
Analyses of effects in a space determined by metric

distance between probability distribution functions
address the above deficiencies. Conditions with strong
distributional effects are clearly captured as outliers
based on the Hellinger distance metric, whether or not
they produce a significant “up or down” effect on the
median or mean fluorescence levels. While our results
suggest the superiority of the Hellinger distance relative
to the KS distance when used in partitioning around
medoids of the Euclidean embedding (Fig. 5), we do not
exclude the possibility of an alternative clustering meth-
odology (possibly in conjunction with an alternative
distance metric) permitting even better clustering of
screen effects. However, given its obvious computational
advantages and strong performance in clustering, we
consider selection of the Hellinger distance to be ad-
equate for most practical applications.
Our methodology can be extended to multivariate

data. For example, the Euclidean embedding for the
parameter A distribution (r1, r2,…,rm) can be joined
with the embedding for the parameter B distribution
(r’1, r’2,…,r’m) measured from the same cells in the
same well as a higher-dimensional embedding with
weighting (ar1, ar2,…,arm, br’1, br’2,…,br’m) to be treated
with dimensionality reduction and clustering as above. Al-
though assumptions of equal variance (i.e., a = b) are
widely made [26], alternative and possibly superior relative
weights exist.
It is often of interest to understand the response of a

gene-product (such as Nanog) across conditions in order
to appreciate its biological function. The median or
mean parameter value cannot adequately describe how
individual cells respond to a given perturbation. A para-
metric description (such as a Gaussian mixture model)
makes potentially unwarranted assumptions about the
possible distributions. The lack of superior performance
of a Gaussian mixture model may be expected in light of
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the limitations of parametric models, including over-
fitting, suboptimal fitting and sensitivity of clustering to
assumptions of normality [57]. In contrast, our method
can automatically determine all significant distribution-
level responses of a reporter and classify them into a
desired number of clusters, taking advantage of the
library diversity to better understand the reporter.
The selection of optimal cluster number (in our case, 2

vs 4 vs something else) remains a matter for debate. Two
clusters is the optimal number based on the silhouette
width criterion in our dataset (Fig. 4c) and divides the data
into its most “natural” grouping, to first order splitting ef-
fects into those that increase or those that decrease GFP.
However, if the intention of this analysis is to find sets of
conditions that affect GFP in slightly different yet detect-
able ways, then greater than 2 clusters is required. The
number of clusters greater than 2 that maximizes the
silhouette width criterion in this study is 4, although using
3–5 clusters is nearly as good (Fig. 4c). This methodology
may be applied to both aims: demonstrating that the
effects can be broadly grouped into a given number of
optimal categories (e.g., 2); or to cluster effects into a less
optimal but larger number of categories suggested by the
next-best silhouette width criterion (e.g., 4) or a biological
mechanism.
Our pluripotency siRNA screen analysis also demon-

strates the successful application of our distribution-
based approach to its primary aim, namely quantifying
all effects and isolating the most interesting ones. Bio-
logically distinct conditions that appear to have similar
levels of median fluorescence can be distinguished with
far greater accuracy when each condition is viewed as
affecting the distribution (Fig. 3). The discrimination be-
tween siSox2 and siGFP clearly demonstrates that differ-
ences in parameter distributions can identify meaningful
differences that are not adequately captured by the par-
ameter median values.

Conclusions
High-content screening offers single-cell data for each
condition. In order to derive greater biological meaning
from high-content screens, a screening methodology
must effectively identify biologically interesting condi-
tions and distinguish them from one another. Compar-
ing conditions by the mean or median reporter value
(e.g., fluorescence) or by using any methodology that
provides only a univariate output needlessly discards bio-
logically relevant information. Our methodology treats
cells in each condition as being sampled from an under-
lying distribution. We distinguished the effects of known
controls from each other better than alternative ap-
proaches. We also identified several gene-products with
confirmed biological effects that would have been missed
by other approaches. We therefore foresee routine

application of our methodology in analysis of future high-
content screens.

Methods
RNAi library and plate preparation
Our screen was conducted as previously described [12].

Cell-level data extraction
Confocal images taken in blue (Hoechst 33342 nuclear
staining) and green (GFP) channels were processed for
cell segmentation analysis with the MetaXpress software
package as previously described [12, 58]. Nuclei were
segmented using the blue channel with a minimum
width of 8 μm (10 pixels) and a maximum width of
26 μm (33 pixels). Cytoplasmic regions were segmented
using the GFP channel with a minimum width of 10 μm
(13 pixels) and a maximum width of 30 μm (38 pixels).
For each image, we extracted average fluorescence per
cell over the entire cytoplasmic area (Fig. 1c).
Average fluorescence values per cell for each condition

were exported as text files, which were grouped into
separate files for each well with Perl.

Software used in methodology
All further normalization, density estimation, matrix oper-
ations and plotting were performed in R [59]. All scripts
and code used in this paper but not included in Distribu-
tionAnalyzer are available from the authors upon request.

Cell culture
For the RNAi screen, cell culture and imaging were
performed as described previously [12]. Additional cell
culture was performed as described previously [5, 23, 54,
56]. NG4, CCE and Ainv15 mESC lines were used as
previously described [11]. Cells were maintained feeder-
free on gelatin-coated tissue culture dishes in 15 % fetal
bovine serum ESC culture media. Ainv15 rtTA expressing
ESCs used to generate rescue clones were maintained on
primary mouse embryonic fibroblasts (MEFs) in ESC
culture media supplemented with doxycycline (2 μg/ml).

Microscopy
Images were acquired using an ImageXpress Ultra high-
content confocal microscope (Molecular Devices). For
each well, 4 non-overlapping images were collected with
2x binning with 20x objective as 1000x1000 pixel 16-bit
files. Each image corresponded to an 800 μm x 800 μm
area.
For the representative (1000x1000 pixel) images shown

in Fig. 4e, background levels from a 200x200 pixel blur
were subtracted from the composite blue and green im-
ages and image intensities scaled by 4 using ImageMa-
gick. To remove spurious background pixels, a 5x5 pixel
blur mask was constructed and thresholded at 3 % of
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the image range. All pixels in the image below the
threshold were set to black.
The AP-stained images for Chek1 rescue clones were

taken with a Nikon TE2000-U and 4x objective. Images
were then adjusted in GIMP for color balance (+100
towards blue) and saturation (−40).

shRNA design, lentivirus generation, and mouse ESC
transduction
shRNAs utilized in this study are listed in Additional file
15: Table S4. Oligonucleotides encoding each shRNA du-
plex were synthesized by Integrated DNA Technologies
and cloned into the AgeI/EcoRI sites of the lentiviral-
based shRNA expression vector pLKO.pig (pLKO.1
PuroR-IRES-GFP) or pLKO.pim (pLKO.1 PuroR-IRES-
mCherry) following the supplier’s protocol (Addgene)
[60]. All shRNA constructs were confirmed by sequen-
cing. The pLKO.pig Chek1 shRNA1 was used for generat-
ing a rescue clone, as described previously [5, 23].
Lentiviruses were generated in HEK-293 T cells by

Superfect-mediated cotransfection of lentiviral-based
shRNA plasmids and the pCMV-dR8.2 (packaging)
and pCMV-VSVG (envelope) plasmids. Viral superna-
tants were concentrated using Amicon Ultra centrifu-
gal filter units (Millipore) at 1600 g for 20 min. and
stored at −80 °C. For infection, mESCs were infected in
media supplemented with polybrene (8 μg/mL; Sigma).
Cells were incubated overnight with virus and subsequently
cultured in fresh media for 4 days. Infected cells were cul-
tured in media supplemented with 2 μg/mL puromycin for
an additional 4 days, after which mRNA was extracted.

Alkaline phosphatase (AP) staining
AP staining was measured using an Alkaline Phosphatase
Staining Kit (Stemgent) following the manufacturer’s rec-
ommendations. For Mediator shRNAs, AP Staining was
performed 7 days after puromycin selection.

Quantitative RT-PCR analysis
RNA was extracted using Trizol and the RNeasy Mini
Kit (Qiagen). 1 μg of total RNA was converted into
double-stranded cDNA using the High Capacity reverse
transcription kit (Applied Biosystems). Quantitative PCR
was performed using the Fast SYBR® Green Master Mix
(Applied Biosystems) on the LightCycler480 Real-Time
PCR System (Roche). Gene-specific primers used for this
study were described previously [54].

Availability of supporting data
The datasets supporting the results of this article are in-
cluded within the article and its supplementary files.

Additional files

Additional file 1: Code S1. R source code and sample data for
distribution-based high-content screen analysis

Additional file 2: Figure S1. Effects of non-parametric data acquisition
normalization and kernel density estimation. (a) Boxplot of the median
cell fluorescence for each condition before and after non-control
based non-parametric transformation for 25 screened plates. All cells in a
screening plate are assigned a fluorescence based on the fluorescence of
the cell in the reference plate with the closest quantile. Box line denotes
median condition, box ends denote first and third quartiles and whiskers are
located at 1.5 times the interquartile range. The median cell fluorescence for
conditions outside this range is plotted. (b) The median cell fluorescence for
each condition (well) in two sets of screening plates before and after non-
parametric transformation. Conditions with outlier median cell fluorescence
remain as outliers after transformation. (c) Log fluorescence of 1000 cells
derived from image-based cell segmentation from siRNA screen are
normalized as above and displayed as a histogram (left) or converted to a
probability distribution function using kernel density estimation (right).

Additional file 3: Figure S2. Alternative normalization procedures and
effect on fluorescence distributions. The collection of cells on a screening
plate is normalized by one of three procedures: (a) affine parametric
transformation by computing the Z-score of the single cell log fluorescence
(b) control-based non-parametric normalization of the cells from control
wells in each plate to the control wells of the reference plate (Plate 1), with
interpolation for all non-control cells; and (c) non-control based non-
parametric normalization of the all the cells in each plate to all the cells
of the reference plate (Plate 1), with interpolation. The fluorescence
probability distributions of the same set of select controls (siGFP, siSox2
and empty) from Plate 1 (solid lines) and Plate 2 (dashed lines) are
plotted together (d) before normalization, (e) after Z-score normalization,
(f) after control-based non-parametric normalization and (g) after non-
control based non-parametric normalization.

Additional file 4: Figure S3. Plate-level and well-level variation of
control wells. (bottom) The Hellinger distance to null-effect was computed
for all empty control wells (expected to have no effect) (blue) and all siGFP
wells (expected to deplete GFP and substantially alter the fluorescence
distribution) (red). For the control wells of each plate, a boxplot was
computed. Box line denotes median value, box ends denote first and
third quartiles and whiskers are located at 1.5 times the interquartile
range. Values outside this range are plotted as empty circles. (top)
Student’s t -test was computed between the Hellinger distance scores
of siGFP control wells and empty control wells for each plate. Negative
log of the p-values of the t-test are plotted for each plate.

Additional file 5: Figure S4. Error in estimating the probability
distribution as a function of number of cells per well. The Kolmogorov-
Smirnov statistic was computed between the actual cell fluorescence
values and the estimated probability distribution for each well in the
screen. This statistic serves as a marker of error in the process of
estimating the distribution. The statistic was plotted as a function of
the number of cells in the well used to generate the distribution.

Additional file 6: Figure S5. Error in estimating the probability
distribution as a function of number of bins used in estimation. For all wells
in a screening plate, the number of equally spaced bins (m) at which the
probability distribution was estimated was varied, with m = 256 (left), 512
(center) and 1024 (right). The error in the estimation of the probability
distribution was measured for each well as the Kolmogorov-Smirnov statistic
between the actual cell fluorescence values and the estimated probability
distribution.

Additional file 7: Table S1. All effects in the genome-scale RNAi
screen. All 62252 conditions (wells) with >100 wells are scored for
median fluorescence per condition; Z-score Hellinger distance to the null
effect; and in the 4-dimensional best-fit basis of the Hellinger-distance
embedding, i.e., the distribution-based PC scores. For 2- and 4-medoid
cluster assignment, 0 indicates non-outlier and cluster membership is
noted from 1 to 2 or 1 to 4.

Additional file 8: Figure S6. Difference between Hellinger distance to
null effect and Kolmogorov-Smirnov distance to null effect. The Hellinger
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distance of all treated wells in the screen to the null effect is plotted
against the Kolmogorov-Smirnov distance between the same wells and
the null effect. The distance metrics are very highly correlated.

Additional file 9: Figure S7. Comparing the Kolmogorov-Smirnov
statistic to null effect and the first three PC scores of the Hellinger
distance embedding. The Kolmogorov-Smirnov distance (always positive)
(top) and the signed Kolmogorov-Smirnov statistic (possibly negative)
(bottom) was computed for all wells in the screen and plotted against
the first three PC scores of the Euclidean embedding of Hellinger
distances. The third PC scores from the Hellinger distance embedding
(right) are not substantially correlated with the Kolmogorov-Smirnov
distances to null effect.

Additional file 10: Figure S8. Clustering controls using Kolmogorov
Smirnov score to null effect. For each control well, the signed
Kolmogorov-Smirnov distance was calculated between the cumulative
distribution function of the cells in the well and the null-effect. Values are
ordered by category (siNlk, siGFP and siSox2) and separated by vertical
bars. Clustering with 3 medoids of the Kolmogorov-Smirnov scores (left)
is compared to 3 medoid clustering by Hellinger distance (right).

Additional file 11: Figure S9. Clustering controls using dual Gaussian
mixture model. Median cell fluorescence for all control siRNA conditions
that could be fit to convergence with a dual Gaussian mixture model.
Values are ordered by category (siNlk, siGFP and siSox2) and separated by
vertical bars. Clustering with 3 medoids by Hellinger distance between
distributions (center) or by Hellinger distance between distribution fit to
a dual Gaussian mixture model (right) is shown in magenta, blue and
orange. Number of category conditions assigned to each cluster is
shown as numbers beneath the category.

Additional file 12: Table S2. Effects in the genome-scale RNAi screen
grouped by unique condition. Conditions from Additional file 7: Table S1
were grouped into 16784 unique siRNA pools (each targeting a different
gene) and the median applied over replicates. Replicates with no mode
whose distributions fell into different clusters or the non-outlier cluster
are assigned to the non-outlier cluster. The PC scores were averaged.

Additional file 13: Figure S10. Selected gene ontologies enriched in
4-medoid clustering of distribution effects. Gene set enrichment analysis
was performed on the unique mapped genes assigned to each outlier
cluster distribution from a 4-medoid clustering. A selected subset of motif
gene sets in the Molecular Signatures Database with a nominal p-value
<0.05 is shown here.

Additional file 14: Table S3. Gene sets enriched in the 4-medoid
distribution clusters. Gene set enrichment analysis was performed on the
unique mapped genes assigned to each outlier cluster distribution from
a 4-medoid clustering. The tested motif gene sets in the Molecular Signatures
Database are shown here.

Additional file 15: Table S4. shRNA sequences used in this study.
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